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ABSTRACT
This paper presents a learning technique for visual event
recognition in a system that assists persons with dementia
during handwashing. The challenge is that persons with de-
mentia present a wide variety of behaviors during a single
task, typically changing their behaviours drastically from
day to day. Any attempt at modeling this variety requires
a large set of features, image regions, and temporal dynam-
ics. In this paper, we approach this challenge by supervised
learning of generative models from manually segmented and
labelled video sequences. Our method uses a generic set of
appearance-based colour, motion and texture features, over
a static set of regions. We then present two HMM architec-
tures that incorporate multiple image regions by either fus-
ing on a feature-level, or later in the recognition process us-
ing a mixture-of-experts approach, in which a gating HMM
is applied for the dynamic selection between specialised ex-
pert HMMs. Our models are trained on a clinical database of
videos, and we compare the HMM approaches with a near-
est neighbours scheme. Our results confirm the challenge
we present, and indicate that our generative modelling tech-
niques are suitable for inclusion in future prototypes of the
hand washing assistant.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—video analysis; K.4.2 [Computers and Soci-
ety]: Social Issues—Assistive technologies for persons with
disabilities

General Terms
Algorithms,Human Factors

Keywords
Event recognition, Supervised learning, HMM, Task assis-
tance
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1. INTRODUCTION
The average age of people in the industrialised countries

will increase steadily in the next years and decades. Simul-
taneously, the number of persons suffering from cognitive
disabilities such as dementia and Alzheimer’s is on the in-
crease. Persons with dementia often have difficulty accom-
plishing activities of daily living (ADLs) without the help
of a caregiver. This leads to a loss of independence, and
an (often intolerable) increase in burden on carers. Assis-
tive technology can support people during ADLs, decreasing
caregiver burden and increasing independence and quality
of life for the sufferers [27]. Such technology monitors a
person’s activities, detects when assistance is needed, and
provides help to guide ADL [25, 12, 19], to remind[15], and
to share/transmit information and provide point-of-contact
care [3]. Cameras are an important element for such tech-
nology, as a key requirement is non-invasiveness: persons
with dementia cannot tolerate any wearable sensors or pre-
scribed behaviors. While successful non-invasive assistive
devices have been tested for specific tasks, their long-term
economic and social acceptance across a wide range of tasks
depends on the ability of the devices to adapt to users as
needs, environments, and abilities change.

A key factor for adaptivity is the ability to learn behaviors
of humans from data. Cognitive disabilities make this task
very challenging, as behaviors of a single user can change
significantly over time. Patterns of regular activity are bro-
ken: a person with moderate or severe dementia attempting
to wash their hands, for example, may have little memory of
having done so in the past. Therefore, their behaviors may
exhibit a large variance in temporal and spatial dynamics
which is depicted in figure 5 and 6. The image sequences
show two take soap events and two turn water off events re-
spectively which are performed by one person in each case.
The sequences not only differ vastly in duration, but also in
the execution style which is indicated by the movement of
the hands. This variance causes significant problems for sys-
tems that do not learn, as it is very difficult to predict a pri-
ori what a particular user will do. This is in contrast to ap-
plications such as sign language recognition, where gestures
are consistent and repeatable with (relatively) low variance.
This paper takes a step towards learning human behavior
categories from visual data, specifically for the case of an
assistive device that helps persons with dementia complete
the task of hand washing independently.

The device in question uses a single camera, placed over-
head of a sink, and watches a person with dementia as they



wash their hands. The system needs to recognize key be-
haviors of the user (e.g. using the soap), and use this recog-
nition to estimate the stage the user is currently at. If the
user stops making progress, the system can deliver an audio-
visual cue, or prompt, to remind the user of what to do.
These cues are often sufficient to re-engage the user [19].
Currently, the system uses a generic hand tracker [11], and
a heuristic method for recognition of behaviors based on the
temporal trajectories of hands [12]. The problem with this
approach is that it does not generalise across users and from
day to day, as persons with dementia can exhibit widely
variant behaviors. For example, a person may one day turn
on the water quickly and confidently, and the next go back
and forth many times, adjusting the water again and again.
Furthermore, this approach does not incorporate learning of
behavior models.

This paper approaches the learning problem in a super-
vised approach, in which a dataset of six subjects washing
their hands are temporally segmented and labelled with a
pre-defined set of four behaviors: using soap, turning wa-
ter on/off, and rinsing hands. A set of generic features are
then extracted from each of a set of four static image re-
gions. These features are then used as observations for a
set of hidden Markov models (HMMs). We apply HMMs in
order to represent the temporal structure of different behav-
iors in terms of feature observations. The HMMs are trained
on part of the data, and then used to recognise behaviors
in a test data set. We use a cross-validation approach to
maximize the amount of test data, and test across all six
subjects. We found the best peforming method to give an
average recognition of 79% across all subjects and all behav-
iors.

The contributions of our paper are two-fold. First, we
present a challenging and important learning problem: the
behaviors of persons with dementia. We demonstrate two
HMM-based approaches to this problem, and pinpoint the
challenges involved in using such activity recognition in prac-
tical devices with a timely and relevant purpose. Second,
we perform a comparison of approaches for combining data
across multiple regions and multiple subjects, for data with
a wide variation in dynamics. We do not, in this paper,
address the question of invariance with respect to execution
rate or camera viewpoint [28], leaving this for future work.

2. RELATED WORK
A functional taxonomy of human action recognition work

identifies four categories: initialization, tracking, pose esti-
mation, and recognition [20]. This paper presents work in
the last category only. We are interested in recognising hu-
man behaviors with a particular function: to accomplish a
sub-task in an activity of daily living (ADL). The function-
ality of our recognised behaviors is defined through their
inclusion in a higher level model, as described in [12]. Other
computer vision researchers have looked at activity recogni-
tion using top-down information (e.g. [14]), but we sidestep
this issue here to focus only on recognition of predefined
behaviors, while ignoring higher level information.

The recognition of predefined categories of visual activi-
ties has a strong tradition in computer vision [24, 20]. The
work has spanned many types of behaviors for different ap-
plications in sports analysis, smart rooms, surveillance, and
biometrics. Recent work by Efros et al. showed the impor-
tance of good features [4] for noisy action recognition, in

a simple nearest-neighbors type recognition approach. We
include these features in our set, and compare our HMM-
based approaches with a similar type of nearest-neighbour
recognition method. Other approaches use templates [5, 1],
but are more applicable for well-defined gestures.

Hidden Markov model (HMM) or dynamic Bayesian net-
work (DBN) based approaches have been popular. Yamato
et al.[31] first used HMMs, which were later popularized in
the recognition of American sign language [16, 29]. More re-
cently, Oliver et al.[22] used a predefined hierarchical HMM
to learn patterns of behavior in an office. Galata et al. use
a variable length Markov model to recognize categories of
dance movements [7]. Other variants of HMMs have been
used for more complex scenes with interaction between re-
gions and objects [2, 8]. DBNs have recently been used for
characterization of human trajectories [21], and human in-
teractions [23]. A multi-class support vector machine (SVM)
classifier was used in[18] to classify the stages of lathering
soap during handwashing of healthy subjects, with a view to
quality assessment. This type of analysis is too detailed for
our application, and would suffer due to large variabilities in
behaviours in our target population. Few authors, however,
have focussed on behaviors with large variances across users
and time.

Learning of human behaviors from visual data has yet to
be applied to assistive technologies. Instead, technologists
have built simple, non-adaptive devices for specific tasks [12,
19, 25, 15]. Learning has been used to for sequential pat-
terns of spatial locations in a home or outdoors [21, 17], or
of precise usage activities [9]. The COACH is a real-time
system that monitors a user with a video camera, provides
audio-visual prompts to help a user in hand washing, and
calls for human assistance if needed [12]. The device uses
only video, combining computer vision for tracking hands
with planning based on decision theory and probabilistic
reasoning [12], but does not learn from data. It has been
trialled with six subjects, and a dataset has been generated
that is used in this paper 1.

A comprehensive survey of recent research into human
action recognition [20] points to only few works that are
attempting to qualify and handle the variations in human
actions due to variations between individuals. Recent work
has tried to quantify variations due to viewpoint, anthro-
pometry, and execution rate [28, 30], but have not yet ap-
proached differences in human psychology. It is assumed
that a cognitively able human is performing an action that
many would perform in a similar way (e.g walking or run-
ning). Our case is different. We are considering humans
who perform the same action (e.g. using the soap) in a very
different way from day to day, or in relation to others. An
example will help to clarify. A handwashing subject in a
previous set of trials had a peculiar way of using the soap:
with one hand, he would pump soap onto the counter-top.
Then, after a long pause, he would retrieve the spilled soap
with the same hand. We do not pretend to be able to recog-
nise this radically different behavior, but use this example to
underline the fact that the functional effects of a human be-
havior may be quite separate from the behavioral patterns,
making recognition very challenging. This is an area in hu-
man action recognition in computer vision that has not yet
been explored, and one that this paper attempts to expose.

1We acknowledge the the Univ. of Toronto for sharing this
dataset.



3. APPROACH
Because of the wide variety of behaviors observed in per-

sons with dementia, we neglect the trajectory information
of the hands and focus on a fixed set of image regions that
correspond to relevant parts in the scene. For each image
region and each frame, a high-dimensional feature vector is
computed that captures the color and intensity distribution,
texture, and motion. Thus, the scene patches provide local
cues that may be relevant or not for recognizing a specific
event. The presented approach learns the dynamics as well
as the relevance of each cue and combines them to a purely
data-driven event recognizer. The dynamics are modeled by
Hidden Markov Models (HMMs) where we explore different
architectures. The overall approach makes the following as-
sumptions. First, the image regions are pre-defined but they
may slightly vary from trial to trial due to a segmentation
by hand. All trials are perceived from a similar perspective.
Although the automatic segmentation of events can be cov-
ered by the HMM approach, in principle, we concentrate on
the classification of pre-segmented events in order to keep
the comparability of alternative models.

We apply our approach in a handwashing scenario recog-
nizing the following events: take soap, turn water on/off and
rinse hands. An event called no event is included which de-
scribes the periods of time in which none of the other events
happen. We consider four regions soap, water, left tap and
right tap. Since the four regions are pre-segmented by hand
for every trial video, the sizes and positions of these base
regions don’t form a perfect segmentation result, but differ
slightly from trial to trial. In order to increase the robust-
ness of the recognition, regions which are up- and downsized
by a factor of 1.1 are also taken into account. Hence, we
consider 12 regions per video frame which are composed of
the four base regions plus the up- and downsized ones. We
represent an event in terms of sequences of 16-dimensional
feature vectors where each feature vector is calculated on
each of the 12 regions for every frame of a trial video. We
use generic features taken from the color/intensity, texture
and motion domain as follows.

3.1 Color/Intensity features
Event recognition is highly associated to the detection of

the activity of a person’s hands. Since the hand’s activity
gives rise to a characteristic color- and intensity appearance
the employment of color- and intensity features is reason-
able. On a grayscale histogram we calculate four central
moments: mean µ, variance V , skewness S determined by

S =
1

N · σ3

MX
i=1

(ni − µ)3 (1)

and kurtosis K which is

K = (
1

N · σ4

MX
i=1

(ni − µ)4)− 3. (2)

σ =
√
V is the standard deviation, N the total number of

pixels, ni the number of pixels with grayscale i and M = 256
the number of grayscales.

We make use of the color information provided by calcu-
lating the difference of RGB color histograms taken at time t
and t−1 respectively in order to capture significant changes
in the color appearance. In the calculation of grayscale as

well as color histograms, spatial information gets lost. Cor-
relograms proposed by Huang et al.[13] combine this with
intensity information. A correlogram is a three-dimensional
matrix C(i, j, d) where the entry (i, j, d) is the probability of
finding a pixel with intensity i and a pixel with intensity j
in a distance of d to each other. The difference of two correl-
ograms calculated at time t and t− 1 respectively is used as
a feature representing both spatial and temporal intensity
changes. In total, we have six color/intensity features.

3.2 Texture features
Most events cause textural structures on certain image re-

gions, e.g. flowing water – as the result of event turn water
on – leads to a structure in the region water. A common
representation for the calculation of textural features is a
gray level co-occurrence matrix M∆x,∆y(i, j) where the en-
try (i, j) is the number of pixel pairs where one pixel has
intensity i and the other intensity j and at the same time
the pixels have an offset of ∆x and ∆y. In our approach, we
use the offset parameters ∆x = 0 and ∆y = 1. On the co-
occurrence matrix, we calculate the following six Haralick-
features as stated in [10]: Energy, entropy, contrast, homo-
geneity, inverse difference moment and correlation.

3.3 Motion features
Motion features are important since any event is initiated

by the motion of a persons’ hands. The motion features are
based on the spatio-temporal motion descriptors proposed by
Efros et al.[4]: An optical flow field F is calculated between
two consecutive frames which is splitted into horizontal and
vertical components Fx and Fy. The components are half-
wave rectified into four non-negative channels F+

x , F−x , F+
y

and F−y . The difference fdiff of the four blurred motion
channels Fb+x , Fb−x , Fb+y and Fb−y computed at time t and
t− 1 are used as features resulting in four motion features.

3.4 Feature preprocessing
The features f1, . . . , fL used throughout this approach

have both different co-domains and different variances. In
order to avoid any bias in the following dimension reduction,
a variance normalization is applied to each feature, individ-
ually. Thus, the normalized feature vector f̂ = (f̂1, . . . , f̂L)
is defined as

f̂i =
fi − µi

σi
, i = 1 . . . L (3)

where µi is the mean and σi the std. dev. of feature i.
Finally, a Principal Component Analysis (PCA) is applied
to the feature vectors in order to reduce feature correlations
while keeping 90% of the energy.

In our approaches, we apply a linear HMM for each of
the five events which are combined to a Compound HMM
by disjunction, as depicted in figure 1. Each HMM con-
sists of a sequence of states S1 to SN(ev) where the length
N(ev) of the state sequence varies for each event type ev ∈
{take soap, . . . }. The blank nodes denote the start and the
end state of the parallelized HMMs. The HMMs are trained
using the Baum-Welch algorithm which maximizes the pro-
duction probability of an HMM given a set of sample events.

In this paper, the proposed features are used in two dif-
ferent HMM architectures that incorporate multiple image
regions by either fusing them on a feature-level, or later in
the recognition process using a mixture-of-experts approach
for the dynamic selection between specialized expert HMMs.



Figure 1: The compound HMM is a disjunction of
linear HMMs.

3.5 Combination on feature level
In this approach, we directly learn the dependencies be-

tween events and regions on feature level by concatenating
the 16-dimensional feature vectors calculated on the image
regions water, soap, left tap and right tap to a 64-dimensional
feature vector. A PCA reduces the feature vectors to 23 di-
mensions keeping 90% of the overall energy. We apply a
single Compound HMM which generates a common event
hypothesis for all regions. For a sequence of feature vec-
tors denoting an event, the optimal production probability
is computed for each event type. Then, the event hypothesis
is given by the most likely event type. Figure 2 depicts the
approach:

Figure 2: Combination on feature level using a single
CHMM.

3.6 Mixture-of-experts combination
In this architecture, we use specialized experts for each of

the four regions by applying one Compound HMM per re-
gion. Each Compound HMM is treated independently and
generates a local event hypothesis based on the sequence of
feature vectors calculated on the corresponding image re-
gion. The Compound HMM responsible for the water re-
gion, for example, is fed only by feature vectors calculated on
the base, up- and downsized region water. For an overview
of the mixture-of-experts method, see [26]. A PCA is applied
to the feature vectors of each of the four regions, indepen-
dently, resulting in 7-dim (water), 5-dim (soap), 7-dim (left
tap), 8-dim (right tap) reduced feature vectors.

Most events affect multiple image regions, but will not
cause characteristic scene changes in all of the four regions,
simultaneously: Take soap will be detectable on the region
soap but it will not affect any systematic changes on the right
tap region. This information is not given to the system be-
forehand, but needs to be learnt. As a consequence, simple

majority voting on the four regions will not work because
recognition results on irrelevant regions will either be very
brittle or just no event. In order to deal with this problem
and to combine the local event hypotheses to a common hy-
pothesis, we apply a mixture-of-experts approach: For each
of the four regions, we train a second HMM that decides
whether the local event hypothesis of the corresponding re-
gion is reliable and, therefore, regarded in the common event
hypothesis. In the following, we refer to these HMMs as
activity HMMs and to the Compound HMMs generating a
local event hypothesis as event HMMs. In order to avoid
brittle thresholding, an activity HMM (illustrated in figure
3) consists of a disjunction of two linear HMMs which are
denoted active and inactive, respectively.

Figure 3: Activity CHMM consisting of two HMMs.

The training of these HMMs uses the global 23-dimensional
feature vectors described in the previous section. First, the
event HMMs are trained based on the local feature vec-
tors. Then, these are used in order to separate the set
of sample events into two disjoint sets based on the cor-
rect or incorrect classification result. The set on which the
HMM active is trained is composed of correctly classified
sample events. The training set for the inactive HMM con-
tains events that were incorrectly classified. The training is
shown for one region in figure 4. Hence, each activity HMM

Figure 4: Event HMM trained based on local fea-
ture vectors, activity HMM trained based on global
feature vectors.

separates the space of 23-dimensional global input events,
containing information from all regions, into the expecta-
tion of reliable and non-reliable local event hypotheses with
regard to the associated region. In order to measure the de-
gree of reliability, a weight wR is calculated for every region
R ∈ {water, soap, left tap, right tap}:

wR = 1− sR
act

sR
act + sR

inact

(4)

where sR
act and sR

inact are the negative logarithms of the opti-
mal production probabilities obtained by the corresponding



activity HMM of region R. A hypothesis is considered in the
common event hypothesis if the weight wR is greater than
0.5: the optimal production probability for the active HMM
is bigger than the optimal production probability for the in-
active HMM. A combination of the hypotheses by majority
vote leads to a common event hypothesis. If none of the
event hypotheses pass the activity HMMs, the classification
result is no hypothesis (NH) which describes the rejection of
a sequence.

3.7 K-nearest neighbours
Each event is represented by a sequence of feature vectors

where the length of the sequence is the number of frames
of the trial video. In our approach, we calculate the three
nearest neighbours of each feature vector according to the
Euclidian distance, and combine them by majority vote for
the event type to a hypothesis for each feature vector of
the sequence. The recognised event type is then a majority
vote over all feature vectors resulting in a common event
hypothesis.

4. EXPERIMENTAL RESULTS
The experiments throughout this work are based on sam-

ple events taken from real clinical trials obtained by the
existing handwashing system [19]. These trials were a modi-
fied withdrawal-type, single-subject test consisting of a base-
line phase (no computer guidance), A, and an intervention
phase (with computer guidance), B, tested in the order
A1 − B1 − A2 − B2. Participants were recruited from a
long-term care facility in Toronto, Canada, where the trials
were conducted. The primary inclusion criteria were clinical
diagnosis of moderate-to-severe dementia. Six older adults
participated in the study—5 females, 1 male, average age
86.3 ± 8.8. Using the Mini-Mental State Examination [6],
five of the subjects were classified as having moderate-level
dementia, with the one remaining classified as severe. A fully
functional washroom located in the long-term care unit was
retrofitted with the necessary system hardware, specifically
a ceiling-mounted IEEE-1394 digital video camera (Point
Grey Research DragonFly2), and a Dell Latitude laptop
computer (2 GHz processor, 2 Gb RAM). The video from the
overhead camera was recorded on the laptop with a frame-
rate of approximately 30Hz.

We initially selected 52 handwashing trials randomly. Fig-
ure 5 and 6 show image sequences taken from these trials.
The subset of trials was then manually segmented in time
into the five categories of events: using soap, turning wa-
ter on, turning water off, rinsing hands, and no event. This
segmentation was performed by the first author in the fol-
lowing way: For every trial, the four regions water, soap, left
tap and right tap were marked by a rectangle. Each event
was then considered to start as the hands entered the main
region for that event, and end when the hands left the re-
gion. Breaks between events, as well as events that can not
be assigned to static regions, including lathering and drying
the hands, are labeled as no event. The resulting dataset
consisted of 589 events from the six subjects, with a distri-
bution across the five event categories as shown in Table 1.
The number of no event events is very high, since in a hand-
washing trials, no event usually alternates with one of the
other events and therefore occurs more frequently because
the subjects in the trials make frequent pauses during their
execution. This is a typical style of behavior for persons

Sub trials TS WON WOFF RH NE Sum
1 6 8 8 8 6 36 66
3 14 14 19 20 28 88 172
4 10 8 8 10 11 42 79
5 5 8 6 6 8 33 61
6 10 10 10 10 36 85 121
8 7 6 10 9 18 47 90

Sum 52 57 61 63 97 311 589

Table 1: Number of events of the different subjects.
The events are labelled take soap (TS), turn wa-
ter on (WON), turn water off (WOFF), rinse hands
(RH) and no event (NE).

with dementia. Furthermore, the varying behavior of per-
sons with dementia can be shown in table 1 since events
that normally occur once in handwashing trial occur several
times per subject, for example take soap in subject 1.

length in frames number
event min. max. median all most

take soap 40 70 54 57 30
turn water on 20 40 30 61 20
turn water off 10 40 27 63 29
rinse hands 1 60 36 97 23

no event 1 100 11 311 177
overall 1 100 27 589 279

Table 2: Overview of the length ranges per event in
which most of the events reside and the number of
different events.

As the variance in event lengths will impact the HMM
classification, we constructed a subset of the sequences in
which the lengths are constrained to a range in which most
of the events reside based on the length histograms. Table 2
shows the minimum, maximum and median lengths as well
as the number of events used in this constrained dataset.
We refer to the complete set of 589 events as the all dataset,
and the constrained dataset as the most dataset.

We conducted three types of experiments, in each of which
we applied leave-one-out cross-validation in order to con-
struct the classification results from a sufficient number of
test events calculated on base regions. The three experi-
ments are as follows

• all-subjects (AS): all subjects’ sequences were used
together. A single sequence was removed in the cross-
validation, and the models were trained on all remain-
ing sequences.

• single-subject (SS): data from a single subject were
used for training and testing. Table 1 gives an overview
of the number of events per subject.

• leave-one-subject-out (LO) in which the training
data was taken from 5 subjects, and the test data from
the sixth. In this case, only a single experiment was
performed per subject (6 experiments in all).

Finally, we conduct experiments using the three meth-
ods described above: FC refers to the feature combina-
tion method (Section 3.5, ME refers to the mixture of ex-
perts method (Section 3.6) and KN refers to the k-nearest-
neighbors approach (Section 3.7).



Table 3 shows average classification rates for all three ex-
periments, both data sets all and most, for the three methods
FC,ME,KN. The results of the most dataset in conjunc-
tion with the SS experiment are dropped since the amount
of training and test samples is too small.

exp data meth. TS WON WOFF RH NE (NH)

FC 82.5 56.7 58.7 96.9 80.7

all ME 86 49.2 38.1 72.2 66.2 (15.8)

AS KN 61.4 55.7 54 83.5 88.1

FC 80 63.2 72.4 87 93.2

most ME 83.3 60 65.5 78.3 89.3 (0.6)

KN 66.7 75 62 60.9 88.1

FC 68 48 56.6 66.3 86.1

SS all ME 59.3 45.6 55.6 55.1 66 (14.7)

KN 64.3 48.8 44 69.9 76.5

FC 82.5 33.3 63.5 93.8 77.2

all ME 82.5 50.8 49.2 84.5 61.7 (12.5)

LO KN 62.3 37.1 53.3 72.2 83.6

FC 76.7 31.6 48.3 87 92.1

most ME 60 15 37.9 69.6 88.7 (0.6)

KN 41 53 70.4 52 81.7

Table 3: Classification rates of the two expriments
AS: all subjects, SS: single subject, LO: leave-one-
subject-out, for the two data sets all and most,
and the three methods: feature combination (FC),
mixture-of-experts (ME) and k-nearest-neighbours
(KN) approaches. The events are labelled take
soap (TS), turn water on (WON), turn water off
(WOFF), rinse hands (RH), no event (NE). The
number in brackets after no event is the ratio of
no event classified as no hypothesis (NH).

In general, the experiment using all subjects together (AS)
leads to better classification rates compared to the single-
subject (SS) and the leave-one-subject-out (LO) experiments.
In the SS experiment, the number of training items is not
sufficient to learn specific models for each person which leads
to worse results compared to the AS experiment. The clas-
sification rates for all and most datasets are similar for the
events take soap and rinse hands. However, the rates for the
events turn water on and turn water off show a significant
advantage for most experiment. For these events, timing is
an important factor since extremely short and long events
cause an increased error rate. We also see that the FC ap-
proach leads to better classification results than the ME and
the KN approach with regard to a reduced training set in
both SS and LO approaches.

For a more detailed comparison of the average classifica-
tion rates of the feature combination (FC) and the mixture-
of-experts (ME) approach with the all dataset, we take the
confusion matrices into account which are depicted in ta-
bles 4 and 5. In the following, the events are labelled take
soap (TS), turn water on (WON), turn water off (WOFF),
no event (NE), no hypothesis (NH). Although the average
classification rates are increased for the FC compared to the
ME approach, the false-positive rates are decreased in the
ME approach. Especially for the events turn water on and

TS WON WOFF RH NE

TS 82.5% 5.3% 0% 0% 12.3%

WON 0% 56.7% 38.3% 3.3% 1.7%

WOFF 0% 38.1% 58.7% 1.6% 1.6%

RH 0% 0% 1% 96.9% 2.1%

NE 4.2% 0.6% 4.2% 10.3% 80.7%

Table 4: Confusion matrix of the feature combina-
tion approach using the all dataset in the AS exper-
iment.

TS WON WOFF RH NE NH

TS 86% 1.8% 0% 0% 5.3% 7%

WON 0% 49.2% 14.8% 1.6% 4.9% 29.5%

WOFF 0% 19% 38.1% 0% 17.5% 25.4%

RH 1% 1% 4.1% 72.2% 6.2% 15.5%

NE 3.9% 1% 3.5% 9.6% 66.2% 15.8%

Table 5: Confusion matrix of the mixture-of-experts
approach using the all dataset in the AS experiment.

turn water off, the false positives are decreased from 38.3
to 14.8, and from 38.1 to 19 respectively. Instead of mis-
classifying, the ME approach more often rejects events as
no hypothesis (no hyp). Especially in a prompting system
that assists users in a specific task, the minimization of mis-
classifications as well as a rejection of vague hypothesis are
desirable.

The average results for the single-subject experiments shown
in Table 3 hide significant variation amongst subjects. Ta-
ble 6 shows the classification rates of the both the feature
combination (FC) and mixture-of-experts (ME) approach
listed for individual subjects. The total classification rates

meth. Sub TS WON WOFF RH NE NH

1 25 28.6 50 66.7 75

3 88.2 27.8 65 100 80.7

FC 4 87.5 85.7 30 100 83.3

5 87.5 40 50 100 84.8

6 100 88.9 80 100 70.8

8 100 88.9 66.7 94.4 93.6

1 75 28.6 12.5 0 52.8 27.8

3 76.5 33.3 35 78.6 72.7 12.5

ME 4 75 28.6 30 63.6 66.7 9.5

5 100 80 50 37.5 12.5 39.4

6 100 88.9 80 80.8 66.2 13.8

8 100 66.7 22.2 94.4 80.9 4.3

Table 6: Classification rates of the methods fea-
ture combination (FC) and mixture-of-experts (ME)
listed for any subject with the AS experiment. (NH)
is a possible output only for the ME approach since
the FC approach does not incorporate a rejection.

are composed of extremely varying classification rates for
the different subjects. Subject 1 has very poor classification
rates since this subject is highly dependent on the help of



a caregiver. Without this help, subject 1 was nearly unable
to perform any handwashing event. Hence, the active help
of a caregiver corrupts the feature representation of events
which leads to poor classification rates. However, the results
of poor classified subjects underline the challenge of behav-
ior recognition in a scenario with persons suffering from de-
mentia who show significant variabilities in both execution
and duration of events as depicted in the image sequences
in figures 5 and 6. On the other hand, subjects 6 and 8
produce excellent classification rates. The confusion matrix
for subject 6 is depicted in table 7. Especially, the results

TS WON WOFF RH NE NH

TS 100% 0% 0% 0% 0% 0%

WON 0% 88.9% 11.1% 0% 0% 0%

WOFF 0% 10% 80% 0% 10% 0%

RH 0% 0% 0% 80.8% 3.8% 15.4%

NE 1.5% 0% 1.5% 16.9% 66.2% 13.8%

Table 7: Confusion matrix for subject 6 in the
mixture-of-experts approach using the all dataset.

of the events turn water on and turn water off are excellent
compared to the existing trajectory-based approach of the
handwashing system in which turn water on and turn water
off can not be distinguished. The very good classification
rates of single subjects show that our approaches perform
well in scenarios in which the behaviors are more regular.
It is important to underline that no top-down knowledge
about the execution of the underlying task is included in
our approaches. The results strengthen the hypothesis that
the generic features in combination with the learning ap-
proaches can discriminate well between different behaviors.

5. CONCLUSION
In this paper, we target the challenging problem of recog-

nizing task relevant events of highly variant performances of
ADLs, specifically by persons with dementia. We learn our
models in a supervised fashion using real video data from
clinical trials in the context of an assistive handwasching
scenario. We show that a purely data-driven recognition of
task-relevant events is feasible based on features that are
computed on multiple image regions. Therefore, we suggest
two different HMM-based approaches and show them to be
superior to a simple k-NN recognition scheme in most ex-
periments. Our analysis shows that the recognition perfor-
mance varies extremely between different subjects, stressing
the overall challenge of these kind of datasets. The excellent
results on some subjects show the potential of the HMM-
based scheme to distinguish events like turn-water-on and
turn-water-off which have a very similar appearance. These
would not be distinguishable by approaches purely based on
hand trajectories. Furthermore, the mixture-of-expert (ME)
HMM approach reduces the number of false positives for
more difficult subjects. Finally, both HMM architectures,
but especially the ME HMM is shown to better generalize
on very small training sets. Further work will concentrate
on the combination with complementary approaches based
on hand trajectories and the integration into an assistive
system.

Figure 5: Two different take soap events from sub-
ject 5 having a length of 114 and 59 frames, respec-
tively. Every 7th sequence frame is shown.
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