
Gesichtsanimation (Facial Animation)

Ein Referat von Toni Säilä Mediengestaltung, 4. Semester

Methoden der Computeranimation und VR Stefan Kopp, Marc Latoschik

Sommersemester 2003

Übersicht

Einleitung

Historie

- Facial Expression Analysis
- Geschichte der Gesichtsanimation

Anatomie und Muskeln

Modellierung

Facial Animation

- Interpolation (Key Framing)
- Performance Driven
- Facial Action Coding System (FACS)
- Direct Parameterization
- Pseudo-muskelbasierte Animation
- Muskelbasierte Animation
- MPEG-4

Conclusion

Quellen

Einleitung

- das Gesicht gilt als der kommunikativste Teil des menschlichen Körpers
- Merkmale wie Rasse, Proportionen, Augenfarbe oder Ästhetik lassen uns Menschen erkennen
- feine Veränderung des Gesichtsausdrucks (Mimik) werden erkannt
- diese Fähigkeit werden vom jungen Menschen als erstes erlernt
- Erforschung von Anatomie und Mimik spielen in der Wissenschaft seit Ende des 16. Jhdts eine Rolle
- große Herausforderung für die 3D Animation

Historie

Facial Expression Analysis

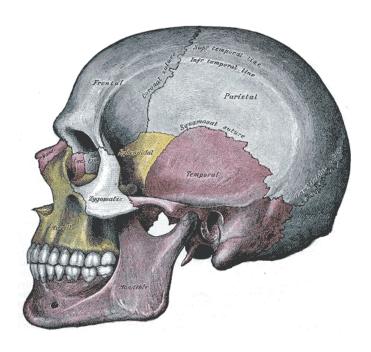
- erste Arbeiten zu den Ausdrucksmöglichkeit des menschlichen Gesichts von John Bulwer ca. 1650
- erste Ende des 19. Jhdts. weitere Erforschung durch Charles Bell, Duchenne de Boulogne und Charles Darwin
- im Jahr 1862 veröffentlicht Duchenne Ergebnisse zur Klassifizierung von Gesichtsmuskeln, die bei der Mimik aktiv werden
- Ende der 70er beschreiben Paul Ekman und Wallace Friesen das Facial Action Coding System (FACS)

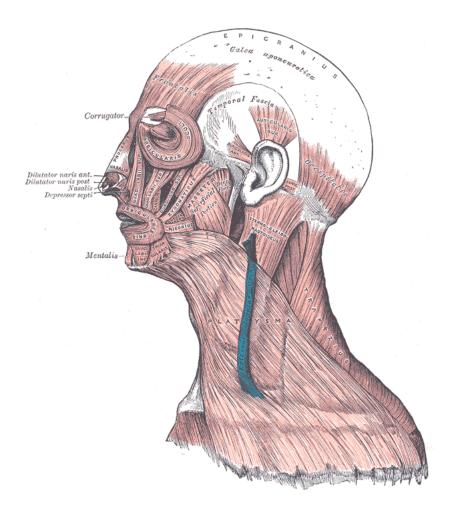
Historie

Geschichte der Gesichtsanimation

- computergenerierte Gesichter von Parke Ende der 70er Jahre erste Errungenschaften auf dem Gebiet
- Arbeit von Platt zum physically based muscle-controlled facial expression model Anfang der 80er
- ,Tony de Peltrie` 1985 erster computeranimierter Kurzfilm, der ein 3D-Gesicht mit Sprach- und Mimikanimation als erzählenden Teil der Geschichte einsetzt
- 1987 berichtet Walters von einem neuen Ansatz der muskelbasierten Animation
- ,Tin Toy` von Pixar zeigt 1988 die Möglichkeiten der muskelbasierten Gesichtsanimation

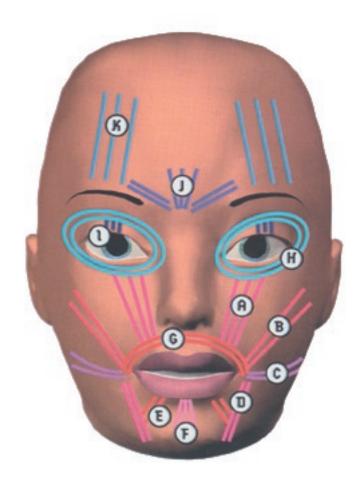
- Entwicklung von neuer Hardware wie optischen Laserscannern verhalf Anfang der 90er zum Sammeln großer Mengen von Daten
- dies verhalf Lee, Terzopoulos und Walters individuelle Gesichter auf ein parametrisiertes Modell zu mappen, und physikalisch Gesichtsbewegungen zu animieren
- 1998 stellt Kalra sein Mehr-Ebenen-Modell zur Gesichtsanimation in Echtzeit, dieses basiert auf einem hierarchischem Kontrolsystem
- 1999 'Toy Story' von Pixar


Anatomie und Muskeln


- über die Jahrhunderte studierten gerade Künstler die Proportionen des menschlichen Körpers
- in der Renaissance begann die Tradition des figürlichen Zeichnens
- Leonardo da Vinci wohnte Sezierungen bei, um seine Studien zu verfeinern
- um realistische Animation von Gesichtern zu erstellen, kann man Lehrbücher der menschlichen Anatomie des 20. Jahrhunderts zu Rate ziehen
- Nachteilig ist ihr hoher Detailreichtum

- beim Kopf ist der Kiefer der bewegliche Teil des Schädels
- die Muskeln sind im wesentlichen für die menschlichen Gesichtsausdrücke zuständig
- nicht zu vergessen sind bei der Anatomie noch die Zähne, die Zunge sowie Haut und Haare, die bei der realistischen Gesichtsanimation auch eine Rolle spielen

Anatomie und Muskeln


Abbildungen aus Lehrbüchern der Anatomie

Anatomie und Muskeln

Vereinfachte Darstellung

A Levator labii superioris: Oberlippe,

z.B. Ekel, Verachtung

B Zygomaticus major: Mundwinkel,

z.B. Lachen

C Risorius: Unterlippe, z.B. Weinen

D Triangularis Mundwinkel nach

untem, z.B. Traurig

E Depressor labii inferioris: Unterlippe,

z.B. Überraschung

F Mentalis: Unterlippe und Kinn, z.B. unterdrückte Traurigkeit und Furcht

G Orbicularis oris: Zusammenziehen der Lippen, z.B. Verachtung, Abscheu

H Orbicularis orculi: Augen schließen,

z.B Müde

I Levator palpebrae: Augen öffen, z.B

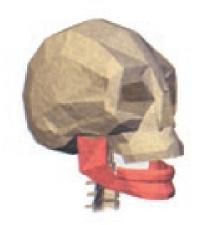
Überraschung

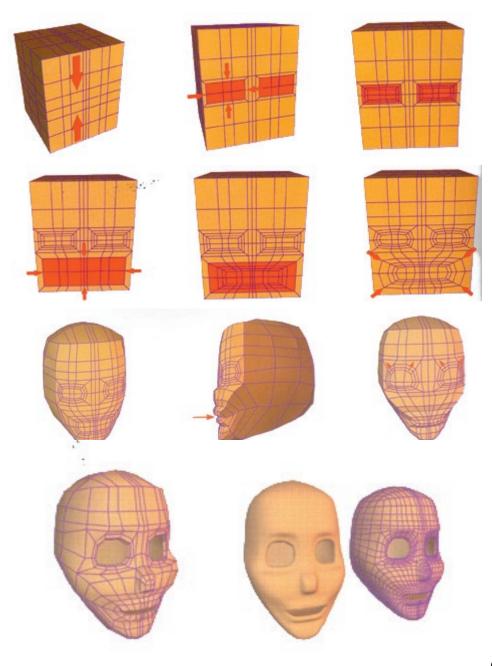
J Corrugator: Stirn runzeln, z.B

Konzentration, Ekel

K Frontalis: Stirn, z.B Augenbrauen

hochziehen


Modellierung


- um ein Gesicht zu modellieren, bedarf es der Modellierung des ganzen Kopfes
- es gibt noch keine animierten Modelle des menschlichen Kopfes, die alle anatonischen Details berücksichtigen
- für die Charakteranimation reichen vereinfachte Modelle
- es gibt verschiedene Möglichkeiten zur Beschaffung von Daten z.B Zeichnungen, plastische Modelle, optische Scanverfahren...
- von der Struktur hat sich ein Modell mit polygonalen Oberflächen bewährt

Ansprüche an die polygonale Oberfläche

- Gesicht muss sich natürlich verformen lassen
- Polygone müssen sich jedem Gesichtsausdruck anpassen können (Augenlieder und Lippen)
- Dichte der oberflächenbeschreibenden Information sollte sich an der Topologie des Gesichtes orientieren
- kleinste Anzahl von Polygonen für das beste Ergebnis
- Polygonecken müssen sich decken mit den Falten im Gesicht sowie Farbveränderungen
- bei der Modellierung eines realen Gesichtes Symmetrie der Gesichtshälften vermeiden

Modellierung

- fünf fundamentale Ansätze der Gesichtsanimation
- Ziel ist es, die Oberfläche des Gesichtes so zu manipulieren, dass das Gesicht zu jedem Zeitpunkt die gewünschte Form hat
- dies setzt die direkte Manipulation der Polygoneckpunkte über einen Zeitraum vorraus
- Gesichtsanimation ist eine Manipulation von Parametern
- Unterscheidung zwischen Anwendungsebene und Entwicklungsebene

Anwendungsebene (Animateur)

- Welches sind die Parameter?
- Sind die Parameter f
 ür das Ziel zweckm
 äßig und zutreffend?
- Wie werden die Parameter manipuliert?

Entwicklungebene (Programmierer)

- Welche Parameter müssen zur Verfügung gestellt werden?
- Welche Schnittstelle zu diesen Parametern sollte bereit gestellt werden?
- Welche Algorithmen und Programmiertechniken sollten verwendet werden, um das System zu implementieren?

Interpolation

- mit Hilfe der Interpolation kann man flexible Oberflächen manipulieren
- wird in der Gesichtsanimation sehr haufig angewand (Parke)
- bei der eindimensionalen Interpolation hat man zwei Werte
- über einen fraktionalen Koeffizienten werden die Zwischenwerte errechnet
- dies ist dann auf die weiteren Dimensionen übertragbar
- für jeden Polygoneckpunkt (vertex) der Gesichtoberflache gibt es also zwei Werte, aus diesen werden die Zwischenpunkte und somit die Zwischenoberflächen errechnet

- bei der key expression Interpolation werden einzelne Gesichtsausdrücke (key expressions) gesammelt, und zwischen diesen wird interpoliert
- bei der bilinearen Interpolation legt man mehr als zwei key expressions fest
- bei der facial region Interpolation unterscheidet man zwischen einzelnen Regionen des Gesichts, z.B untere Hälfte fürs sprechen, obere für die Mimik
- nonlineare Interpolation wirkt realistischer
- bei der Interpolation lassen sich nur Gesichtsausdrücke animieren, die auch als key expressions verfügbar sind

Perfomance Driven

- die Daten werden aus der Vermessung des Menschen und seiner Bewegungen gewonnen werden
- diese Daten werden dann auf den synthetischen Menschen übertragen
- Verwendung interaktiver
 Eingabemethoden z.B Waldos,
 Datenhandschuhe, laser- oder video basierte motion-tracking Systeme
- eine Variante ist das expression mapping, z.B. beim Animationskurzfilm 'Tony de Peltrie'
- Lee, Terzopoulos und Walters mappten individuelle Gesichter auf ein kanonisches, welches biomechanische Bewegungsattribute hatte

- eine weitere Variante ist die model-based-persona-transmission
- mit dieser Methode kann man in Echtzeit synthetische Gesichter erzeugen, hierbei geht eine Bildanalyse eines realen Menschen in Echtzeit vorran

Facial Expression Coding System (FACS)

- das FACS spielt eine große Rolle für die Gesichtsanimation
- das System beschreibt die grundsätzlichen Muskelaktionen des Gesichts und deren Auswirkung auf die Mimik
- das System ist komplett an die Anatomie des menschlichen Gesichtes ausgerichtet
- mit dem Kodierverfahren lassen sich sämtliche mögliche Kodierverfahren aufzeichnen
- das FACS geht von kleinsten wahrnehmbaren Einzelaktionen der mimischen Muskulatur aus, den action units (AU)

- es gibt 44 AU's
- es gibt keine eins zu eins Beziehung zwischen AU's und Muskeln, da ein Muskel für verschiedene Ausdruckmöglichkeiten des menschlichen Gesichts verantwortlich sein kann
- theoretisch kann man bis zu 20 AU's zu einem Gesichtsausdruck kombinieren
- zusätzlich können die Intensität in einer 5er Skala, das Timing und die Events (ein oder mehrere AU's) angegeben werden

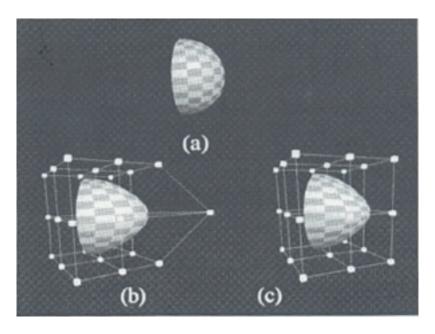
Beispiele: AU 10: Upper-Lip-Raiser

AU 15: Lip Corner Depressor

AU 17: Chin Raiser

Direct Parameterization

- motiviert von den Einschränkungen, die Parke bei dem key expression Modell hatte, entwickelte er ein direkt parameterisiertes Modell
- Ziel war es, eine große Anzahl von Gesichtern und Gesichtsausdrücken zu generieren, und dabei eine geringe Anzahl von Parametern zu verwenden
- Gesichtausdrücke und die Gestalt der Gesichter sollten über diese Parameter gesteuert werden
- Idealfall: Alle Gesichter und alle Ausdrücke lassen sich mit der richtigen Einstellung der Parameter generieren
- dieses Ziel ist nicht erreicht, aber die heutige Software bietet ein breites Spektrum

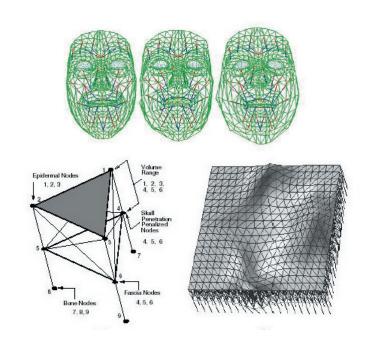

- die Herrausforderung ist die richtige Auswahl der Parameter
- die Modelle der Zeit waren noch sehr low-level
- Modelle wurden mit einer schwachen anatomischen Basis entwickelt
- Aufgrund leistungsfähiger Rechner und immer besser implementierten Softwarelösungen ist man heute diesem Ziel näher gekommen

Pseudo-muskelbasierte Animation

- die Interaktion von Gewebe, Knochen und Muskeln erlaubt eine große Anzahl unterschiedlicher Gesichtsausdrücke
- die Idee ist, diese komplexen Strukturen nicht komplett zu simulieren, sondern nur die Grundaktionen der Muskeln
- Magnenat-Thalmann entwickelte ein System, das auf abstract-muscleactions (AMA) beruht und über wenige Parameter gesteuert wird
- AMA's sind ähnlich zu den FACS
- AMA's weitaus komplexer, beziehen sich auf bestimmte Regionen des Gesichts

- es gibt 30 verschiedene AMA's z.B. left eyelid, right eyelid
- es gibt low-level AMA's und higher expression levels
- AMA Prozeduren werden in Gruppen kontrolliert
- zwei Klassen von expression level controls, Emotionen und Phoneme
- Kontrolle der Muskeln über freeform deformation (FFD) und rational freeform deformation (RFFD)
- erste Implementierung von Kalra

Pseudo-muskelbasierte Animation



rational freeform deformation (RFFD)

Muskelbasierte Animation

- Platt und Badler entwickelten ein frühes Modell der muskelbasierten Animation
- Polygonecken der Oberfläche, also der Haut, sind mit Federn (springs) verbunden
- diese Eckpunkte sind über simulierte Muskeln auch mit den Gesichtsknochen verbunden
- die Muskeln sind elastisch
- über Kontraktion der Muskeln wird die elastische Hautoberfläche manipuliert

- Waters entwickelte dieses Modell weiter, indem er zwei Arten von Muskeln einführte, Streckmuskeln und Beugmuskeln
- eine weitere Entwicklung ist die Modelierung eines dreischichtigen Gitters für die Oberfläche

MPEG-4

- mit der Einführung des MPEG-4 durch MPEG (Moving Pictures Experts Group) wurden erstmals Aspekte der Animation von Charakteren und Gesichtern mit in den Standard aufgenommen.
- MPEG-4 erlaubt die parametrische Beschreibung menschlicher Gesichtsanimation durch feature points und erlaubt desweiteren die Kalibrierung
- durch die sehr geringe Bitrate eigent sich MPEG-4 auch für die Gesichtsanimation in Echtzeit.
- Avatar Markup Language (AML)

Conclusion

- Animation von Gesichtern ist und bleibt derzeit die größte Herrausforderung in der 3D Animation
- Unterhaltungsindustrie durch immer komplexer modellierte Charaktere in Filmen und Computerspielen
- für die Medizin ist die Animation des Kopfes und des Gesichtes von Interesse, um vielleicht in naher Zukunft komplexe Operationen am Schädel vorher zu simulieren
- weitere Aspekte:

_Synchronisation von Sprache und Mimik _sprachbasierte Animation im Allgemeinen _die Animation von Haar _Verfärbungen der Haut bei Emotionen _etc....

Quellen

Literatur

Frederik I. Parke / Keith Waters Computer Facial Animation AK Peters LDT.

Nadia Magnenat Thalmann / Daniel Thalmann Interactive Computer Animation Prentice Hall

George Maestri Character Animation 2 New Riders

Bill Fleming / Darris Dobbs Animating Facial Features and Expressions Charles River Media

Internet

www.pixar.com

www.siggraph.org

www.3dme.com

www.google.com