|
Bielefeld University Faculty of Linguistics and Literature Faculty of Technology |
Abstract
Pointing at objects is a natural form of interaction between humans that is of particular importance in human-machine interfaces. Our goal is the recognition of such deictic gestures on our mobile robot in order to enable a natural way of interaction. The approach proposed analyzes image data from the robot's camera to detect the gesturing hand. We perform deictic gesture recognition through extending a trajectory recognition algorithm based on particle filtering with symbolic information from the objects in the vicinity of the acting hand. This vicinity is specified by a context area. By propagating the samples depending on a successful matching between expected and observed objects the samples that lack a corresponding context object are propagated less often. The results obtained demonstrate the robustness of the proposed system integrating trajectory data with symbolic information for deictic gesture recognition.
|
Last Change: 2004-11-15 gk256www@techfak.uni-bielefeld.de |