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Abstract. So far, approaches towards gesture recognition focused main-
ly on deictic and emblematic gestures. Iconics, viewed as iconic signs in
the sense of Peirce, are different from deictics and emblems, for their
relation to the referent is based on similarity. In the work reported here,
the breakdown of the complex notion of similarity provides the key idea
towards a computational model of gesture semantics for iconic gestures.
Based on an empirical study, we describe first steps towards a recognition
model for shape-related iconic gestures and its implementation in a pro-
totype gesture recognition system. Observations are focused on spatial
concepts and their relation to features of iconic gestural expressions. The
recognition model is based on a graph-matching method which compares
the decomposed geometrical structures of gesture and object.

1 Introduction

Gesture as a communicative modality that supplements speech has widely at-
tracted attention in the field of human-computer interaction during the past
years. Applications benefit in various ways from the multimodal approach that
combines different kinds of communication. The synergistic use of gesture and
speech increases the bandwidth of communication and supports a more effi-
cient style of interaction. It potentially increases naturalness and simplicity of
use, since oral and gestural competences are present by nature, while WIMP1

competence has to be learned. In virtual environments, where users may move
around, it can be even impossible to use WIMP-style interfaces. Gesture and
speech complement each other, so that some concepts we wish to communicate
are more easily expressed in one modality than in the other. Speech, the linear
and structured modality, is advantageous for abstract concepts, while gesture,
as an inherently space-related modality, supports the communication of con-
crete and spatial content. This property of gesture makes its use in an interface
particularly helpful for space-related applications.

The interpretation of iconic gestures in spatial domains is a promising idea
to improve the communicative capabilities of human-computer interfaces. This
paper presents an approach to utilize co-verbal iconic gestures as information
1 Windows, Icons, Menus, and Pointing interfaces
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carriers about shape properties of objects. The application background of our
research is the area of virtual design and construction, in which spatial concepts
play a significant role. In particular, we focus on an intuitive interaction with the
machine that (ideally) requires no learning. To approach this aim, we base the
system design on the results from an empirical study about object descriptions.
Before we describe this in detail, we give a brief analysis of the nature of iconic
gesture and review related research.

1.1 Iconic Gestures and Shape

In the gesture typology by McNeill [11], shape-related or shape-describing hand
movements are a subset of iconic gestures. This gesture type is used simul-
taneously with speech to depict the referent. Semiotically, the term iconic is
derived from the notion of icons according to the trichotomy of signs suggested
by Peirce [17]. An icon obtains meaning by iconicity, i.e. similarity between it-
self and its referent. Meaning thus becomes an inherent part of the sign.2 The
second and third type of the sign typology are index and symbol. Both require
additional knowledge to be intelligible. For indices this is a shared situation and
for symbols a shared social background.3 Iconicity in gestures is multifaceted,
it may occur with respect to geometric properties of referents, spatial configu-
rations, or actions.4 Our modelling approach is confined to the first facet, the
representation of spatial properties.

The problem of gesture recognition from the viewpoint of engineering is quite
often reduced to a pattern classification task. Following this paradigm, a given
data stream (images in the case of video-based recognition or data from other
sensor types) is classified according to a pre-defined set of categories. The class
then determines the meaning of the gesture resulting in a direct mapping of
gestural expression onto meaning. This engineering viewpoint is put forward, for
example, by Benoit et al. [1]:

”[The recognition of] 2D or 3D gestures is a typical pattern recogni-
tion problem. Standard pattern recognition techniques, such as template
matching and feature-based recognition, are sufficient for gesture recog-
nition.” (p. 32)

The (pure) pattern recognition approach works well for emblems and appli-
cation-dependent gestures which are defined in a stylized dictionary. However,
the iconic gestures we consider in our approach are not part of an inventory or a
standardized lexicon. Iconicity may refer to any spatial property or configuration
one can think of in a given scenario. The number is potentially infinite, likewise
2 This claim presupposes that sender and receiver share similar cognitive capabilities
to perceive the sign and to mentally transfer it to its referent.

3 The gestural correlates of indices and symbols are, respectively, deictic gestures and
emblems.

4 This subdivision is used in [15] to define pictomimic, spatiographic, and kinemimic
gestures.
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are the possibilities of a gestural realization. Even identical content may be
expressed differently due to personal preferences. This fundamental property of
iconic gestures, and co-verbal gestures in general, is expressed by McNeill [11]:

”The gestures I mean are the movements of the hands and arms that we
see when people talk . . . These gestures are the spontaneous creations of
individual speakers, unique and personal. They follow general principles
. . . but in no sense are they elements of a fixed repertoire.” (p. 1)

With McNeill, we assume that for a computerized interpretation of iconic
gestures to be successful and scalable, a paradigm different from pattern clas-
sification is necessary. The detection of similarity between gesture and referent
requires an analysis of their components and their components’ relationships.

1.2 Related Research

There is already a multitude of recognition systems for emblems and manipula-
tive gestures used for tasks like robot control, navigation in virtual reality, sign
language recognition, or computer games. Overviews of the research in this field
were compiled, for example, in [19,16]. We found only very few approaches that
take up iconic gestures in human-machine communication.

One attempt to recognize and interpret co-verbal iconic hand gestures was
realized in the ICONIC system [7,21]. The prototype allows a user to interact
with objects in a virtual environment, for example, to move an object with a
speech command ”move the teapot like this” and an accompanying dynamic
gesture which indicates the direction. The interpretation of a gesture is speech-
driven. Whenever speech suggested the possibility of a gesture (”like this” in the
example), the system looked for an appropriate gesture segment that comple-
ments the spoken utterance. Static gestures are used to indicate places of objects,
whereas dynamic gestures indicated movements. Iconicity with respect to shape
properties was evaluated for the hand posture. It was correlated to the shape of
the object referenced verbally so that hand rotation can be applied. The authors
call the process of correlating object-shape and hand-shape Iconic Mapping. In
the following sections, we will use the same term in a more generalized sense for
the mapping between gestural expression and a reference object.

Though the ICONIC approach takes iconic gestures explicitly into account,
its interpretative strategy is ”caught” in language-like structures. A gesture, as
a unit of meaning, augments and specifies just the semantics of the spoken utter-
ance. Thereby, the approach does not consider the very nature of the imaginal
aspects of gestures. This makes it impossible to model compositional proper-
ties where subsequent gestures use space in the same way to produce a ”larger”
gestural image.

On the empirical side, there is a lot of research on gestural behavior, but
most of it is focused on different conversational situations, for example narra-
tive discourse, specialized on certain gesture types, like deictics, or it considers
isolated, non co-verbal gestures.
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In her Ph.D. thesis [4], Hummels describes a study on the use of autonomous
gestures for object design. It was found that different strategies like cross-section,
extrusion, contour, usage mimics, and surface design were employed to visualize
a given object. The author further emphasizes that there ”is no one-to-one map-
ping between the meaning of the gesture and structural aspects of the hands” ([4],
Section 3.53). There are yet several inter-individual consistencies with respect
to prevalent combinations of posture and function. These include indication of
height with two flat hands or between thumb and index finger, or the cutting of
material using the flat hand.

Hummels’ analysis is detailed and insightful, however it remains open in
how far the results from autonomous gestures used there can be transferred to
co-verbal gestures we are interested in.

The lack of empirical research on the use of co-verbal gestures in our target
scenario caused us to conduct a study about the properties of shape-related
gestures. A short summary of the main insights is given in the following section.
More details can be found in [20]. In Section 3 we present an interpretation model
for iconic gestures that considers iconicity and imaginal aspects. A prototype
implementation for shape-related gestures is decribed in Section 4.

2 Properties of Shape-Related Gestures: A Study

As a basis for our modeling and implementation approach we conducted an
empirical study. Its aim was to analyze the gestural behavior people naturally
exhibit facing the task of object description in an experimental setting that
closely resembles the targeted conversational situation. A total of 37 subjects
were asked to describe parts from a virtual construction application displayed on
a projection screen (Fig. 1). Subjects were equipped with electromagnetic 6DOF-
trackers, mounted at the wrists and the neck. For hand-shape evaluation they
wore data-gloves on both hands; and speech was recorded with a microphone
headset (Fig. 2, left). The descriptions were video-taped from a frontal view
(Fig. 2, right shows a snapshot from the video corpus). Although the use of
the hands was mentioned in the instructions, gestural explanations were not
explicitly enforced. Subjects were told to explain the objects’ appearance in a

Fig. 1. The stimuli objects used in the empirical study
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way that other subjects, who would watch the video afterwards, would be able
to imagine the object.

As an outcome, our corpus data consists mainly of co-verbal gestures that
were recorded with accompanying speech on a common time-line. The evaluation
was focused on form features of the gestural expression and their relation to
geometrical properties of the stimuli objects. In sum, our observations suggest
that a limited set of gestural features exists to which spatial entities of the objects
can be assigned. The majority of spatial entities are object extents in different
dimensions, often, but not in each case, oriented like the stimulus object. The
quantitative reproduction of extent is not always given, but it was comparable
in relation to other extents of the object described. The significant features were
linear and circular movements, the distance ”vector” between the palms in two-
handed gestures, the aperture of the hand in ”precision-grip”-like gestures, the
orientation of the palm, and a curved hand-shape. These gesture features can
be combined to form a gesture like the one shown in Fig. 7 (cf. Section 4).
The movement describes the dominant object’s extent while the hand aperture
indicates the subordinate extent. In this case, an elongated thin, or flat object
could be meant.

Besides the parallel use of features in a single gesture, features may also occur
sequentially in a series of gesture phrases. The cubical object (cf. Fig. 1; right),
for example, was quite often described by three subsequent gestures indicating
the extent in each spatial dimension. All three gesture phrases belong to a com-
mon gestural image, they form one idea unit [11,5]. We found that most people
structurally decomposed the objects and described the parts one after another.
The round-headed screw, for instance, was decomposed into the head, the slot
on top, and the shaft. All parts were described independently, but their spatial
relations were often retained, even beyond the scope of an idea unit. This cohe-

Fig. 2.Gesture and speech recording devices (left): Data gloves, motion trackers,
and microphone headset. Example from the corpus (right): Showing the vertical
extent of an object
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sive use of space establishes a persistent gestural discourse context (also called
virtual environment by Kita [6]), to which subsequent utterances may relate.

3 A Model of Gesture and Speech Recognition

3.1 General Framework

The prevailing psycholinguistic theories on gesture and speech production as-
sume at least two sources of multimodal utterances. Their origin is the speak-
ers working memory which contains, according to the nomenclature by Levelt,
propositional and spatial representations [10]. Hadar and Butterworth call the
corresponding mechanisms conceptual processing and visual imagery [3]. Both
mechanisms influence each other in that they mutually evoke and even modify
representations. It is assumed that conceptual representation is the predomi-
nant driving force of speech while visual imagery promotes gesture production
(even though there is disagreement about the details of the coordination). On
the surface, the production process results in co-expressive gestural and spoken
utterances. The production model by McNeill assumes basically the same two
origins of an utterance which he calls analytic processes and imagery [13,12].
McNeill yet refuses an information processing approach in favor of a dialectic
process in which gesture and speech, viewed as materialized thinking, develop
from a common source (growth point).

If we assume that gestures are communicative in the sense of conveying in-
formation to a recipient, then they should contribute to visual imagery and con-
ceptual representations of the receiver. Current approaches towards speech and
gesture integration just consider the conceptual representation which is built
up from the fusion of oral and gestural information. However, a provision for
the visuo-spatial properties of utterances, including effects like spatial cohesion,
requires visual imagery. These considerations provide the basis for an abstract
model of the recognition process which is shown in Fig. 3. The recipient per-
ceives speech and gesture and analyzes them according to their structure. The
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Fig. 3. An abstract processing model of gesture and speech recognition
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propositional part of meaning is determined by integrating both modalities to
a common conceptual representation. The multimodal interpretation step takes
the categorical, language-like properties into account, in which emblems, deic-
tics, iconic gestures, and – of course – speech, can be analyzed. At the same time
a persistent image of the gestural part is built up. The property of persistence
is essential for the creation of a visual discourse context that serves as a ref-
erence frame for subsequent utterances. Analogously to the production models,
both representations do not exist independently from each other since concep-
tual processing may evoke imagery and vice versa. With this abstract recognition
model in mind, we will now focus on the technical realization of the processing
steps from spatial analysis to the construction of visuo-spatial imagery.

3.2 Computational Model

The application scenario of our approach towards a computational treatment
of imagery is a reference identification task. The idea is to have a system that
can identify a given object from among a set of objects based on a gestural
description. A computational model of this process, which substantiates the
spatial analysis, is shown in Fig. 4. Instead of visual information from gesture,
the input consists of movement and posture data provided by data gloves and
motion trackers, so that visual processing is not necessary. The spatial analysis
is subdivided into three processing steps. At first, gestural features like hand-
shape, movement, or holds are recognized. A segmentation module divides the
meaningful gesture phases from subsidiary movements and meaningless postures.
Following [2], we assume that it is generally possible to determine the meaningful
part on the basis of movement and posture features without considering speech.
The features of active phases are abstracted to basic spatial entities. Spatial
entities are the building blocks of imagery, they are stored in the visual imagery
component where spatial relations between different entities are determined.
That way, a structured spatial representation of the gestural input is constructed.
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Fig. 4. A model of a recognition system for reference object recognition with
shape-related gestures
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A mapping mechanism compares internal object representations with the image
and selects the object whose representation matches best.

4 Implementation Approach

Based on the computational model, we implemented a first prototype. It allows
the user to select an object from a set of objects displayed on the screen by iconic
gestures. The setting and instrumentation is comparable to the environment that
we used for the empirical study. Fig. 5 shows a user and the wall display with
some differently shaped objects. The recognition system is embedded in a virtual
reality framework called AVANGO, a scene-graph based software environment
that allows easy access to high-level VR programming [22].

Fig. 5. The prototype system: Selecting reference objects by gestural shape de-
scription

4.1 Feature Recognizer

Hand Features The recognition system provides a module that transforms
(device-dependent) posture data from the CyberGloves into a general descrip-
tion of the hand-shape. The module is based on a kinematic model of the hu-
man hand which includes forward-kinematics to compute hand segment positions
from given joint angles [8]. Put into the scene graph, the model can be visual-
ized, thus providing a control mechanism for the correctness of the data mapping
onto the model during development and testing (Fig.6). The input data for the
hand module consists of a stream of 18-dimensional vectors that represent the
measurements of the bimetal bending sensors in the CyberGloves. The vector
components are numbers that correspond to the joint angles in a (more or less)
linear fashion. However, since the CyberGloves measurement points do not per-
fectly match to the joints of the model and since the hand model is underspecified
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Fig. 6. Visualization of hand model (left) and real hand with CyberGlove (right)

by the glove data, some transformations and dependencies are applied to com-
pute the missing model data. The resulting model represents the hand-shape and
hand-internal movements of the user quite accurately, provided that the hand
does not have contact with real objects or with the body.5

The hand module provides a set of fuzzy variables that express the bending
of the fingers in a symbolic way, derived from HamNoSys notation [18]. The
module differentiates between five basic finger shapes: angular, rounded, bent,
rolled, and stretched. The set of the five corresponding variables is computed for
each finger (except the thumb, which is handled separately) and for the whole
hand. By this, the module can provide information like ”the left hand is rounded”
or ”the index of the right hand is stretched” to a subsequent module. Further
fuzzy information concerns the position of the thumb which may be aligned or
in opposition to the other fingers. This facilitates the detection of ”precision
grip”-like gestures used to indicate, for example, short distances.

Movement Features Data on the location and orientation of the wrists is
provided by the tracking devices. This data can be combined with the output of
the hand module to compute, for example, the absolute position of the fingertips
or the center of the palm. From these reference points, different movement fea-
tures are detected. Currently we evaluate holds and linear movement segments.
Both features may indicate meaningful gesture phases for static or dynamic ges-
tures [20]. The detection itself is based on the PrOSA-framework, a development
from our group that facilitates rapid prototyping of evaluation systems for ges-
tural movements in VR-scenarios [9].

4.2 Phase Segmenter

Our prototype system currently supports a simple gesture segmentation based on
the typology of movement phases suggested by Kendon [5]. The typology defines
5 In this case the heuristics may fail, but iconic gestures are normally non-contact
movements.
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gesture units as movements that occur between two resting positions. Any unit
may consist of one or more gesture phrases, whereas each phrase contains a
gesture stroke and an optional preparation and retraction phase. The resting
space in our implementation is the area below chest height. Movement segments
that begin or end in the resting space are counted as preparation or retraction
phases and are not considered for further analysis. A retraction to resting space
also signals the end of a gesture and initializes the iconic mapping process.
There are three types of gesture strokes our prototype can recognize: holds in
one hand, synchronized holds in both hands, and linear movements of one hand.
Transitional movements between sequential strokes can be filtered out.

4.3 Spatial Entity Coder

According to our observations, we regard the most prominent meaning cate-
gories, spatial extent and diameter (a special case of extent), as basic spatial
entities. The spatial entity coder abstracts from the concrete realization of the
gesture through the transformation to a set of spatial entities. This processing
step thus takes the variability of gestural expressions to convey a concept into
account. Spatial entities are stored in the visual imagery component and for each
new entry, spatial relations to existing entries are determined. The system checks
for orthogonality, dominance (of one extent over another), and equality of two
extents. Thus, the representation of the imaginary content may be visualized as
a graph with spatial entities as nodes and spatial relations as links (Fig. 7).

b
1

b
2

ORTH

DOM

extext
b

1

b
2

Fig. 7. Spatial representation of a dynamic gesture (hand moves right along b1

direction): Spatial extents b1 and b2 are recognized and checked for spatial rela-
tions. b1 is orthogonal and dominant to b2

4.4 Iconic Mapping

The iconic mapping module determines the most appropriate object from the
object knowledge base that matches the content of visual imagery. The output of
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the iconic mapping may be used as a reference object in an application command.
The mapping is based on a comparison of the gesture representation graph with
the pre-defined object graphs by means of subgraph matching [14]. The mapping
process evaluates for each object graph how much cost is expended to transform
the gesture graph into a true subgraph of the model. The cost functions for in-
sertion, deletion, and modification of nodes and links are defined individually.
Our prototype computes the cost function according to some simple heuristics:
Generally, it is assumed that the object model is complete, meaning that the
gesture graph usually does not contain additional nodes and links. Therefore, a
deletion of nodes and links is more expensive than an insertion. Node types can
be extent and diameter, where extent is a superclass of diameter. The transfor-
mation from extent nodes to diameter nodes is therefore cheaper than vice versa.
The transformation cost for each node and link total to a sum that represents the
mismatch between gesture and object. Fig. 8 exemplifies the recognition process
for a cubical object.

From the three-phase gesture unit indicating the cube’s extent in all dimen-
sions a gesture model graph with three nodes for the spatial entities is built.
Entity relations ORTH for orthogonality and EQ for equality are determined. The
graph is then matched against the object database. Note that a complete match
is not necessarily needed to recognize the object. Even if only two of the three
object extents are indicated by gesture, the cube interpretation would match the
gesture model better than, for example, the bar.
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Fig. 8. The recognition process: A three-phase gesture unit (left) is mapped on a
static model of imagery features (middle) and compared to object models (right)
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5 Conclusion and Further Work

We presented an approach towards the interpretation of shape-describing ges-
tures that is applicable in virtual design and virtual construction tasks. The
model goes beyond a simple gesture-to-meaning mapping by way of decompos-
ing the gestural utterance into spatial entities and their relations. That way, a
static spatial representation of the dynamic gesture is built up. Our approach
emphasizes the importance of imagery in addition to conceptual structures to
construct a visuo-spatial discourse context. AI techniques from image under-
standing, i.e. graph-based representations and image recognition by means of
subgraph isomorphism, are used for realization of a running system.

The inclusion of speech in our prototype system remains an open issue for
further research. To achieve it, a cross-link between imagistic and conceptual
memory is necessary. Another point for improvement is gesture segmentation.
A detailed analysis of gestural features that indicate gesture strokes is still in
progress. Likewise an evaluation of the overall system performance is subject to
future work.
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