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ABSTRACT 

Three complementary methods are used to analyze the 
dynamics of multivariate EEG data obtained from a human 
listening to a piece of music. The analysis yields parameters for 
a data sonification that conserves temporal and frequency 
relationships as well as wave intensities of the data. Multiple 
events taking place on different time scales are combined to a 
polyrhythmic display in real time. 
 

1. INTRODUCTION 

EEG time series with their broadband Fourier spectra are 
known to be polyrhythmic, i.e. they result from the 
superposition of many individual rhythms. In general, these 
individual rhythms are irregular but can be identified by their 
dominant frequencies. Examples are the alpha rhythm (between 
8 and 13 Hz in adults) which reflects resting activity of the 
visual cortex; and the theta rhythm (between 4 and 8 Hz) 
connected with rhythmic activity of the hippocampus and 
probably also of the thalamus. As far as higher brain functions 
(like cognitive processes) are concerned, there is accumulating 
evidence that they can be related to changes of the degree of 
firing synchronization of collaborating populations of neurons, 
the so-called neural assemblies [1]. In the scalp EEG the degree 
of synchronization of cortical activity is reflected in the 
intensity of a given rhythm and consequently cognitive 
processing should be reflected in temporal dynamics of the 
respective cortical rhythms. Therefore we decided to sonify the 
dynamics of multiple EEG rhythms such that their interactions 
can be perceived. 
 
Our sonification is an attempt to represent the polyrhythmic 
texture of human cortical activity. Among the many hypothesis 
available about the connection between mental activity and 
certain EEG rhythms, we focus on recent evidence for thalamo-
cortical interaction. In particular, during semantic memory 
recall significant power changes were observed in the theta and 
beta band of human scalp EEG [2]. We therefore decided to 
sonify the temporal evolution of multiple rhythms in these 
frequency bands for various EEG channels.  
 
All parameters for frequency, rhythmic patterns and loudness of 
sound events were extracted from the time series. No musical 
material was introduced for aesthetic purposes. Thus, rhythmic, 
harmonic and even melodic patterns that the listener detects can 

be traced back to the cerebral activity of the listening subject 
from which the data were recorded. 
 

2. THE EEG DATA 

Raw data were provided with 500 samples per second 
resolution in ascii format as 26 channel EEG with electrodes 
positioned according to the 10/20 standard. Prior to analysis 
they were freed from drift and slow waves (<0.5Hz) by a 
polynomial fit and transformed to average zero and variance 1. 

3. ANALYSIS  

3.1. Fourier Transform 

Fast Fourier transform was applied in form of the spectrogram, 
i.e. as a running window, to obtain the temporal dependence of 
powers. Due to the limited validity of this method when applied 
to short time segments, average powers within frequency bands 
were calculated. For its use as sonification parameters the 
results were calculated according to 

 where  is the relative 

power, is the power of frequency band i in the running 

window, and is the averaged power of the band for the 
whole time series.  
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We divided the low frequency range into two bands, 2-4 Hz and 
4-8 Hz and the lower beta band between 12 and 24 Hz into 12 
“semitone” bands. These powers control the loudness of 
instruments. The twelve beta sub-bands were in addition used to 
assign a frequency to a sound event (see below). 
 
Fig. 1 (top) shows the Fourier spectrum of channel T3 with its 
alpha peak at about 8.8 Hz (probably a young subject), 
significant power in the delta band (1-4 Hz), and nearly 
homogeneous power distribution in the beta band (>13 Hz). The 
lower panel in Fig. 1 shows the temporal evolution of the 
relative power in the theta band of the same channel. 
 
 



 

 
 

Fig. 1: (Top) FFT of the high-pass filtered time series of 
channel T3. (Bottom) Time series of the relative power 
of T3 between 4 and 8 Hz calculated with a running 
Welch window of 10 seconds and a displacement in 
steps of 0.01 seconds. 

3.2. Delta and Theta Rhyhtms 

 
Due to its suitability for direct representation, the frequency 
range from 2 to 8 Hz was analyzed for its rhythmic properties 
(see e.g. [3]). To this end, the corresponding EEG oscillations 
were converted into sequences of discrete spikes, i.e. signals 
that allow discrimination between a basal state and an excited 
state. This was achieved by perturbing an excitable ordinary 
differential equation with the EEG signal. The method is 
described in detail in [4] and summarized briefly in [5]. In order 
to resolve the frequency of the rhythms between 2 and 8 Hz on 
a semitone scale, a set of 25 “tuned” equations was perturbed in 
parallel, each adjusted to a different detection frequency on an 
exponential scale (see [5] for an example of the output of this 
analysis for one channel). The induced spikes represent the 
presence of the rhythm with the corresponding frequency and 
phase in the EEG and are used to trigger a sound event at the 
corresponding time. In each case an average over 15 runs with 
different initial conditions was evaluated as the mean spike 
amplitude. The analysis was repeated for all 26 channels and 
four (T3, T4, T5, T6) were then selected for sonification. 

3.3. Collectivity Parameter 

To obtain an objective measure of the degree of collectivity of 
the whole dataset, we applied a method based on the equal-time 
correlation matrix. The two-point correlations of all EEG 

channels were calculated over a window of 4 seconds and this 
window was shifted over the complete recording with maximal 
overlap. According to our studies, large values of the smallest 
eigenvalue of the correlation matrix indicate less collectivity 
(less synchronization or anti-synchronization between channels) 
and small values indicate increased collectivity in the EEG [6]. 
We therefore chose the time series of the smallest eigenvalue as 
a collectivity parameter.  
 
Fig. 2 shows the temporal evolution of this parameter. Notably, 
a period of highly collective dynamics is reflected in the low 
plateau between 160 and 180 seconds. Incidentally, this 
coincides with the power increase in T3 (see Fig. 1b) and other 
channels.  
 
 

 
 
Fig. 2: Collectivity parameter as a function of time. 

4. SONIFICATION 

For sonification of the results obtained from the described 
methods of analysis, a four-channel auditory display was 
chosen, so that the four selected electrodes can be discerned 
from their source location in the display. For a stereo downmix, 
we use the left/right separation to reflect activity in the left/right 
hemisphere, using intensity panning to locate the channels. 
 
As described before, the data were used to compute high-
resolved rhythmical information from the method of induced 
excitations (which generated output at a rate of 333 Hz) as well 
as melodic information by the semitone-separated Fourier 
analysis in the beta frequency range of 12-24 Hz. It is already 
challenging to transport this vast amount of information into a 
structured audio composition even for a single time series. 
However, we aimed at portraying the dynamics of the 
multivariate data for several channels. For the present purpose 
we restricted the selection to channels T3, T5 (left hemisphere) 
and T4, T6 (right hemisphere), all placed close to the auditory 
cortex. 
 
In the sonification, you will hear various acoustic elements. The 
first is a rhythmically structured pattern of bass tones 
corresponding to induced excitations in the 2-4 Hz frequency 
range, using a semitone frequency resolution. Since several of 
the chains may show induced excitations at the same time, only 
the one with the maximum activation is picked. Thus, this 
rhythm is a monophonic sequence. In the submitted 
sonification, the bass sound is used for T3 and T5 (audible on 
the left stereo channel), and a pitched percussion instrument, a 
tom drum, for T4 and T6 (right stereo channel). 



 

 
Activity in the 4-8 Hz range is sonified according to the same 
techniques, resulting in a monophonic, rhythmically high-
resolved pattern on a higher octave. For better sound separation, 
another timbre was chosen to represent such spikes, namely a 
vibraphone for T3 and T5, and a Rhodes sound for T4 and T6. 
This selection of sounds was motivated by the need of a short 
transient in order to have a good rhythmical resolution, and at 
the same time a clear pitch structure, such that any evident 
harmonic relations are not hidden by the timbre. 
 
The final element of the sonification is the melody channel, 
containing the time varying short-time Fourier powers in the 
12-24 Hz frequency range. This is again one octave, ordered in 
semitone intervals. Since data analysis was performed using a 
10 seconds analysis window, the variation of spectral energy is 
rather slow, leading to a slowly varying texture. We applied a 
nonlinear level mapping from spectral energy to sound level, so 
that any contributions below a threshold of 70% of the maximal 
energy in the band are suppressed. As a consequence, on the 
average one to three tones are audible in the melody texture. 
Good separation of the different channels here is very difficult 
to achieve, since neither transient structure nor rhythms can be 
used to assist the separation. However, we allocated different 
octaves for different channels hoping that (this in combination 
with the spatial separation) may help the listener. Now the 
T3/T5 melody streams (and T4/T6, respectively) occupy 
different octaves at the same waveform.  
The T3/T5 melody streams (and T4/T6  respectively) occupy 
different octaves at the same pitch.  So far the melody 
sonification is the Spectral Mapping Sonification as described 
in [7], apart from the particular tuning of pitches on a semitone 
scale. However, here we take one step further by modifying the 
timbre in the melody stream according to the observed 
collectivity parameter. For this the following metaphor may 
assist interpretation: modulations (i.e. detuning, which causes 
rougher sounds) correspond to non-collective behavior in real 
physical systems. In the same way, high collectivity ties 
oscillators together so that the modulations decrease, and thus 
can be perceived as a cleaner timbre. 
 
Practically the sonification is computed using Csound. The 
output of the nonlinear excitable systems is transformed into 
score events. The orchestra is composed in this case simply by a 
hold oscillator instrument and a sample player instruments, both 
are making use of reverberation and interpolating envelope 
control to avoid clicks. In order to mark the beginning and the 
end of the sonification, a percussive signal is used. Note that the 
melody stream starts to contribute to the sonification at 5 secs, 
because this is the minimum center of a 10 seconds running 
window. 

5. GENERAL REMARKS 

The sonification allows one to perceive the dynamics of four 
EEG channels in different frequency bands. The rhythms reflect 
repetitive neural activity in real time and the melodic section 
conserves frequency relationships (harmonies) of the 
corresponding activity in the EEG. The polyrhythmic texture of 
the sound is highly non-trivial. It allows the detection of 
synchronized/desynchronized events (particularly in the bass 
and tom drum), appearance and disappearance of rhythmic 
sequences in the vibraphone and Rhodes sound (the “waxing 
and waning” phenomenon), and melodic sequences that 

occasionally accumulate to form dissonant clusters. The highly 
collective state at around 170 seconds naturally leads to the 
climax of the piece. 
 
At present we are unable to “decode” the dynamics of human 
cerebral activity. However, the human ear offers an as yet 
unexplored means to both intuitively and analytically study this 
dynamics from a (so far unheard of) point of “view”. The study 
in [2] indicates that cognitive events are accompanied (or 
caused) by parallel changes of rhythms at different levels. Our 
polyrhythmic sonification opens the way to apply musical, and 
in particular contrapuntal, training of the sense of hearing to the 
scientific study of the human mind. 
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Soundfiles: 
 
Individual channels: 
 
HermannBaierMueller2004-PIT_0.wav 
HermannBaierMueller2004-PIT_1.wav 
HermannBaierMueller2004-PIT_2.wav 
HermannBaierMueller2004-PIT_3.wav 
 
Downmix: 
 
HermannBaierMueller2004-PIT.mp3 
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