Human-Computer Interaction

Termin 12: Agent-based interaction

MMI/SS06

Year	Paradigm	Implementation
1950s	None	Switches, punched cards
1970s	Typewriter	Command-line interface
1980s	Desktop	Graphical UI (GUI), direct manipulation
1980s+	Spoken Natural Language	Speech recognition/synthesis, Natural language processing, dialogue systems
1990s+	Natural interaction	Perceptual, multimodal, interactive, conversational, tangible, adaptive
2000s+	Social interaction	Agent-based, anthropomorphic,social, emotional, affective, collaborative

Agent-based interaction

Basic terminology

- Agents share ascription of human-like characteristics to software:
 - is social or communicative to other agents
 - is autonomous, reactive, or proactive
 - is context-aware or situated
 - has specialized expert knowledge, solve special tasks
 - learns, adaptive
- ☐ In practice, the term "agent" is used broadly
 - Search (e.g., Letiza broadens depth first browsing)
 - Desktop support (e.g. Microsoft's Office Assistant provides Bayesian-based task-sensitive help)
 - Collaborative filters (e.g. email), shopping recommenders, auction bots

Basic terminology

□ Avatar

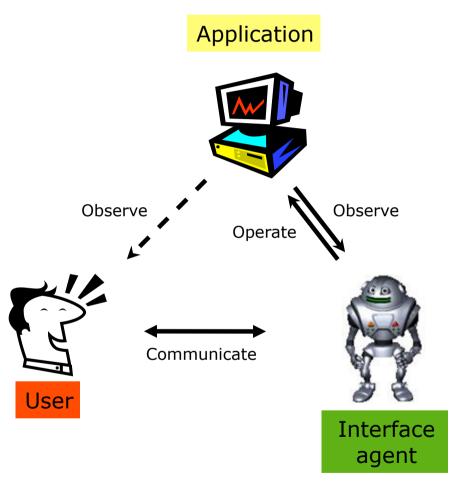
- Representation of a user in virtual worlds
- Real-time ⇒ user-guided, smart⇒ autonomous

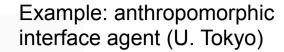
□ Agent

- Piece of soft/hardware that is autonomous, social, proactive, reactive
- Employs a certain expertise to support the user in solving a particular problem

□ Anthropomorphic agent

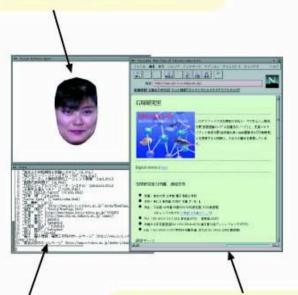
- agent with human-like appearance (cartoon-like ⇒ ... ⇒ realistic)
- Use body for communication as well as manipulative purposes





Agents as interfaces

- □ Task: Mediate between the user and an application
- Communicate with the user
- Operate the application for the user
- Agent and (maybe) the user "observe" the application



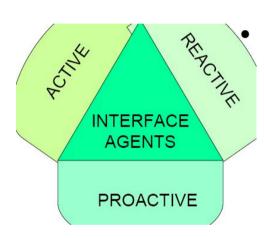
Visual Software Agent

with rocking realistic face and speech dialog function.

Netscape Navigator window

Anchor list

automatically extracted whenever new page is opened <index_number, anchor_string, URL>


Agent-based interfaces - motives

- Decrease task complexity
 - Bring expertise to the user (in the form of expert critiquing, task completion, co-ordination)
- Provide a more natural (i.e., anthropomorphic)
 environment in which to interact
 - Should facilitate interaction since people are accustomed to this form of interaction
- □ Tangible metaphor of mediation
 - There is "somebody" who helps me
- Entertaining & motivating
 - It's fun and motivating working together with somebody

Hallmarks of agent-based interfaces

- Appear as life-like characters
- Plan interactive behavior autonomously

- Respond immediately to interruptions
- Handle questions or direct manipulation

- Anticipate the user's needs
- Adopt the user's goals
- Can initiate interaction
- Provide unsolicited comments

Embodied agents

Bodily appearance that affords natural output modalities: facial display, gaze, gesture, speech, intonation, body posture

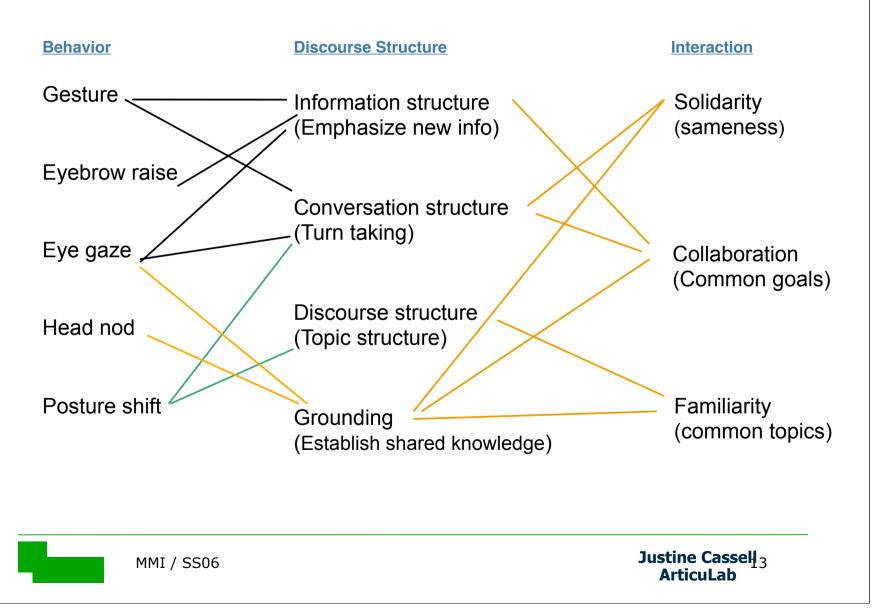
- Exploit advantages of natural multimodal communications
 - Adaptability
 - → Modality synergy
 - → Natural communication "protocolls"
 - → Increased naturalness, efficiency, smoothness, robustness of communication

Embodied conversational agents (ECA)

"Computer interfaces that hold up their end of conversation, have bodies and know how to use it for conversational behaviors as a function of the demands of dialogue and of emotion, personality, and social convention."

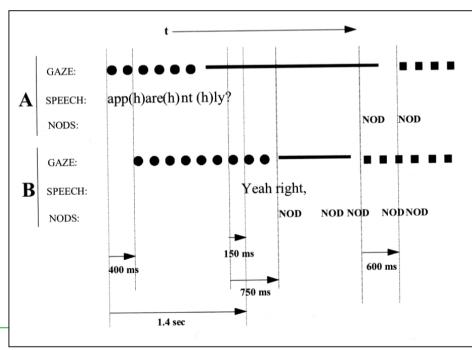
(Cassell, 2000)

- ☐ Same properties as humans in face-to-face communication
 - Recognize and respond to verbal and nonverbal input
 - Generate verbal and nonverbal input
 - Deal with conversational functions of behaviors (e.g. turn taking, feedback)
 - Participate actively in discourse



Example of conversational agents

VIRTUAL HUMANS
for
Training Stability and
Support Operations

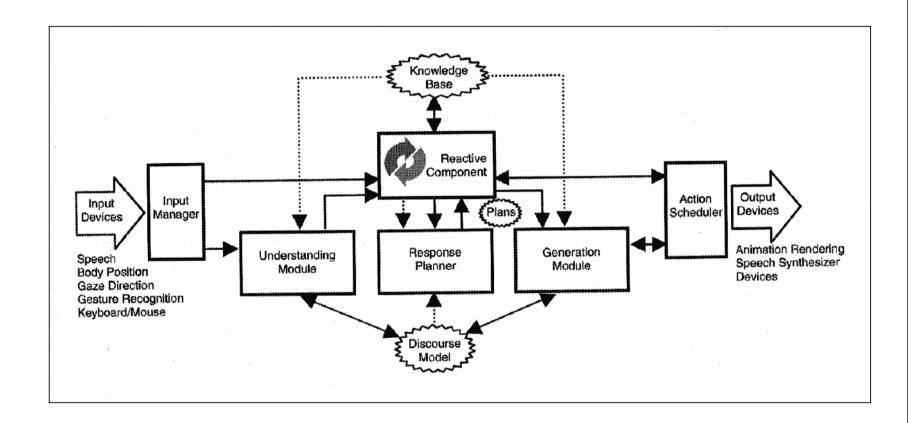


The importance of nonverbal behavior

What's key in multimodal behavior?

- ☐ Functions, Modalities, Timing, Behavior
- Distinction between
 - propositional and interactional functions of conversation
 - conversational functions and communicative behaviors
- Use of modalities to pursue multiple communicative goals in parallel
- Timing among behaviors on various timescales

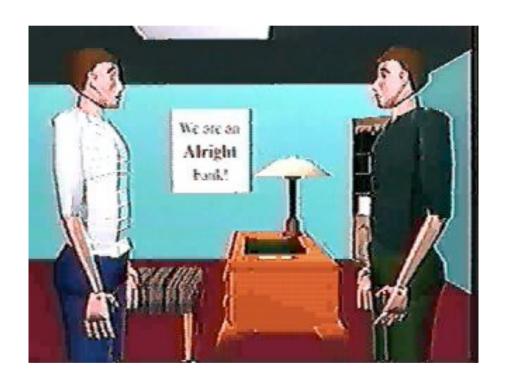
Models of conversational function


Interactional and propositional *goals*

- ⇒ conveyed by conversational *functions* (cf), e.g., inivitation, turn taking, turn keeping, provide feedback, emphasize
- ⇒ carried out by communicative *behaviors* (cb)
- A cb may convey several cf's; a cf may be realized by different sets of cb's
- Example: Turn taking (Cassell et al., 2000)

Conv. function	Comm. behavior
Give turn	Look, raise eyebrows
Want turn	Raise hands
Take turn	Glance away, start talking

FXPAL architecture


Why is it so hard to build an ECA?

- Conversational function model
 - Explicit representations of cf and cb's and their mappings needed fot both input processing and output generation
- Propositional and interactional information
 - Handling both kinds of information at the same time requires rich dynamic models of user and discourse, as well as large domain and environment knowledge
- □ Multistep deliberation, parallelism, modularity
 - Input understanding, response/dialogue planning, and output generation must run fast, correct and in parallel
- ☐ Timing & efficiency
 - Different threads of communication must be handled at different timescales
- Output synchrony

The beginning of multimodal agents...

□ Animated Conversation (1994)

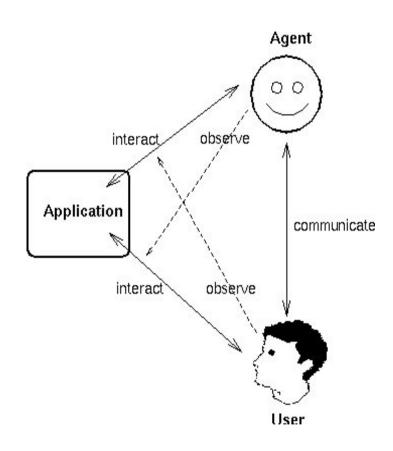
Example: REA (MIT, 2000)

- ☐ Scenario: Real estate agent
- ☐ Multimodal input/output & active dialogue management

(Cassell et al., 1999, 2000)

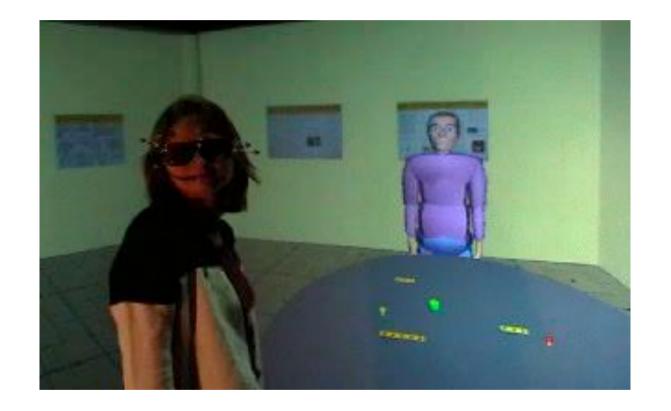
Example: Max (AG-WBS, Uni Bielefeld)

☐ As conversational museum guide in the HNF


Max at the M4 hallway

Collaborative agents

- Human and agent collaborate on a task
- □ Both can *actively* contribute to the task
- □ Both *observe* the other
- □ Both can communicate about the task and their collaboration



Max (AG-WBS, Uni Bielefeld)

- Collaborates with user in a shared virtual world
- □ Baufic construction task
- □ Based on cognitive architecture
 - Auditory and visual perception of the world
 - BDI-based deliberation
 - Hybrid architecture
 - On-the-fly utterance generation

(Kopp et al., 2001; Leßmann & Wachsmuth, 2003; Kopp & Wachsmuth, 2004)

Agent-based interfaces from the user perspective...

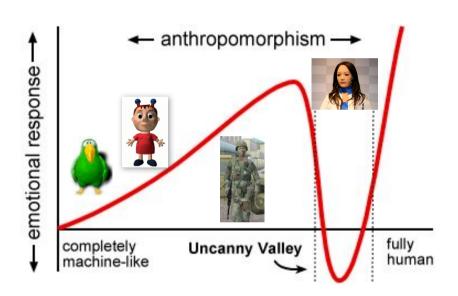
- □ Anthropomorphism
 - Do we want to think about the agent as being like a human being?
- □ Autonomy
 - How much authority do we want to give the agent to act on our behalf?
- □ Communication
 - How can we communicate with the agent?
- ☐ Feedback
 - How can we tell what the agent is doing?
- □ Instructability
 - How can we influence the agent's behavior? Locus of control?
- □ Responsibility
 - Who is liable when things go wrong?

Do anthropomorphic interfaces help?

- □ Virtual face attracts **attention** (Dehn & van Mulken, 2000).
- □ Human-like faces cause evaluations as **more entertaining** (Takeuchi & Naito, 1995; Koda & Maes, 1996; van Mulken et al., 1998, Krämer et al., 2002).
- Perceived **intelligence** and **trust** in a system (as well as its credibility) is increased when an anthropomorphic interface is used (Sproull et al. 1996; Walker, Sproull & Subramani, 1994; Rickenberg & Reeves, 2000).
- Users are more inclined to **delegate tasks** to the system when a human like face is visible (Milewski & Lewis, 1997). Other studies could not prove an increased readiness to delegate a task (Krämer & Bente, 2005).
- □ By means of a robot autistic children are **prompted to** interact with the artifact and with each other (Werry et al., 2001).

Do anthropomorphic interfaces help?

- Graphical interfaces bring about higher acceptance (Hubona & Blanton, 1996; Ahern, 1993)
- Role of appearance
 - Social evaluation and attribution of friendliness highly dependent on the appearance (Dehn & van Mulken, 2000; Sproull et al., 1996; Koda & Maes, 1996)
 - Controversy: Cassell & Thórisson advocate anthropomorphic appearance, Ball & Bates not
 - Parke (1991) recommends a not too realistic appearance since expectations may be raised
 - Agents that resemble user in appearance, gender, ethniticity, etc. are rated higher
- Agent **behavior** must match realism of its appearance

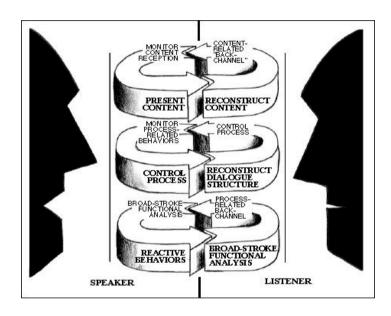


The "uncanny valley" hypothesis

□ how human-like an appearance?

Masahiro Mori (1970s): Emotional responses to robots vary with <u>anthropomorphism</u> in appearance & motion

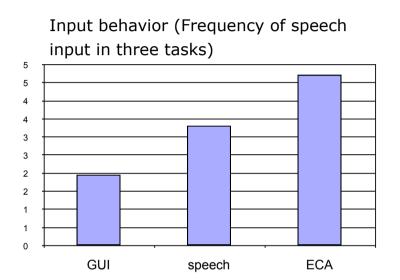
Human-like appearance necessitates human-like behavior!


Numerous roboticists questioned Uncanny Valley's scientific status, noting that "we have evidence that it's true, and evidence that it's not."

The power of nonverbal feedback

Ymir/Gandalf (Thorisson, 1996):

- Different kinds of feedback
 - Content-related: question answering, command execution
 - "Envelope": gaze and head movement for turn-taking/giving and as attentional cues, coverbal beat gestures during speaking
 - Emotional: happy, puzzled face
- □ Fewer user repetitions and hesitations, better ratings of language capability of the system in content + envelope FB condition (Cassell & Thorisson, 1999).



Do agents induce more natural interactions?

- embodied interface agents
 trigger user's speech input –
 compared not only to text but
 also to speech based interfaces
- ☐ Users engage more frequently in **reciprocal communication** attempts such as correcting comments or resignation.

When interacting with agents users show behavior that merely is appropriate in human face-to-face interaction.

Problematic consequence: Human-like agents lead to **expectations** that can not yet be met.

(Krämer, 2005)

Social effects of an agent's presence

Agents cause social effects comparable to humans!

- ☐ Social presence of the virtual character
 - If confronted with an embodied interface agent, users try to present themselves in a more positive light (Sproull et al., 1996) ⇒ "impression management"
- ☐ Effects of social facilitation/social inhibition
 - Task-performance is inhibited by the social presence of a monitoring agent (Rickenberg & Reeves, 2000)
- Open questions
 - Long-term effects, or will humans get used to it?
 - "Many people want computers to be responsive to people. But do we also want people to be responsive to computers?"

Social agents

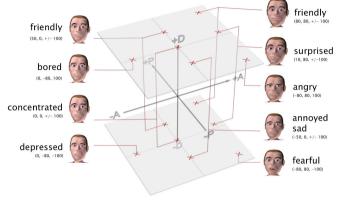
- Use human social interaction protocols in the interface
 - Small talk, mirroring to build rapport
 - Immediacy, flattery to show liking
 - Nonverbal social cues

ATR, Osaka

Laura (Bickmore et al.)

Social robots: Leonardo

- □ Collaborative dialogue
- Modeling collaborative behavior by means of social cues
- Able to read same cues from human user and to provide mutual support back (intention recognition)
- Learning goal-directed actions through imitation and vision


TEACHING ROBOTS AS A COLLABORATIVE DIALOG

> Robotic Life Group MIT Media Laboratory

C. Breazeal (MIT)

Emotional agents

Endow agents, their architectures and behavior, with emotions, feeling and personality

The final slide...

- Mensch-Maschine-Interaktion
 - Einführung & Historie
 - Kognitive Grundlagen: Perception, Memory, Attention, Reasoning
 - Interaction styles and technology
 - User-centered design and Usability Evaluation
 - Spoken Language Dialogue Interaction
 - Multimodal Interfaces
 - Agent-based Interfaces
- ☐ Klausur: 3.8.2006
 - genaue Zeit und Ort per Mail -> anmelden!!
 - Fragen zum Inhalt der Vorlesung

