
E�cient Implementation of Lazy Su�x TreesRobert Giegerich1, Stefan Kurtz1?, and Jens Stoye21 Technische Fakult�at, Universit�at Bielefeld, Postfach 100 131, D-33501 Bielefeld,Germany.frobert,kurtzg@techfak.uni-bielefeld.de2 German Cancer Research Center (DKFZ), Theoretical Bioinformatics (H0300),Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.j.stoye@dkfz-heidelberg.de

To appear in Proc. of 3rd Workshop on Algorithm EngineeringLondon, UK, July 1999, Lecture Notes in Computer Science

Abstract. We present an e�cient implementation of a write-only top-down construction for su�x trees. Our implementation is based on anew, space-e�cient representation of su�x trees which requires only 12bytes per input character in the worst case, and 8:5 bytes per inputcharacter on average for a collection of �les of di�erent type. We showhow to e�ciently implement the lazy evaluation of su�x trees such thata subtree is evaluated not before it is traversed for the �rst time. Ourexperiments show that for the problem of searching many exact patternsin a �xed input string, the lazy top-down construction is often faster andmore space e�cient than other methods.1 IntroductionSu�x trees are e�ciency boosters in string processing. The su�x tree of a textt is an index structure that can be computed and stored in O(jtj) time andspace. Once constructed, it allows to locate any substring w of t in O(jwj) steps,independent of the size of t. This instant access to substrings is most convenientin a \myriad" [2] of situations, and in Gus�eld's recent book [9], about 70 pagesare devoted to applications of su�x trees.While su�x trees play a prominent role in algorithmics, their practical usehas not been as widespread as one should expect (for example, Skiena [16] hasobserved that su�x trees are the data structure with the highest need for betterimplementations). The following pragmatic considerations make them appearless attractive:{ The linear-time constructions by Weiner [18], McCreight [15] and Ukko-nen [17] are quite intricate to implement. (See also [7] which reviews thesemethods and reveals relationships much closer than one would think.){ Although asymptotically optimal, their poor locality of memory reference [6]causes a signi�cant loss of e�ciency on cached processor architectures.? Partially supported by DFG-grant Ku 1257/1-1.

{ Although asymptotically linear, su�x trees have a reputation of being greedyfor space. For example, the e�cient representation of McCreight [15] requires28 bytes per input character in the worst case.{ Due to these facts, for many applications, the construction of a su�x treedoes not amortize. For example, if a text is to be searched only for a verysmall number of patterns, then it is usually better to use a fast and simpleonline method, such as the Boyer-Moore-Horspool algorithm [11], to searchthe complete text anew for each pattern.However, these concerns are alleviated by the following recent developments:{ In [6], Giegerich and Kurtz advocate the use of a write-only, top-down con-struction, referred to here as the wotd -algorithm. Although its time e�ciencyis O(n logn) in the average and even O(n2) in the worst case (for a text oflength n), it is competitive in practice, due to its simplicity and good localityof memory reference.{ In [12], Kurtz developed a space-e�cient representation that allows to com-pute su�x trees in linear time in 46% less space than previous methods. Asa consequence, su�x trees for large texts, e.g. complete genomes, have beenproved to be manageable.{ The question about amortizing the cost of su�x tree construction is almosteliminated by incrementally constructing the tree as demanded by its queries.This possibility was already hinted at in [6], where the wotd -algorithm wascalled \lazytree" for this reason.When implementing the wotd -algorithm in a lazy functional programming lan-guage, the su�x tree automatically becomes a lazy data structure, but of course,the general overhead of using a lazy language is incurred. In the present paper, weexplicate how a lazy and an eager version of the wotd -algorithm can e�ciently beimplemented in an imperative language. Our implementation technique avoids aconstant alphabet factor in the running time.1 It is based on a new space e�cientsu�x tree representation, which requires only 12n bytes of space in the worstcase. This is an improvement of 8n bytes over the most space e�cient previousrepresentation, as developed in [12]. Experimental results show that our imple-mentation technique leads to programs that are superior to previous ones inmany situations. For example, when searching 0:1n patterns of length between10 and 20 in a text of length n, the lazy wotd -algorithm (wotdlazy, for short)is on average almost 35% faster and 30% more space e�cient than a linked listimplementation of McCreight's [15] linear time su�x tree algorithm. wotdlazyis almost 13% faster and 50% more space e�cient than a hash table implemen-tation of McCreight's linear time su�x tree algorithm, eight times faster and1 The su�x array construction of [13] and the linear time su�x tree construction of [5]also do not have the alphabet factor in their running time. For the linear time su�xtree constructions of [15, 17, 18] the alphabet factor can be avoided by employinghashing techniques, see [15], however, for the cost of using considerably more space,see [12]. 2

10% more space e�cient than a program based on su�x arrays [13], and wotd-lazy is 99 times faster than the iterated application of the Boyer-Moore-Horspoolalgorithm [11]. The lazy wotd -algorithm makes su�x trees also applicable in con-texts where the expected number of queries to the text is small relative to thelength of the text, with an almost immeasurable overhead compared to its eagervariant wotdeager in the opposite case. Beside its usefulness for searching stringpatterns, wotdlazy is interesting for other problems (see the list in [9]), such asexact set matching, the substring problem for a database of patterns, the DNAcontamination problem, common substrings of more than two strings, circularstring linearization, or computation of the q-word distance of two strings.Documented source code, test data, and complete results of our experimentsare available at http://www.techfak.uni-bielefeld.de/~kurtz/Software/wae99.tar.gz.2 The wotd-Su�x Tree Construction2.1 TerminologyLet � be a �nite ordered set of size k, the alphabet. �� is the set of all strings over�, and " is the empty string. We use �+ to denote the set ��nf"g of non-emptystrings. We assume that t is a string over � of length n � 1 and that $ 2 � is acharacter not occurring in t. For any i 2 [1; n+1], let si = ti : : : tn$ denote the ithnon-empty su�x of t$. A �+-tree T is a �nite rooted tree with edge labels from�+. For each a 2 �, every node u in T has at most one a-edge u av-w for somestring v and some node w. An edge leading to a leaf is a leaf edge. Let u be a nodein T . We denote u by w if and only if w is the concatenation of the edge labelson the path from the root to u. " is the root . A string s occurs in T if and only ifT contains a node sv, for some string v. The su�x tree for t, denoted by ST(t),is the �+-tree T with the following properties: (i) each node is either a leaf ora branching node, and (ii) a string w occurs in T if and only if w is a substringof t$. There is a one-to-one correspondence between the non-empty su�xes oft$ and the leaves of ST(t). For each leaf sj we de�ne `(sj) = fjg. For eachbranching node u we de�ne `(u) = fj j u v-uv is an edge in ST(t); j 2 `(uv)g.`(u) is the leaf set of u.2.2 A Review of the wotd-AlgorithmThe wotd -algorithm adheres to the recursive structure of a su�x tree. The ideais that for each branching node u the subtree below u is determined by theset of all su�xes of t$ that have u as a pre�x. In other words, if we have theset R(u) := fs j us is a su�x of t$g of remaining su�xes available, we canevaluate the node u. This works as follows: at �rst R(u) is divided into groupsaccording to the �rst character of each su�x. For any character c 2 �, letgroup(u; c) := fw 2 �� j cw 2 R(u)g be the c-group of R(u). If for somec 2 �, group(u; c) contains only one string w, then there is a leaf edge labeledcw outgoing from u. If group(u; c) contains at least two strings, then there is an3

edge labeled cv leading to a branching node ucv, where v is the longest commonpre�x (lcp, for short) of all strings in group(u; c). The child ucv can then beevaluated from the set R(ucv) = fw j vw 2 group(u; c)g of remaining su�xes.The wotd -algorithm starts by evaluating the root from the set R(root) of allsu�xes of t$. All nodes of ST(t) can be evaluated recursively from the corre-sponding set of remaining su�xes in a top-down manner.Example Consider the input string t = abab. The wotd -algorithm for t worksas follows: At �rst, the root is evaluated from the set R(root) of all non-emptysu�xes of the string t$, see the �rst �ve columns in Fig. 1. The algorithmrecognizes 3 groups of su�xes. The a-group, the b-group, and the $-group. The a-group and the b-group each contain two su�xes, hence we obtain two unevaluatedbranching nodes, which are reached by an a-edge and by a b-edge. The $-groupis singleton, so we obtain a leaf reached by an edge labeled $. To evaluate theunevaluated branching node corresponding to the a-group, one �rst computesthe longest common pre�x of the remaining su�xes of that group. This is b inour case. So the a-edge from the root is labeled by ab, and the remaining su�xesab$ and $ are divided into groups according to their �rst character. Since thisis di�erent, we obtain two singleton groups of su�xes, and thus two leaf edgesoutgoing from ab. These leaf edges are labeled by ab$ and $. The unevaluatedbranching node corresponding to the b-group is evaluated in a similar way, seeFig. 1.a b a b $b a b $a b $b $$| {z }R(root)) a b|{z}R(ab) a b|{z}R(b)
cHHHHHHHHj��������� ab $ cc?b

) cPPPPPPPPPPPq�����������) abc@@@@R����	ab$c $ c
$ cc?b c@@@@R����	ab$c $ cFig. 1. The write-only top-down construction of ST(abab)4

2.3 Properties of the wotd-AlgorithmThe distinctive property of the wotd -algorithm is that the construction proceedstop-down. Once a node has been constructed, it needs not be revisited in theconstruction of other parts of the tree (unlike the linear-time constructions of[5, 15, 17, 18]). As the order of subtree construction is independent otherwise, itmay be arranged in a demand-driven fashion, obtaining the lazy implementationdetailed in the next section.The top-down construction has been mentioned several times in the litera-ture [1, 6, 8, 14], but at the �rst glance, its worst case running time of O(n2) isdisappointing. However, the expected running time is O(n logk n) (see e.g. [6]),and experiments in [6] suggest that the wotd -algorithm is practically linear formoderate size strings. This can be explained by the good locality behavior: thewotd -algorithm has optimal locality on the tree data structure. In principle,more than a \current path" of the tree needs not be in memory. With respectto text access, the wotd -algorithm also behaves very well: For each subtree, onlythe corresponding remaining su�xes are accessed. At a certain tree level, thenumber of su�xes considered will be smaller than the number of available cacheentries. As these su�xes are read sequentially, practically no further cache misseswill occur. This point is reached earlier when the branching degree of the treenodes is higher, since the su�xes split up more quickly. Hence, the locality ofthe wotd -algorithm improves for larger values of k.Aside from the linear constructions already mentioned, there are O(n logn)time su�x tree constructions (e.g. [3,8]) which are based on Hopcroft's partition-ing technique [10]. While these constructions are faster in terms of worst-caseanalysis, the subtrees are not constructed independently. Hence they do not sharethe locality of the wotd -algorithm, nor do they allow for a lazy implementation.3 Implementation TechniquesThis section describes how the wotd -algorithm can be implemented in an eagerlanguage. The \simulation" of lazy evaluation in an eager language is not a verycommon approach. Unevaluated parts of the data structure have to be repre-sented explicitly, and the traversal of the su�x tree becomes more complicatedbecause it has to be merged with the construction of the tree. We will show,however, that by a careful consideration of e�ciency matters, one can end upwith a program which is not only more e�cient and exible in special applica-tions, but which performs comparable to the best existing implementations ofindex-based exact string matching algorithms in general.We �rst describe the data structure that stores the su�x tree, and then weshow how to implement the lazy and eager evaluation, including the additionaldata structures.3.1 The Su�x Tree Data StructureTo implement a su�x tree, we basically have to represent three di�erent items:nodes, edges and edge labels. To describe our representation, we de�ne a total5

order � on the children of a branching node: Let u and v be two di�erent nodesin ST(t) which are children of the same branching node. Then u � v if and onlyif min `(u) < min `(v). Note that leaf sets are never empty and `(u) \ `(v) = ;.Hence � is well de�ned.Let us �rst consider how to represent the edge labels. Since an edge label v is asubstring of t$, it can be represented by a pair of pointers (i; j) into t0 = t$, suchthat v = t0i : : : t0j . In case the edge is a leaf edge, we have j = n+1, i.e., the rightpointer j is redundant. In case the edge leads to a branching node, it also su�cesto only store a left pointer, if we choose it appropriately: Let u v-uv be an edgein ST(t). We de�ne lp(uv) := min `(uv)+juj, the left pointer of uv. Now supposethat uv is a branching node and i = lp(uv). Assume furthermore that uvw is thesmallest child of uv w.r.t. the relation �. Hence we have min `(uv) = min `(uvw),and thus lp(uvw) = min `(uvw)+ juvj = min `(uv)+ juj+ jvj = lp(uv)+ jvj. Nowlet r = lp(uvw). Then v = ti : : : ti+jvj�1 = ti : : : tlp(uv)+jvj�1 = ti : : : tlp(uvw)�1 =ti : : : tr�1. In other words, to retrieve edge labels in constant time, it su�ces tostore the left pointer for each node (including the leaves). For each branchingnode u we additionally need constant time access to the child of uv with thesmallest left pointer. This access is provided by storing a reference �rstchild (u)to the �rst child of u w.r.t. �. The lp- and �rstchild -values are stored in asingle integer table T . The values for children of the same node are stored inconsecutive positions ordered w.r.t. �. Thus, only the edges to the �rst childare stored explicitly. The edges to all other children are implicit. They can beretrieved by scanning consecutive positions in table T .Any node u is referenced by the index in T where lp(u) is stored. To decodethe tree representation, we need two extra bits: A leaf bit marks an entry in Tcorresponding to a leaf, and a rightmost child bit marks an entry correspondingto a node which does not have a right brother w.r.t. �. Fig. 2 shows a table Trepresenting ST(abab).1 6| {z }ab 2 8| {z }b 5| {z }$ 3| {z }abab$ 5| {z }ab$ 3| {z }bab$ 5| {z }b$Fig. 2. A table T representing ST(abab) (see Fig. 1). The input string as well as T isindexed from 1. The entries in T corresponding to leaves are shown in grey boxes. The�rst value for a branching node u is lp(u), the second is �rstchild (u). The leaves $, ab$,and b$ are rightmost children3.2 The Evaluation ProcessThe wotd -algorithm is best viewed as a process evaluating the nodes of thesu�x tree, starting at the root and recursively proceeding downwards into thesubtrees. 6

We �rst describe how an unevaluated node u of ST(t) is stored. For theevaluation of u, we need access to the set R(u) of remaining su�xes. Thereforewe employ a global array su�xes which contains pointers to su�xes of t$. Foreach unevaluated node u, there is an interval in su�xes which stores pointers toall the starting positions in t$ of su�xes in R(u), ordered by descending su�x-length from left to right. R(u) is then represented by the two boundaries left(u)and right(u) of the corresponding interval in su�xes. The boundaries are storedin the two integers reserved in table T for the branching node u. To distinguishevaluated and unevaluated nodes, we use a third bit, the unevaluated bit.Now we can describe how u is evaluated: The edges outgoing from u areobtained by a simple counting sort [4], using the �rst character of each su�xstored in the interval [left(u); right(u)] of the array su�xes as the key in thecounting phase. Each character c with count greater than zero corresponds toa c-edge outgoing from u. Moreover, the su�xes in the c-group determine thesubtree below that edge. The pointers to the su�xes of the c-group are stored ina subinterval, in descending order of their length. To obtain the complete labelof the c-edge, the lcp of all su�xes in the c-group is computed. If the c-groupcontains just one su�x s, then the lcp is s itself. If the c-group contains morethan one su�x, then a simple loop tests for equality of the characters tsu�xes[i]+jfor j = 1; 2; : : : and for all start positions i of the su�xes in the c-group. As soonas an inequality is detected, the loop stops and j is the length of the lcp of thec-group.The children of u are stored in table T , one for each non-empty group. Agroup with count one corresponds to a subinterval of width one. It leads to aleaf, say s, for which we store lp(s) in the next available position of table T .lp(s) is given by the left boundary of the group. A group of size larger thanone leads to an unevaluated branching node, say v, for which we store left(v)and right(v) in the next two available positions of table T . In this way, allnodes with the same father u are stored in consecutive positions. Moreover,since the su�xes of each interval are in descending order of their length, thechildren are ordered w.r.t. the relation �. The values left(v) and right(v) areeasily obtained from the counts in the counting sort phase, and setting the leaf-bit and the rightmost-child bit is straightforward. To prepare for the (possible)evaluation of v, the values in the interval [left(v); right(v)] of the array su�xesare incremented by the length of the corresponding lcp. Finally, after all successornodes of u are created, the values of left(u) and right(u) in T are replaced bythe integers lp(u) := su�xes [left(u)] and �rstchild(u), and the unevaluated bitfor u is deleted.The nodes of the su�x tree can be evaluated in an arbitrary order respect-ing the father/child relation. Two strategies are relevant in practice: The eagerstrategy evaluates nodes in a depth-�rst and left-to-right traversal, as long asthere are unevaluated nodes remaining. The program implementing this strat-egy is called wotdeager in the sequel. The lazy strategy evaluates a node notbefore the corresponding subtree is traversed for the �rst time, for example by7

a procedure searching for patterns in the su�x tree. The program implementingthis strategy is called wotdlazy in the sequel.3.3 Space RequirementThe su�x tree representation as described in Sect. 3.1 requires 2q + n integers,where q is the number of non-root branching nodes. Since q = n�1 in the worstcase, this is an improvement of 2n integers over the best previous representation,as described in [12]. However, one has to be careful when comparing the 2q + nrepresentation of Sect. 3.1 with the results of [12]. The 2q + n representation istailored for the wotd -algorithm and requires extra working space of 2:5n integersin the worst case:2 The array su�xes contains n integers, and the counting sortrequires a bu�er of the width of the interval which is to be sorted. In the worstcase, the width of this interval is n � 1. Moreover, wotdeager needs a stack ofsize up to n=2, to hold references to unevaluated nodes.A careful memory management, however, allows to save space in practice.Note that during eager evaluation, the array su�xes is processed from left toright, i.e., it contains a completely processed pre�x. Simultaneously, the spacerequirement for the su�x tree grows. By reclaiming the completely processedpre�x of the array su�xes for the table T , the extra working space required bywotdeager is only little more than one byte per input character, see Table 1. Forwotdlazy, it is not possible to reclaim unused space of the array su�xes , sincethis is processed in an arbitrary order. As a consequence, wotdlazy needs moreworking space.4 Experimental ResultsFor our experiments, we collected a set of 11 �les of di�erent sizes and types.We restricted ourselves to 7-bit ASCII �les, since the su�x tree applicationwe consider (searching for patterns) does not make sense for binary �les. Ourcollection consists of the following �les: We used �ve �les from the CalgaryCorpus: book1, book2, paper1, bib, progl. The former three contain english text,and the latter two formal text (bibliographic items and lisp programs). We addedtwo �les (containing english text) from the Canterbury Corpus:3 lcet10 andalice29. We extracted a section of 500,000 residues from the PIR protein sequencedatabase, denoted by pir500. Finally, we added three DNA sequences: ecoli500(�rst 500,000 bases of the ecoli genome), ychrIII (chromosome III of the yeastgenome), and vaccg (complete genome of the vaccinia virus).2 Moreover, the wotd -algorithm does not run in linear worst case time, in contrast toe.g. McCreight's algorithm [15] which can be used to construct the 5n representationsof [12] in constant working space. It is not clear to us whether it is possible toconstruct the 2q + n representation of this paper within constant working space, orin linear time. In particular, it is not possible to construct it with McCreight's [15]or with Ukkonen's algorithm [17], see [12].3 Both corpora can be obtained from http://corpus.canterbury.ac.nz8

All programs we consider are written in C. We used the ecgs compiler, release1.1.2, with optimizing option {O3. The programs were run on a Computer with a400 MHz AMD K6-II Processor, 128 MB RAM, under Linux. On this computereach integer and each pointer occupies 4 bytes.In a �rst experiment we ran three di�erent programs constructing su�x trees:wotdeager, mccl, and mcch. The latter two implement McCreight's su�x treeconstruction [15]. mccl computes the improved linked list representation, andmcch computes the improved hash table representation of the su�x tree, asdescribed in [12]. Table 1 shows the running times and the space requirements.We normalized w.r.t. the length of the �les. That is, we show the relative time(in seconds) to process 106 characters (i.e., rtime = (106 � time)=n), and therelative space requirement in bytes per input character. For wotdeager we showthe space requirement for the su�x tree representation (stspace), as well as thetotal space requirement including the working space.mccl and mcch only requireconstant extra working space. The last row of Table 1 shows the total length ofthe �les, and the averages of the values of the corresponding columns. In eachrow a grey box marks the smallest relative time and the smallest relative spacerequirement, respectively. wotdeager mccl mcch�le n k rtime stspace space rtime space rtime spacebook1 768771 82 2.82 8.01 9.09 3.55 10.00 2.55 14.90book2 610856 96 2.60 8.25 9.17 2.90 10.00 2.31 14.53lcet10 426754 84 2.48 8.25 9.24 2.79 10.00 2.30 14.53alice29 152089 74 1.97 8.25 9.43 2.43 10.01 2.17 14.54paper1 53161 95 1.69 8.37 9.50 1.88 10.02 1.88 14.54bib 111261 81 1.98 8.30 9.17 2.07 9.61 1.89 14.54progl 71646 87 2.37 9.19 10.42 1.54 10.41 1.95 14.54ecoli500 500000 4 3.32 9.10 10.46 2.42 12.80 2.84 17.42ychrIII 315339 4 3.20 9.12 10.70 2.28 12.80 2.70 17.41vaccg 191737 4 3.70 9.22 11.07 2.14 12.81 2.56 17.18pir500 500000 20 3.06 7.81 8.61 5.10 10.00 2.58 15.263701614 2.66 8.53 9.71 2.65 10.77 2.34 15.40Table 1. Time and space requirement for di�erent programs constructing su�x treesAll three programs have similar running times. wotdeager and mcch show amore stable running time than mccl. This may be explained by the fact that therunning time of wotdeager and mcch is independent of the alphabet size. For athorough explanation of the behavior of mccl and mcch we refer to [12]. Whilewotdeager does not give us a running time advantage, it is more space e�cientthan the other programs, using 1.06 and 5.69 bytes per input character less thanmccl and mcch, respectively. Note that the additional working space requiredfor wotdeager is on average only 1.18 bytes per input character.9

In a second experiment we studied the behavior of di�erent programs search-ing for many exact patterns in an input string, a scenario which occurs for ex-ample in genome-scale sequencing projects, see [9, Sect. 7.15]. For the programsof the previous experiment, and for wotdlazy, we implemented search functions.wotdeager and mccl require O(km) time to search for a pattern string of lengthm. mcch requires O(m) time. Since the pattern search for wotdlazy is mergedwith the evaluation of su�x tree nodes, we cannot give a general statementabout the running time of the search. We also considered su�x arrays, usingthe original program code developed by Manber and Myers [13, page 946]. Thesu�x array program, referred to by mamy, constructs a su�x array in O(n logn)time. Searching is performed in O(m+ logn) time. The su�x array requires 5nbytes of space. For the construction, additionally 4n bytes of working space arerequired. Finally, we also considered the iterated application of an on-line stringsearching algorithm, our own implementation of the Boyer-Moore-Horspool al-gorithm [11], referred to by bmh. The algorithm takes O(n +m) expected timeper search, and uses O(m) working space.We generated patterns according to the following strategy: For each inputstring t of length n we randomly sampled �n substrings s1; s2; : : : ; s�n of di�erentlengths from t. The proportionality factor � was between 0:0001 and 1. Thelengths were evenly distributed over the interval [10; 20]. For i 2 [1; �n], theprograms were called to search for pattern pi, where pi = si, if i is even, and pi isthe reverse of si, otherwise. Reversing a string si simulates the case that a patternsearch is often unsuccessful. Table 2 shows the relative running times for � = 0:1.For wotdlazy we show the space requirement for the su�x tree after all �n patternsearches have been performed (stspace), and the total space requirement. Formamy, bmh, and the other three programs the space requirement is independentof �. Thus for the space requirement of wotdeager, mccl, and mcch see Table 1.The space requirement of bmh is marginal, so it is omitted in Table 2.Except for the DNA sequences, wotdlazy is the fastest and most space e�cientprogram for � = 0:1. This is due to the fact that the pattern searches onlyevaluate a part of the su�x tree. Comparing the stspace columns of Tables 1 and2 we can estimate that for � = 0:1 about 40% of the su�x tree is evaluated. Wecan also deduce that wotdeager performs pattern searches faster than mcch, andmuch faster than mccl. This can be explained as follows: searching for patternsmeans that for each branching node the list of successors is traversed, to �nda particular edge. However, in our su�x tree representation, the successors arefound in consecutive positions of table T . This means a small number of cachemisses, and hence the good performance. It is remarkable that wotdlazy is morespace e�cient and eight times faster than mamy. Of course, the space advantageof wotdlazy is lost with a larger number of patterns. In particular, for � � 0:3mamy is the most space e�cient program. Figs. 3 and 4 give a general overview,how � inuences the running times. Fig. 3 shows the average relative runningtime for all programs and di�erent choices of � for � � 0:005. Fig. 4 shows theaverage relative running time for all programs except bmh for all values of �. Weobserve that wotdlazy is the fastest program for � � 0:3, and wotdeager is the10

wotdlazy wotdeager mccl mcch mamy bmh�le n k rtime stspace space rtime rtime rtime rtime space rtimebook1 768771 82 3.17 3.14 7.22 3.37 5.70 3.19 20.73 8.04 413.60book2 610856 96 2.85 3.12 7.22 3.14 5.17 2.96 21.23 8.06 298.25lcet10 426754 84 2.65 3.07 7.22 3.07 4.52 2.88 20.55 8.07 206.40alice29 152089 74 2.04 3.13 7.23 2.43 3.62 2.70 17.10 8.14 74.76paper1 53161 95 1.50 3.23 7.65 2.07 2.82 2.26 9.41 8.68 23.70bib 111261 81 1.89 3.06 7.23 2.43 3.06 2.43 14.11 8.24 47.28progl 71646 87 1.81 2.91 7.24 2.79 2.37 2.37 14.52 8.42 32.24ecoli500 500000 4 3.60 3.71 8.02 3.82 3.36 3.68 24.84 8.52 724.56ychrIII 315339 4 3.23 3.84 8.02 3.62 3.17 3.49 26.73 8.83 453.39vaccg 191737 4 2.97 3.81 8.03 3.39 2.87 3.34 23.73 8.34 291.13pir500 500000 20 2.46 3.55 7.62 3.66 6.34 3.10 29.38 8.06 248.423701614 2.56 3.32 7.52 3.07 3.91 2.94 20.21 8.31 255.79Table 2. Time and space requirement for searching 0:1n exact patternsfastest program for � � 0:4. bmh is faster than wotdlazy only for � � 0:0003.Thus the index construction performed by wotdlazy already amortizes for a verysmall number of pattern searches.We also performed some tests on two larger �les (english text) of length 3 MBand 5.6 MB, and we observed the following:{ The relative running time for wotdeager slightly increases, i.e. the superlin-earity in the complexity becomes visible. As a consequence, mcch becomesfaster than wotdeager (but still uses 50% more space).{ With � approaching 1, the slower su�x tree construction of wotdeager andwotdlazy is compensated for by a faster pattern search procedure, so thatthere is a running time advantage over mcch.5 ConclusionWe have developed e�cient implementations of the write-only top-down su�xtree construction. These construct a representation of the su�x tree, which re-quires only 12n bytes of space in the worst case, plus 10n bytes of working space.The space requirement in practice is only 9:71n bytes on average for a collectionof �les of di�erent type. The time and space overhead of the lazy implementationis very small. Our experiments show that for searching many exact patterns inan input string, the lazy algorithm is the most space and time e�cient algorithmfor a wide range of input values.Acknowledgements We thank Gene Myers for providing a copy of his su�x arraycode. 11

0

5

10

15

20

25

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

bmh
mamy

mccl
mcch

wotdeager
wotdlazy

Fig. 3. Average relative running time (in seconds) for di�erent values of � 2 [0; 0:005]

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

mamy
mccl

mcch
wotdeager

wotdlazy

Fig. 4. Average relative running time (in seconds) for di�erent values of � 2 [0; 1]12

References1. A. Andersson and S. Nilsson. E�cient Implementation of Su�x Trees. Software|Practice and Experience, 25(2):129{141, 1995.2. A. Apostolico. The Myriad Virtues of Subword Trees. In Combinatorial Algorithmson Words, pages 85{96. Springer Verlag, 1985.3. A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin. ParallelConstruction of a Su�x Tree with Applications. Algorithmica, 3:347{365, 1988.4. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MITPress, Cambridge, MA, 1990.5. M. Farach. Optimal Su�x Tree Construction with Large Alphabets. In Proc. of the38th Annual Symposium on the Foundations of Computer Science (FOCS), 1997.6. R. Giegerich and S. Kurtz. A Comparison of Imperative and Purely FunctionalSu�x Tree Constructions. Science of Computer Programming, 25(2-3):187{218,1995.7. R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A UnifyingView of Linear-Time Su�x Tree Constructions. Algorithmica, 19:331{353, 1997.8. D. Gus�eld. An \Increment-by-one" Approach to Su�x Arrays and Trees. ReportCSE-90-39, Computer Science Division, University of California, Davis, 1990.9. D. Gus�eld. Algorithms on Strings, Trees, and Sequences. Cambridge UniversityPress, 1997.10. J. Hopcroft. An O(n log n) Algorithm for Minimizing States in a Finite Automaton.In Proceedings of an International Symposium on the Theory of Machines andComputations, pages 189{196. Academic Press, New York, 1971.11. R.N. Horspool. Practical Fast Searching in Strings. Software|Practice and Expe-rience, 10(6):501{506, 1980.12. S. Kurtz. Reducing the Space Requirement of Su�x Trees. Software|Practiceand Experience, 1999. Accepted for publication.13. U. Manber and E.W. Myers. Su�x Arrays: A New Method for On-Line StringSearches. SIAM Journal on Computing, 22(5):935{948, 1993.14. H.M. Martinez. An E�cient Method for Finding Repeats in Molecular Sequences.Nucleic Acids Res., 11(13):4629{4634, 1983.15. E.M. McCreight. A Space-Economical Su�x Tree Construction Algorithm. Journalof the ACM, 23(2):262{272, 1976.16. S. S. Skiena. Who is Interested in Algorithms and Why? Lessons from the StonyBrook Algorithms Repository. In Proceedings of the 2nd Workshop on AlgorithmEngineering (WAE), pages 204{212, 1998.17. E. Ukkonen. On-line Construction of Su�x-Trees. Algorithmica, 14(3), 1995.18. P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of the 14th IEEEAnnual Symposium on Switching and Automata Theory, pages 1{11, The Univer-sity of Iowa, 1973.
13

