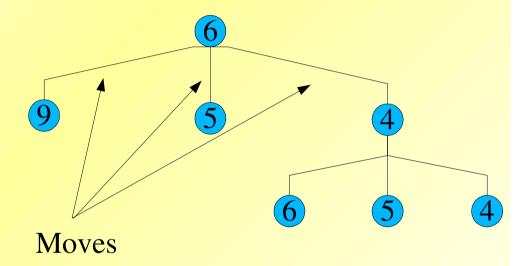
Seminar:

Intelligente Algorithmen (WS03/04)

Veranstalter: Dr. S. Kopp, N. Leßmann, A. Kranstedt

Heuristische Suche Tabu Suche

6.11.2003


Von
Olaf Graeser

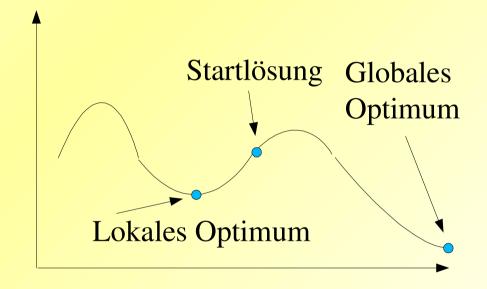
Einleitung

- Tabu
 - Verbot
 - Meidungsgebot
- Suche einer guten Lösung
- Nicht optimale Lösung
- Wiederholungsvermeidung durch Verbote (Tabus)
- Nachbarschaftssuche

Nachbarschaftssuche

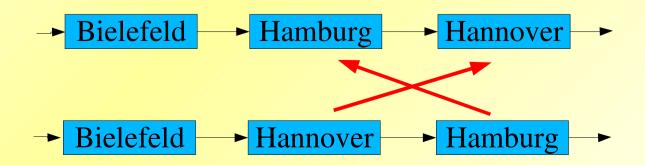
- Jede Lösung hat Nachbarlösungen
- Nachbarlösung durch "move" erreichbar
- Abbruch, wenn keine bessere Nachbarlösung
- Lokales Optimum

Änderungen zur Nachbarschaftssuche


- Beste Nachbarlösung wird gewählt
 - auch wenn sie schlechter ist
- Kein Abbruch
- Ausbruchsmöglichkeiten aus lokalem Optimum
- Lang- und Kurzzeitgedächtnis

Abbruch der Suche

- Anzahl der Iterationsschritte
- Anzahl der Iterationsschritte seit Finden der aktuellen besten Lösung

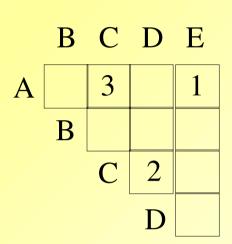

Ausbruchsmöglichkeit

- Lokale Suche:
 Optimum wird schnell erreicht und nicht wieder verlassen
- Tabu-Suche:
 Verschlechterungen
 werden in Kauf
 genommen, um lokale
 Optima zu verlassen

Tabu-Suche am Beispiel des TSP

- "Swap" als "move"
- Attribute eines moves: (Hanover, Hamburg)
 - Sind die vertauschten Elemente
- Tabuisierung von Attributen
 - Tabu gilt primär für die Umkehrung
 - Gilt für eine Anzahl von Iterationsschritten

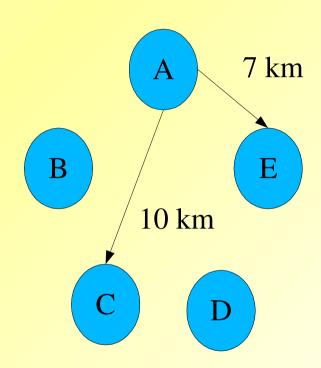
Tabu-Suche am Beispiel des TSP


- "Swap" als "move"
- Attribute eines moves: (Hanover, Hamburg)
- Tabuisierung von Attributen
- Die beste Lösung bleibt separat gespeichert
- Tabus können aufgehoben werden
 - z.B. wenn ein Tabu-Swap eine bessere Lösung ergibt, als alle bisher dagewesenen.

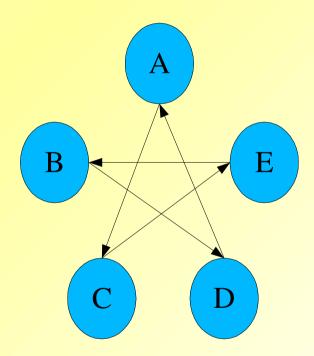
Die Kandidatenliste

- Zeigt eine Auswahl von möglichen nächsten moves auf
- Erstellung der Kandidatenliste erfolgt durch einen separaten Algorithmus (verschiedene Ansätze)
- Die Gesamtkosten des Algorithmus können hier stark beeinflußt werden

Die Tabuliste als Kurzzeitgedächtnis


- A bis E | Städte
- Jeder Swap bewirkt eine Tabusetzung
- Tabudauer, z.B. 3
 Iterationsschritte

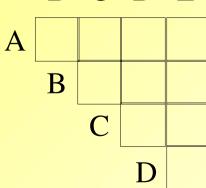
A und C wurden z.B. als letztes Vertauscht und sind daher noch für 3 Schritte tabu. C und D nur noch für 2, A und E nur noch für einen Schritt.

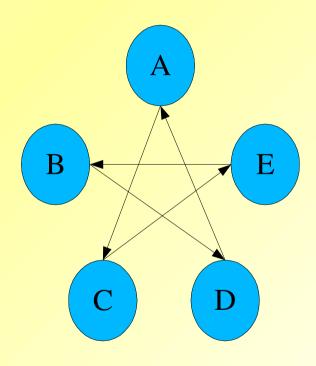

Ein konkretes Beispiel

- 5 Städte
- Abstand benachbarter
 Städte 7 km
- Sonstiger Abstand 10 km
- Erste (zufällige) Route:
 A->C->E->B->D

Ein konkretes Beispiel

- 5 Städte
- Abstand benachbarter
 Städte 7 km
- Sonstiger Abstand 10 km
- Erste (zufällige) Route:
 A->C->E->B->D
- 5 * 10 km = 50 km

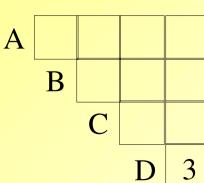

Aktuelle Lösung:

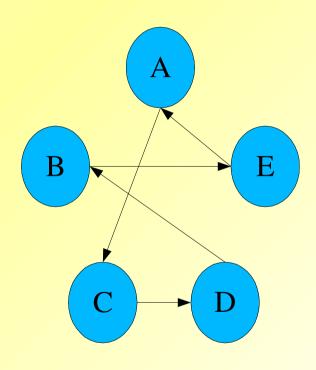

$$A -> C -> E -> B -> D = 50 \text{ km}$$

Top 3 Kandidaten
Swap Wertänderung

E,D	-6
C,E	-6
E,B	-6

Tabu-Struktur

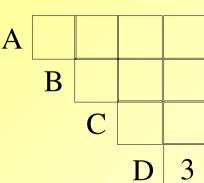

Aktuelle Lösung:

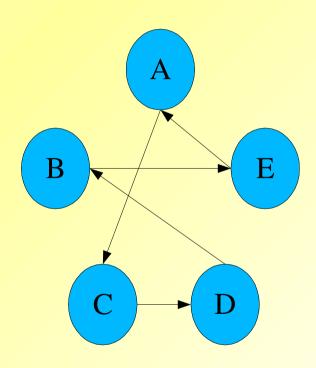

$$A -> C -> D -> B -> E = 44 \text{ km}$$

Top 3 Kandidaten
Swap Wertänderung

E,D	-6	*
C,E	-6	
E,B	-6	

Tabu-Struktur

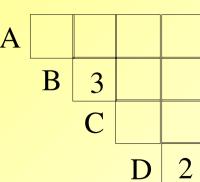

Aktuelle Lösung:

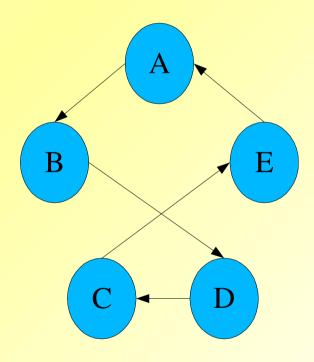

$$A -> C -> D -> B -> E = 44 \text{ km}$$

Top 3 Kandidaten
Swap Wertänderung

C,B	-3
D,B	-3
C,D	-3

Tabu-Struktur

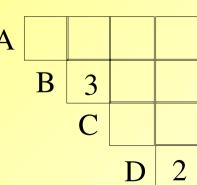

Aktuelle Lösung:

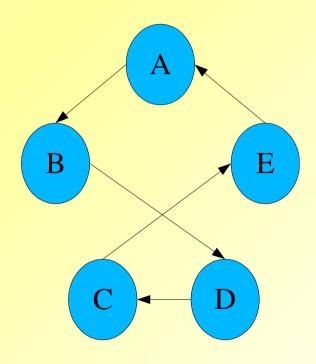

$$A -> B -> D -> C -> E = 41 \text{ km}$$

Top 3 Kandidaten
Swap Wertänderung

С,В	-3	*
D,B	-3	
C,D	-3	

Tabu-Struktur


Aktuelle Lösung:

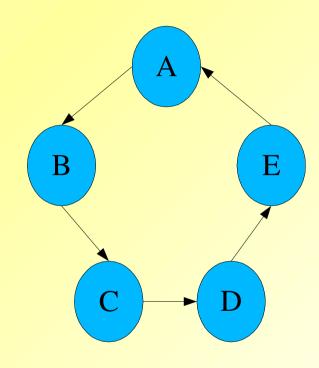

$$A -> B -> D -> C -> E = 41 \text{ km}$$

Top 3 Kandidaten
Swap Wertänderung

D,C	-6
В,Е	-6
D,E	+3

Tabu-Struktur

Aktuelle Lösung:


$$A -> B -> C -> D -> E = 35 \text{ km}$$

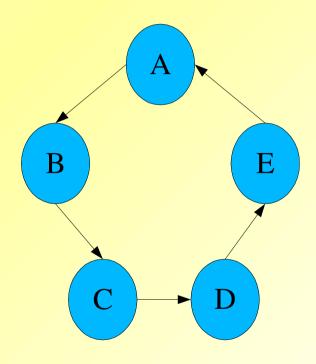
Top 3 Kandidaten
Swap Wertänderung

D,C	-6	*
В,Е	-6	
D,E	+3	Tabu

Tabu-Struktur
B C D E

	7		7	_
A				
	В	2		
		C	3	
			D	1

Aktuelle Lösung:

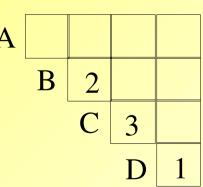

$$A -> B -> C -> D -> E = 35 \text{ km}$$

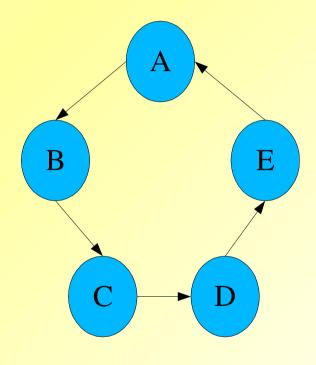
Top 3 Kandidaten
Swap Wertänderung

В,С	+6
D,E	+6
C,D	+6

Tabu-Struktur

A				
	В	2		
		C	3	
			D	1


Aktuelle Lösung:

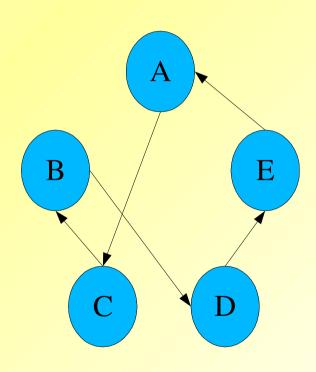

$$A -> B -> C -> D -> E = 35 \text{ km}$$

Top 3 Kandidaten
Swap Wertänderung

В,С	+6	Tabu
D,E	+6	Tabu
C,D	+6	Tabu

Tabu-Struktur

Aktuelle Lösung:

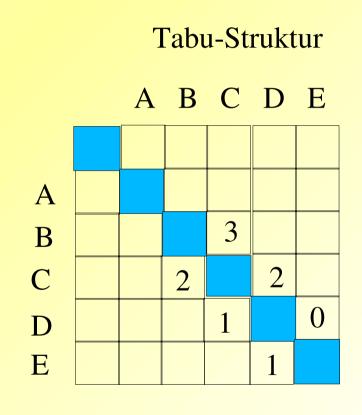

$$A -> C -> B -> D -> E = 41 \text{ km}$$

Top 3 Kandidaten
Swap Wertänderung

B,C	+6	Tabu *
D,E	+6	Tabu
C,D	+6	Tabu

Tabu-Struktur

A				
	В	3		
		C	2	
			D	0



Tabu-Ausnahmen

- Tabus dürfen gebrochen werden
 - wenn dadurch eine neue beste Lösung gefunden wird
 - wenn der Algorithmus sonst nicht weiterlaufen kann

Frequency, das Langzeitgedächtnis

- Speicher die Anzahl der "Swaps" eines Tupels
 - z.B. B&C wurden 2
 mal vertauscht
- Diversification
 - Suche in neueRegionen führen
- Strafterme für häufig auftretende "Swaps"

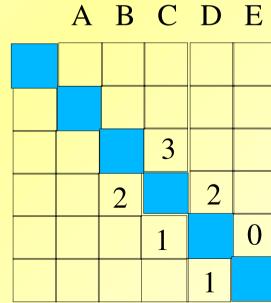
Frequency

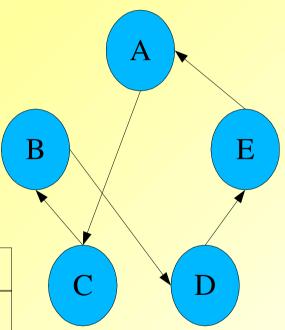
Aktuelle Lösung:

$$A -> C -> B -> D -> E = 41 \text{ km}$$

Top 3 Kandidaten Swap Wertänderung

С,В	-6+2	
В,Е	+3	
B,D	+3	


Tabu


A

B

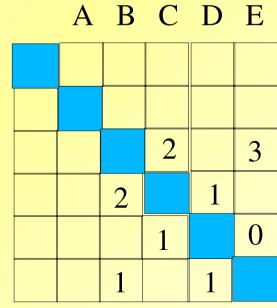
D

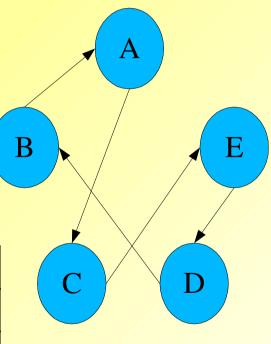
E

Aktuelle Lösung:

$$A -> C -> E -> D -> B = 44 \text{ km}$$

Top 3 Kandidaten Swap Wertänderung


C,E	-3	*
C,D	-3+1	Tab
E,D	-3+1	


ou

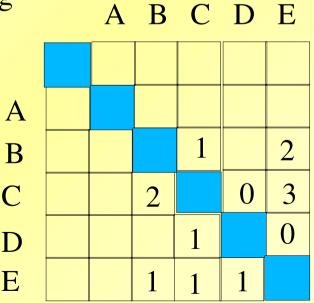
В

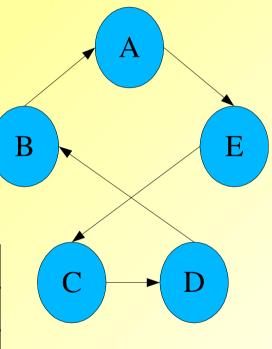
D

E

Aktuelle Lösung:

$$A \rightarrow E \rightarrow C \rightarrow D \rightarrow B = 41 \text{ km}$$


Top 3 Kandidaten Swap Wertänderung


C,D	-6+1
E,B	-6+1
•••	•••

Tabu

D

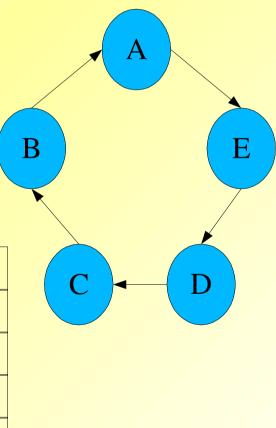
E

Aktuelle Lösung:

$$A -> E -> D -> C -> B = 35 \text{ km}$$

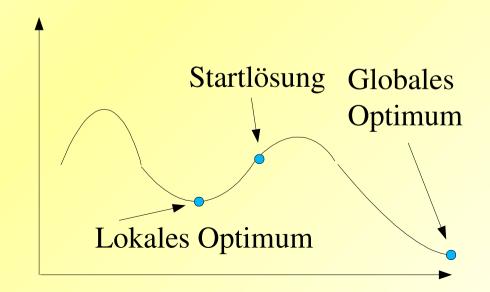
A

B


D

E

Top 3 Kandidaten Swap Wertänderung


	
/ • • •	/•••
•••	•••

	A	В	C	D	Е
			0		1
		2		3	2
			2		0
		1	1	1	

Tabuzeitbestimmung

- Zu kurze Tabuzeiten können das Verlassen lokaler Optima verhindern
- Zu lange Tabuzeiten können das Ansteuern besserer Lösungen behindern

Möglichkeiten der Tabuzeitbestimmung

• Feste Tabuzeit

- Abhängig von der Anzahl der Städte
- z.B. sqrt(n)

Listenstrategie

- Folge von Tabuzeiten
- Zyklisch wiederholt
- Evtl. mit Veränderung der Folge

Zufallswert aus Intervall

- Intervall $I = [t_{min}, t_{max}]$
- Attribut erhält zufälligen Wert aus I

Aspirationskriterien Brechen von Tabus

- Aspiration by default
 - Wenn sonst kein Schritt mehr ausgeführt werden kann
- Aspiration by improved best
 - Wenn dadurch eine neue beste Lösung erreicht wird
- Aspiration by influence
 - Um Schritte von geringem Einfluß zu ermöglichen

Intensification

- Elitelösungen werden in einer Liste gespeichert
- Elitelösungen können anhand weniger "moves" ineinander überführt werden
- Beste Elitelösung wird als Startlösung gewählt
- Nach Löschen der Tabuliste wird die Suche neu gestartet

Zusammenfassung

- Ergebnis ist (meist) nicht optimal
- Kann lokales Optimum verlassen
- Der Algorithmus läuft für eine vorher angegebene Zahl von Iterationsschritten
- Güte der Lösung ist abhängig von den Algorithmenparametern (z.B. Tabudauer)