
Search Procedures during Haptic Search in an Unstructured 3D Display

Alexandra Moringen1, Robert Haschke2 and Helge Ritter3

Abstract— In this work, we focus on finding and charac-
terizing stereotypical behavioral modes during haptic search
in an unstructured 3D display. To this end, we introduce the
notion of search procedures and present a machine learning
approach for their identification. Search procedures are derived
from the haptic exploratory procedures (EPs) through their
parameterization and, in some cases, their mixture.

In order to identify representative search procedures, we have
evaluated data of eight individuals who performed a one-handed
haptic search task in nine different scenarios, blindfolded. In
all cases, they were asked to localize a specific target object
within a tactile scene. Both the target object and the scene were
formed from wooden bricks of various tactile shapes arranged
in a configurable haptic display to exhibit a specific 3D tactile
pattern.

By performing t-SNE-based dimensionality reduction and
subsequent k-means clustering, we could identify three rep-
resentative types of search procedures during manual haptic
search: 1) one finger performs one EP 2) several fingers and
the hand perform a differently parameterized EPs in a parallel
manner 3) a mixture of EPs is performed by the hand and
fingers in a parallel manner.

We exemplify the notion of search procedures and discuss the
corresponding mixtures based on the results of the clustering.

I. INTRODUCTION

Haptic search is a process connecting at least three dif-
ferent mechanisms in a very efficient way: the movement
and the search strategy of the hand and the arm, the haptic
and kinematic activity and configuration of the fingers, and
the haptic and kinematic perception. In our endeavor to
understand this process we can build upon a large amount
of previously conducted research in the above-mentioned
three directions. Previously conducted modeling of the search
behavior of bacteria, fish or foraging animals are commonly
used for computational models and robot control (e.g. [12],
[10]). Models such as Levy walk, Brownian motion, persis-
tent search models and composite correlated random walk
seem to yield optimal search strategies depending on the ex-
act conditions of the search, i.e. the number, the distribution
and type of the targets [8], [7]. Other complex movement
strategies, like those of the marching crickets attempting to
bite the ones in front and to run away from the approaching
ones [1], have not been reused so far. Altogether, it is not
yet clear, whether one of the existing models explains the
human hand movement strategy during haptic search.

Several features, such as velocity and hand configuration,
provide us with insights into some aspects of haptic explo-
ration. According to Morash [9], hand configuration has an
influence on the higher-level strategy of the haptic search.
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Fig. 1. Blindfolded participants are presented with two stationary wooden
frames containing 10×10 (left) and 5×5 (right) differently shaped bricks.
The task is to memorize the complex shape on the right-hand side and to
find it again within the larger frame on the left-hand side, always using a
single hand only.

In her recent work dedicated to analysis of trajectories in
an unstructured display, Morash established a connection
between the hand configuration and the choice of exploration
strategy. She showed a relation between the detection radius,
represented by a hand configuration, and the choice of strat-
egy during haptic exploration: systematic vs. non-systematic.

On the lower-level, Wing et al. [16] suggest that during
haptic exploration, velocity reflects a low level sensorimotor
process. Based on the analysis of finger velocity, they showed
that different modes can be observed even during haptic
exploration of the simplest elliptic shapes with a single
finger. A fundamental link between the kinematic and haptic
characteristics of the finger and the haptic perception is
provided in the work of Hayward [3]. It gives an account
of the so called kinematic haptic perceptual invariants, the
laws that are invoked in the context of haptic tasks. The
author provides an example of a task during which one has
to size a coin with a contact movement, and explains which
invariants are employed to successfully conduct it [3].

The content of the present paper strongly builds on ex-
ploratory procedures, and can be roughly positioned between
the higher-level movement strategies and the lower-level sen-
sorimotor processes. Our main contributions are as follows:

• we introduce the notion of search procedures, typical
realizations of EPs during haptic search and

• we show that during haptic search EPs are commonly
performed together.

To clarify the first point, EPs are defined as movement
patterns without a particular parameterization. Tanaka at
el. [14] demonstrated that the parameterization is modulated
by the type of haptic exploration task, discrimination or



identification. This has motivated us to explore characteristic
parameterization of EPs in a haptic search task, resulting in
search procedures.

Here we show that during the search process different
types of EP mixtures are used, i.e. different EPs are per-
formed together, or same EP is performed by different fingers
in a parallel manner. According to Klatzky et al. [5] this
is done in order to simultaneously access different object
properties. In the future text we skip the word "realization"
and use EP mixture to describe the observed data, instead of
mixture of EP realizations for simplicity.

Because in this work we focus on shape exploration and
search, we assume that only three exploratory procedures
associated with shape exploration can be observed in our
experiment: contour following, enclosure and lateral mo-
tion [6]. An example of a typical mixture of EPs during
haptic search/exploration is a mixture of EPs enclosure and
contour following, which is characterized by an encompass-
ing hand posture, haptic pressure and a different level of
finger-activity per finger (see Figure 5a, posture 5). The
other five search procedures will be discussed in detail in
the Section III.

In Section II we describe the data acquisition and experi-
mental design:

• A 3D display containing a great diversity of shapes,
specifically designed to invoke a high number of search
modes

• A feature extractor that generates a simple multimodal
characteristic of the search procedures based on the
highly dimensional recorded data

• A dimensionality reduction and clustering procedure
that yields a preliminary representation of the
search procedures.

Inspired by [9], [16], we aim to integrate both the dynamic
and the shape-specific characteristics of the haptic search
data, in a multimodal feature space. In this space, the
dynamic component is represented by the velocity of the
fingers and the hand; the static component is represented by
the hand configuration.

The first, preparatory step of our exploratory data analysis
serves the purpose of noise reduction and visualization of
the feature space. In this step, we conduct a dimensionality
reduction with Barnes-Hut SNE [15] from the feature space
into a 2D space. In the second step, the identification of the
search procedures, we perform simple k-means clustering
on the resulting 2D values. Finally, by mapping back from
the resulting 2D cluster centers into the feature space and
into the raw data space, we exemplify the resulting search
procedures with the help of the data in the corresponding
spaces.

Similar to the work of Morash, we are targeting sponta-
neous and untrained haptic search behavior. However, in this
work we do not investigate trajectory pieces, but focus on
analysis of single data-points. Our experimental setup and the
acquired data can be also used for investigation of both the
lower- and the higher-level aspects. Therefore, the long-term
challenge of our future work is to link the search procedures

described in this work with the higher-level strategy on the
one hand and the lower-level haptic perceptual invariants on
the other.

II. METHOD

A. Participants and Apparatus

Thirteen right-handed sighted individuals aged 22 to 30
participated in the study. The participants were all students
of the Bielefeld University, apart from one. The protocol was
approved by the Bielefeld University Ethics Committee, and
informed consent was obtained from all participants prior to
their participation. None of the participants had any prior
knowledge of the experimental design or the stimuli. An
individual recording session took between two and three
hours. During this time a subject conducted search in ten
experimental conditions: a training phase, followed by nine
iterations used for the evaluation. The training phase has been
necessary for the blindfolded participants to learn about the
previously unknown positioning of the boards and their size.

The collection of available tactile stimuli consisted of 360
rigid wooden bricks, 3 × 3 cm in size, containing 55 distinct
types of primitive shapes. The collection of primitive shapes
also contained blank wooden bricks. Subtle and extensive
shape dissimilarities between the bricks were chosen to evoke
different types of exploration strategies, particularly different
types of the finger-specific exploration.

Two wooden frames (see Figure 1), containing and fixating
the rigid bricks within the display were designed to hold
25 and 100 bricks, respectively. The main purpose of this
experimental design was to produce rigid and stationary
previously unknown shape patterns for both the learning and
the search part of the task. The combination of basic building
blocks allowed to create an arbitrary complex shape.

For recording of the haptic interaction forces, the subjects
were wearing a thin elastic glove with integrated fabric-based
flexible sensors1 [2]. However, in this work we don’t show
evaluation of this data. We use it only to manually examine
the binary presence/absence of contact for a given search
procedure.

The position of the hand as well as the position of the
boards has been tracked by 13 Vicon cameras [4] at the
rate of 200 Hz. Two Vicon markers have been positioned
on each finger to enable a rough hand posture identification.
The hand pose (position and orientation) has been tracked
with extra three Vicon markers positioned on the back of
the hand (see Figure 2c). Additionally, a Basler camera
has been recording the video logs of the experiment, top-
shot perspective, a microphone has been used to capture the
feedback of the participants during the experiment as well
as the point of time in the search task at which the target
object has been located by the study participant. A snapshot
of the experimental setup can be seen in Figure 2b. A video

1It has not been tested yet, what effect the glove had on the search
and exploration strategy. Nevertheless, we have decided to use it in our
experiment due to anticipated advantages of the information gain.
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Fig. 2. (a): The nine employed search stimuli differing by the number, shape and positioning of the non-flat bricks. (b): A student wearing the haptic
glove during the setup test: 13 Vicon cameras. (c): 13 blue points schematically visualize the placement of Vicon markers during the recording of the
hand trajectories. Only the markers on the fingertips are used for the finger-relevant feature extraction. The second row of marker is recorded for technical
reasons, e.g. in order to improve the quality of the 3D data generation by the Vicon system.

of one experimental run is available under the link below2.

B. Task and Procedure

The small board on the right of the participant contained
a target pattern that the subject was asked to learn in the first
part of the experiment (see the right part of Figure 1). The
large board on the left side of the subject (see the left part of
Figure 1) contained the target pattern in the same orientation
integrated in an array of distractor shapes. Each trial has
been characterized by a different search target and a different
shape density of the search field (50%, 60%,75%, 90%
and 100% of non-flat bricks). Target patterns of different
complexity are displayed in Figure 2a.

Both displays, the target object display and the search
field, are a strong simplification of a general 3D complex
shape and a search environment in a 3D space. To focus the
experiment on the hand and the finger dynamics, rather than
the arm control, we have restricted the 3D shape to a plane.
Thus, we neglected the effects on the hand posture in such
scenarios, as in-hand object manipulation, or manipulation
of objects in other orientations in the 3D space.

C. Data Postprocessing and Feature Extraction

Preliminary postprocessing of the Vicon data (labeling,
gap filling) has been very time-consuming due to a high tem-
poral resolution, a high number of markers, self-occlusion,
and a comparatively high resolution of markers on the
fingertips. From thirteen recorded subjects, eight have been
completely postprocessed and used for the evaluation in this
work. Previous to the calculation of the features and subsam-
pling, we have applied Savitzky-Golay filter for smoothing
with window size n = 51 and order of the polynomial d = 2.
After the calculation of features, we have conducted subject-
specific mean-value normalization.

The calculation of the features is based on the 3D marker
trajectories as depicted in Figure 2c. The feature set Φ ∈ R13

≥0

is defined as follows:

2Video of one experimental run http://www.techfak.
uni-bielefeld.de/~abarch/s2t7.avi.

Φ :=

{(d1,2, d2,3, d3,4, d4,5, d5,1, vf,1, . . . , vf,5, vh,1, vh,2, vh,3)|
di,j , vf,i, vh,k ∈ R≥0},

(1)

where
1) di,j represents the distance between the adjacent

fingertips i and j, e.g. the distance between the thumb
and the index finger is denoted by d1,2, the distance
between the index finger and the middle finger is
denoted by d2,3

2) vf,i represents the Euclidean length of the velocity of
the fingertip i ∈ {1, . . . , 5} w.r.t. the hand coordinate
system. Hence, the velocity of the fingers does not
contain the component resulting from the rotation or
translation of the hand in 3D space.

3) vh,i with i ∈ {1, 2, 3}, corresponding to the three hand
markers, represent the Euclidean length of the velocity
of the hand. We have used three values in order to
capture the dynamics of the hand in the 3D space.

For the preliminary evaluation conducted in this work we
have chosen the smallest representative set of features to
describe the dynamics and the shape of the hand and the
fingers. The feature vector can be extended by e.g. including
the distances from the fingertips to the back of the hand, and,
therefore, resulting in an approximate representation of the
volume of the hand configuration.

Figure 3 (a,b) visualizes the complex intermodal depen-
dencies in the feature space based on the modality-specific
averages before the subject-specific mean-value normaliza-
tion. The left plot is a plot of the averages of finger distances
d =

∑
di,j/5 against the averages of the finger velocities

vf =
∑

vf,i/5 forming a triangle with the top peak lying
close to the mean value of the distribution of ds. The middle
plot displays a V-shaped dependency between the averages
of the finger velocities vf and the averages of the hand
velocities vh =

∑
vh,j/3.

http://www.techfak.uni-bielefeld.de/~abarch/s2t7.avi
http://www.techfak.uni-bielefeld.de/~abarch/s2t7.avi
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Fig. 3. (a): Relation between the average finger distances and the average finger velocities. (b): Relation between the average finger velocities and the
average hand velocities. Number of samples n = 350000. (c): Heat map of the haptic exploration data in the SNE space. Number of samples n = 350000,
θ = 0.3 and perplexity p = 30.

Even in this simplified form, the feature space exhibits a
complicated structure (Figure 3 (a,b)). This fact motivated
us to use clustering versus linear regression as an approach
to modeling.

D. Dimensionality reduction with Barnes-Hut SNE

In order to roughly estimate the structure of the multi-
dimensional feature space primary to clustering, to denoise
the data and to visualize it, we have used the Barnes-Hut
SNE [15]. t-SNE is a dimensionality reduction method that
aims to preserve structural similarity of data in the projection
space. However, due to its computational complexity, it can
not be used with large data sets like ours. With the help
of an approximation during the calculation of the similarity
matrix, Barnes-Hut SNE allows to apply t-SNE to a large
number of samples [15]. Figure 3c presents an example of
the converted feature set, which shows approximately six
partially separated regions. For our calculations we have used
the software available on Github [13].

E. Clustering with k-means

In order to obtain a representative set of search procedures,
in this step we performed a k-means clustering on the 2D data
set Φsne. Φsne results from the mapping of the feature set Φ
(see Definition 1) into the 2D space with the Barnes-Hut SNE
as described in the previous Section II-D. For the clustering
we have used every 20th sample of the data set Φsne. Based
on the empirical tests, the resulting data frequency of 10
Hz seemed to yield a good tradeoff between efficiency and
the quality of movement representation. The choice of the
number of cluster centers k = 6 has been motivated by
the data structure also discussed in the previous section.
However, it is only a preliminary value. In order to find
an appropriate value, a deeper investigation of the data, the
feature space and the 2D t-SNE space has to be conducted.
This question is not the focus of this work.

In this work the resulting cluster centers represent the
search procedures. In order to find a close representation
for each search procedure in the recorded data we conduct
the following two simple steps. Firstly, for each cluster
center we look for the closest point in Φsne data set based
on the Euclidean distance. Secondly, in order to find its

correspondence in the target space (i.e. trajectory space,
feature space), we simply look for a point in the target space
with the same meta data description. In our work timestamps,
trial number, subject number serve as such meta data. This
way we are able to obtain a representation for each search
procedure in the space of the original data and in the feature
space.

III. RESULTS AND DISCUSSION

The goal of this section is to characterize search proce-
dures based on k-means clustering. Due to the design of the
k-means clustering algorithm the cluster centers are highly
suitable for this purpose. Firstly, the cluster centers should be
pairwise dissimilar. Secondly, each cluster center should be
representative of the corresponding data subset. Therefore,
we limit the final outcome of this work to the set of cluster
centers illustrating representative states of the corresponding
search procedures.

Figure 4 provides a quantitative overview of the cluster
centers and Figure 5a provides a qualitative overview of the
cluster centers. In Figure 4, each sixfold bin is used for visu-
alization of a specific feature across all six clusters. The first
five bins correspond to the first five dimensions of the fea-
ture vector, the finger distances (d1,2, d2,3, d3,4, d4,5, d5,1).
The next five bins correspond to the fingertip velocities
(vf,1, . . . , vf,5). The last three bins correspond to the three
velocities of the hand (vh,1, vh,2, vh,3).

Cluster C4 (see Figure 4) is characterized by the lowest
velocity of the hand and all fingers, apart from the index
finger, as well as the highest distance between fingers. Based
on the inspection of the haptic data (see Figure 5b-bottom),
we could verify that only one finger is taking part in the
haptic exploration. However, one can observe a certain level
of velocity in the adjacent fingers. The velocity of the
adjacent fingers seems to be slightly lower and decreasing
with the distance to the active finger. This effect can be
commonly observed in the data and, in particular, in all
following examples of the cluster centers. We further refer
to this kind of velocity profile as the center of finger activity.

The type of a search procedure represented by the C4
(Figure 5a, bottom row, left) is used for the exploration
of small-scale local shape structures like edges, holes, etc.



Fig. 4. Six colors correspond to six mean-value normalized feature vec-
tors representing the cluster centers. Mean-value normalization is subject-
specific.

Therefore, we assume that this is a realization of the con-
tour following EP, which, in contrast to all other search
procedures exemplified in this work, is not executed in a
mixture with any other EP.

Cluster C1 (Figure 5a, top row, left) is characterized
by the highest speed of the hand. In this example a high
level of hand velocity is not compatible with a high finger
velocity. Same as in the previous cluster, the velocity profile
is centered around one finger, and is declining in the adjacent
fingers with the distance.

Based on the characteristics of the hand-posture, the
presence of the haptic feed-back along with a high velocity
of the index finger and the thumb, we assume that this
search procedure is a mixture of two EPs: enclosure and
contour following. Haptic and kinematic activity of both
fingers lets us assume that in this search procedure the
contour following is conducted with two fingers in a parallel
manner.

Contrary to the previous clusters, cluster C2 is character-
ized by low finger velocity (apart from the index finger) and
a slightly above average hand velocity. In this cluster the
index, the middle and the ring fingers are in contact with the
surface (see Figure 5b - top). Based on the above-described
characteristics, in particular the activity of several fingers, we
assume that this search procedure realizes contour following
with several fingers in a parallel manner.

Cluster C3 (Figure 5a) is characterized by low velocity in
all components apart from the index finger, which exhibits
almost an average velocity. As expected, all fingers, apart
from the thumb are in contact with the surface (see Figure 5b
- middle). This search procedure may be a mixture of
lateral motion and contour following EPs. Based on similar
considerations of velocity and haptic feedback as in clusters
C1 and C2, we assume that in cluster C3 the contour
following is performed by several fingers.

Cluster C5 is characterized by an extremely high velocity

in all five fingers, accompanied by the smallest distances
between the fingers and by a relatively high velocity of the
hand. In the example of Figure 5a before normalization its
values range from 0.09 m/sec to 0.17 m/sec. The velocity
profile suggests that the exploration is centered around the
fifth finger. Analogously to the previous cluster centers and
based on the feature characteristics, we assume the cluster
center to represent a mixture of enclosure and contour fol-
lowing EPs.

In comparison to cluster C5, cluster C6 is characterized
by an opposite velocity profile and the lowest velocity of
the index finger and the thumb among all cluster centers. In
the example in Figure 5 the center of activity is the middle
finger. We assume that C6 is a mixture of enclose and a very
slow contour following in a detailed local search.

IV. SUMMARY AND OUTLOOK

This work shows our first approach to identification of
common behavioral modes in a haptic search of an unstruc-
tured 3D display.

The method is based on unsupervised learning of features
typically used for representation of a manual exploration
process. Therefore, feature extraction has not required any
deep expert knowledge. The presented method axiomatically
relies on the fact that only three EPs can be used during
shape exploration. This results in a relatively simple access
to a complex data. The main findings consists of repre-
sentative search modes, named search procedures, and their
representations as different types of mixtures of one of two
exploratory procedures.

Our approach to identification of search procedures con-
sisted, firstly, of a particular experimental design and a freely
configurable haptic display. This allowed us to form an
extensive set of previously unknown complex shapes. With
the help of a large number of simple shape types, we have
hoped to encompass a broad set of search strategies. Even
in this simplified form, such a modular design provides us
with rich opportunities for the future investigation of the
haptic search process. For example, it is possible to approach
the following questions: How does the exploration during
the learning phase differ from the exploration during the
search? How does the search strategy depend on the shape
of the target object, the content of the haptic search field?
What happens when the orientation of the target object in
the search field is different to the one previously learned?
What difference does it make, when the parts of the search
target in the search field are presented in a permuted order?

In order to obtained a comprehensive description of the
search and exploration process, a detailed kinematic and
haptic capture of the hand with 13 Vicon markers and 54
haptic sensors of the haptic glove has been conducted.

Secondly, we have been looking for a possibility not only
to analyze the dynamics of the hand, but to connect it with
its configuration. This resulted in a multimodal feature space
consisting of both the velocities of the hand and the hand
posture. In the next step we plan to integrate the haptic profile
in the feature vector.
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Fig. 5. (a): An approximate visualization of the cluster centers based on the procedure described in [11]. The values of D in meters, Vf and Vh in
m/sec are given without the mean-value normalization. (b): Haptic data corresponding to the cluster centers 2, 3 and 4 resp. The color (from green to red)
illustrates calibrated value of the corresponding haptic sensor.

Finally, after the dimensionality reduction and the prelim-
inary partitioning of the 2D data with k-means, we have
received a set of cluster centers representing the search pro-
cedures. Based on the properties of the cluster centers we
could infer the following representative types of search
behaviour:

1) single EP realization (cluster C4)
2) mixtures of different EPs (e.g. cluster C1)
3) mixture of same EP parameterized in a different way

during a parallel execution with multiple fingers (e.g.
cluster C2).

The current clustering with k-means is not optimal and
does not well reflect the structure of the 2D data. An
independent investigation needs to be conducted about an
appropriate choice of k. In the future work we would like to
further explore the structure of the 2D data w.r.t. our mixture
assumption and further continue to evaluate the dynamic
structure of the search process.
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