Human-Computer Interaction

Termin 3:
Memory
Attention

Atkinson \& Shiffrin (1968): Multi-store model

Standard theory of memory \& information processing, also "Modal model"

Sensory memory

\square modality specific buffers for stimuli received through senses (Neisser, 1967)
\square large capacities, but information lasts only short durations

- iconic memory: visual stimuli, $\sim 250-400 \mathrm{msec}$

■ echoic memory: aural stimuli, only little longer

- haptic memory: tactile stimuli
$\square \quad$ FIFO, memories are "washed out" or "masked" (decay) by new incoming information
- iconic memory: By the time ~ 4 items have been extracted, the remaining contents have been decayed
- decay rate depends on intensity, contrast, duration of stimulus, following of another stimulus (masking)
\square Example: Reading your watch quickly

Sensory memory

Sperling (1960):
\square Presented an array of letters for 50 milliseconds

\mathbf{X}	\mathbf{M}	\mathbf{R}	\mathbf{J}
\mathbf{C}	\mathbf{K}	\mathbf{P}	\mathbf{R}
\mathbf{V}	\mathbf{F}	\mathbf{L}	\mathbf{B}

\square Whole-report method: recall as much as possible

- 4.5 letters on average
- letters "fade away" before they can report them allPart-report method: only certain elements from array
- tone (high, medium, low) after presentation to cue subjects to report a particular row
- Recall a higher percentage of letters, depending on delay of tone: 50ms: 9 (i.e. 3 per row) $\rightarrow 300 \mathrm{~ms}: 6 \rightarrow$ 1s: 4.5
- Attended to and scanned the row in sensory memory, until it faded away after 1 sec .

Short-term memory (STM)

\square a more durable "scratch-pad" for temporary recall
■ ~ 20-30s, if not maintained (see below) or externalized
\square rapid and reliable access: $\sim 70 \mathrm{~ms}$
\square limited capacity
■ Miller (1956): 7 ± 2 chunks
■ Cowan (2002): 4 ± 2 chunk
\square overcome capacity limits by chunking

- grouping info into larger meaningful units
- found by looking for familiar pattern abstractions

■ individual differences, e.g., chess masters vs. novices

- closure $=$ successful formation of chunks, also seen in everyday tasks held in STM

Examples

212348278493202
 01214142626

FB-ITW-AC-IAIB-M
FBI-TWA-CIA-IBM

STM - maintenance

\square what happens if you need to keep information in memory longer than 30 seconds?
\square to demonstrate, memorize the following phone number (presented one digit at a time):

STM - maintenance

\square what is the number?

857-9163

The number lasted in your short-term memory longer than 30 seconds. How were you able to remember the number?

STM - maintenance rehearsal

\square what happens if you can't use maintenance rehearsal?
\square to demonstrate, again memorize a phone number, BUT count backwards from 1,000 by sevens (i.e., 1014, 1007, 1000 ... etc.)

STM - maintenance rehearsal

\square what is the number?

628-5094

Without rehearsal, memory fades.

STM \& working memory

\square Working memory = place where basic cognitive operations are carried out

- comprehension, decision making, problem solving
- modality-dependent (e.g. rehearsal of language and sounds vs. inspection or rotation of mental images)
- $\mathrm{WM}=\mathrm{STM}+{ }_{\text {„central }}$ executive"
\square Content of STM defines context in which cognitive processing is carried out
- Can faciliate or hinder efficient processing
- HCI: Beware of the context that is actively created by your system's feedback and functions, in which the user operates.

Baddeley (2000)

Long-Term Memory

\square Once information passed from sensory to working memory, it can be encoded into long-term memory

Long-term memory (LTM)

\square Repository for all our knowledge and experiences

- slow access $\sim 1 / 10$ second
- slow decay, if any
- huge capacity
\square Storage for ...
- Facts, data, concepts
- Images, sounds, sents, ...
- Situation, processes, ...
- Connections, conclusions, insights, ...
$\square \mathrm{HCI}$:
- The combined knowledge of these kinds about a system and the interaction forms a mental model of the user
- Distinguishes a novice from an expert user

Kinds of memory

Larry Squire's Memory Taxonomy

Declarative vs. procedural memory

Automatic sequences of keystrokes, menue selections, condition-action rules, etc.

Semantic vs. episodic memory

(Tulving, 1983)
\square Semantic Memory

- structured memory of facts, concepts, meaning of words and things
- abstracted and generalized (not tied to specific place, time or event)
\square Episodic Memory
- serial, biographical memory of events

■ memory tied to explicit autobiographical events

- subjective sense of "being there"
\square Distinction supported by neuropsychological evidence
- Frontal lobe patients and some amnesics have relatively intact semantic memories, but are significantly impaired in their memories of events.

Associative memory

\square Semantic memory structure

- provides "associative" access to information
- represents relationships between bits of information
- supports inference
\square Model: semantic network (e.g., ACT-R)
- „closeness" of concepts represented by closeness in graph (number of edges between nodes)
- inheritance - child nodes inherit properties of parent nodes
- relationships between bits of information explicit
- supports inference through inheritance
\square Learning of information
- by looking for associations with known facts or concepts
- the more associations are found, the better something is learned

Associative or semantic network

How is information memorized ??

\square Rehearsal

- information moves from STM to LTM
- total time hypothesis: amount of information retained is proportional to rehearsal time
\square Distribution of practice effect
- optimized by spreading the learning over time
\square Importance of structure, meaning and familiarity
- information about objects easier to remember:
\square Faith Age Cold Tenet Quiet Logic idea Value Past LargeBoat Tree Cat Child Rug Plate Church Gun Flame Head
- information related to existing structures more easily incorporated into memory (cf. associations)

When is information forgotten ?

decay

- information is lost gradually but very slowly
interference
■ new information replaces old: retroactive interference
\square new tel. number masks old one
- old may interfere with new: proactive inhibition
\square find yourself driving to your old house
memory is selective ...
... affected by emotion - can subconsciously 'choose' to forget

How is information retrieved?

Two basic mechanisms:
\square recall
■ information must be retrieved from memory, without any hint

- can be assisted by cues, e.g. categories, imagery
\square recognition
- present information „evokes" that it has been seen before plus further knowledge
- less complex than recall - information itself acts as a cue

Recall

\square Free recall list learning (Glanzer \& Cunitz, 1966):
■ Subjects presented with a list of words (usually 15 to 20) auditorily

- Results: Subjects were more likely to remember the words at the beginning (Primacy) and end of the list (Recency).
\square Study provides evidence for the distinction between LTM and STM
- Recency effects reflect limited STM capacity
- Primacy effects reflect transfer to LTM via rehearsal
- Primacy effect more robust than recency: less affected by interference or delay

Expert vs. novice users

\square Beginners: Simple facts and rules, must build up a mental model of the system from the scratch
\square Experts: Employ declarative and procedural (implicit) knowledge, which they can usually not explicate (e.g. verbalize)
\square How to support learning ?

- enable connections to existant knowledge

■ use metaphors to connect to known realms

- build up knowledge step-by-step
- account for different types of learners (learning by reading, visualizing, verbalizing, doing)

Acting

\square Attention
\square Reasoning
\square Errors
\square Reaction Times and Movement
\square Affordances and Mappings

Attention

\square Limited capacity of working memory restricts the amount of information we can take in and process at a time
\square The brain actively focuses on and then concentrates on a certain kind of information
\square With practice, some kinds of information require little to no effort (automatic) in becoming the focus of attention
$\square \mathrm{HCI}$:

- Attention should be focused on task not on interaction
- Minimize mental effort of using a system
- Example: driving a car

Attention

\square bottleneck theories

- Filter theory: attention determines what info reaches pattern recognition stage through filter
- Late-selection model: attention selects information for memory
\square capacity theories
- Selection occurs everywhere

- depends on mental effort
\square Automatic skills are those that require little mental effort (habituation)
(cf. Reed. 2000)

What do we attend to ?

Attentional filter affected by (Green, 2004)

1. Conspicuity: Object's inherent ability to grab attention

- Sensory conspicuity (physical properties)
\square Cognitive conspicuity (relevance, e.g. face pop-up)

2. Mental workload
3. Expectation
\square Causes specific stimuli to gain more weigth than other
\square Contingent-Capture Hypothesis (Ward):
expected items are part of attentional set, informing the
person what is relevant and important in a scene
\square Main cause of „inattentional blindness"
4. Capacity
\square number of items you can attend to at a time

A Computational framework of attention allocation

Change blindness

Change blindness

Gender effects ?

This is a task women against men!

Watch the yellow team playing basketball. Count how often the yellow team dribbles the ball AND how often it passes the ball.

