Human-Computer Interaction

Termin 9:
Spoken Language Interaction
The evolution of user interfaces (and the rest of this lecture)

<table>
<thead>
<tr>
<th>Year</th>
<th>Paradigm</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s</td>
<td>None</td>
<td>Switches, punched cards</td>
</tr>
<tr>
<td>1970s</td>
<td>Typewriter</td>
<td>Command-line interface</td>
</tr>
<tr>
<td>1980s</td>
<td>Desktop</td>
<td>Graphical UI (GUI), direct manipulation</td>
</tr>
<tr>
<td>1980s+</td>
<td>Spoken Natural Language</td>
<td>Speech recognition/synthesis, Natural language processing, dialogue systems</td>
</tr>
<tr>
<td>1990s+</td>
<td>Natural interaction</td>
<td>Perceptual, multimodal, interactive, conversational, tangible, adaptive</td>
</tr>
<tr>
<td>2000s+</td>
<td>Social interaction</td>
<td>Agent-based, anthropomorphic, social, emotional, affective, collaborative</td>
</tr>
</tbody>
</table>
Using *speech* to interact with systems

- Intuitive form of communication, no need for training
- Relates to (one) way of thinking; *but* images, maps, ...
- Paradigm: Computer adapts to human way of interaction

Set the alarm clock to 4:30 AM.
Set the coffee maker to 4:00 AM.
Set the VCR to record the news tomorrow 6:00 PM on channel 4.
Turn the house alarm on.
Speech interaction

Used today
- on the desktop, e.g. dictate
- on the phone, e.g. ticket booking, pizza ordering

Research for
- mobile devices
- automotive interaction
- Virtual Reality
- conversational agents
- mobile robot companions
Cutting edge technology

Speak to Mary using our close-talk headset. Mary is an animated character that represents our software running on your computer.

Mary listens using speech recognition and talks to you with a natural sounding voice.

Do dictation and email. Mary can read back text and headline news.

Voice surf the Internet. Request MP3 music.

Ask for weather radar or live web cam shots.

On-line news and lead story tracking.

http://www.talkingdesktop.com/concept.htm
Spoken Language Dialogue Systems (SLDS)

- A system that allows a user to *speak* his queries in natural language and receive useful spoken *responses* from it.

- Provides an interface between the user and a computer-based application that permits *spoken interaction* with the application in a “relatively natural manner”.
Levels of sophistication

☐ Touch-tone replacement:

System Prompt: "For checking information, press or say one."
Caller Response: "One."

☐ Directed dialogue:

System Prompt: "Would you like checking account information or rate information?"
Caller Response: "Checking", or "checking account," or "rates."

☐ Natural language:

System Prompt: "What transaction would you like to perform?"
Caller Response: "Transfer 500 dollars from checking to savings."
Levels of sophistication

Controlled language

- limited vocabulary, simple grammar
 (e.g. command language)

Natural language

- huge vocabulary, complex grammar,
 grammatical variation, ambiguities,
 unclear sentence boundaries, omissions,
 word fragments

Natural dialogue

- turn-taking, initiative switch, discourse
 grounding, restarts, interruptions,
 interjections, speech repairs
Perfect natural dialogue - „Holy Grail“ of AI

I propose to consider the question "Can machines think?" This should begin with definitions of the meaning of the terms "machine" and "think."
[Turing, 1950]

Critics: Understanding not really needed (no intelligence?)
☐ “Chinese Room” (Searl, 1980)
☐ ELIZA (Weizenbaum, 1966)
Natural language – levels to look at

- **Phonology and Phonetics**
 study of speech sounds and their usage

- **Morphology**
 study of meaningful components of words

- **Syntax**
 study of structural relationship between words

- **Semantics**
 study of meaning, of words (lexical semantics) and of word combinations (compositional semantics)

- **Pragmatics**
 study of how language is used to accomplish goals (said: „I’m cold“ → meant: „shut the window“)

- **Discourse**
 study of linguistic units larger than single utterances
Classical SLDS

User

Phonetics, Phonology
Speech Recognition
Text-to-Speech

Morphol., Syntax Semantics
Syntactic analysis and Semantic Interpretation
Response Generation

Pragmatics, Discourse
Discourse Interpretation
Dialogue Management
Spoken Dialogue System - overview

- **Speech Recognition:**
 - Decode the sequence of feature vectors into a sequence of *words*.

- **Syntactic Analysis and Semantic Interpretation:**
 - Determine the utterance *structure* and the *meaning* of the words.

- **Discourse Interpretation:**
 - Understand what the *utterance means* and what the user *intends* by interpreting in *context*.

- **Dialogue Management:**
 - Determine *goals* and *plans* to be carried out to respond properly to the user intentions.

- **Response Generation:**
 - Turn communicative act(s) into a *natural utterance*

- **Text-to-speech:**
 - Turn the words into *synthetic speech*
Spoken Dialogue System

- Phonetics, Phonology
- Speech Recognition
- Text-to-Speech
- Morphol., Syntax, Semantics
- Syntactic analysis and Semantic Interpretation
- Discourse Interpretation
- Pragmatics, discourse
- Dialogue Management
- Response Generation
Starting and end point: acoustic waves

- Human speech generates a wave
- A wave for the words “speech lab”:
Basics

- **Phonetics**: study of speech sounds
 - Phone (segment) = speech sound (e.g. “[t]”)
 - Phones = *vowels, consonants*
 - *Diphone, triphone, ...* = combination of phones
 - *Syllables* = made up of vowels and consonants, not always clearly definable ("syllabification problem")
 - *Prominence* = *Accented* syllables that stand out
 - Louder, longer, pitch movement, or combination
 - *Lexical stress* = accented syllable if word is accented
 - "CONtent" (noun) vs "conTENT" (adjective)
 - *Allophone*: different pronunciations of one phone
 - [t] in “tunafish” → aspirated, voicelessness thereafter
 - [t] in “starfish” → unaspirated
Basics cont.

- **Phonology**: describes the systematic ways that sounds are differently realized
 - *Phoneme* = smallest *meaning-distinctive*, but not *meaningful* articulatory unit
 - Phones [b] (´bill´) and [ph] (´pill´) discriminate two meanings → different phonemes /b/ und /p/
 - Subsume different elemental sounds under one phoneme, e.g. [p] in `spill´ and [ph] in `pill´ → /p/
 - *Phonological rules* = relation between phoneme and its allophones
 - Every language has its own set of phonemes and rules
Speech recognition
Schematic architecture for a (simplified) speech recognizer.
Acoustic Waves

A wave for the words “speech lab” looks like:

“l” to “a” transition:
Acoustic Sampling

- 10 ms frame (= 1/100 second)
- ~25 ms window around frame to smooth signal processing

Result: Acoustic Feature Vectors
The Speech Recognition Problem

- **Recognition problem**
 - Find most likely sequence \(w \) of “words” given the sequence of acoustic observation vectors \(a \)

- **Use Bayes’ law to create a generative model**
 - \(P(a,b) = P(a|b) \ P(b) = P(b|a) \ P(a) \)
 - Joint probability of \(a \) and \(b \) = a priori probability of \(b \) times the probability of \(a \) given \(b \)

- **Apply to recognition problem:**
 - **acoustic model:** \(P(a|w) \) (→ HMMs for subword units)
 - **language model:** \(P(w) \) (→ Grammars, etc.)
 - \(\text{ArgMax}_w \ P(w|a) = \text{ArgMax}_w \ P(a|w) \ P(w) / P(a) \)
 - \(= \text{ArgMax}_w \ P(a|w) \ P(w) \)
Crucial properties of ASRs

- **Speaker:**
 - independent vs. dependent
 - adapt to speaker vs. non-adaptive

- **Speech:**
 - recognition vs. verification
 - continuous vs. discrete (single words)
 - spontaneous vs. read speech
 - large vocabulary (2K-200K) vs. limited (2-200)

- **Acoustics**
 - noisy environment vs. quiet environment
 - high-res microphone vs. phone vs. cellular

- **Performance**
 - real time, low vs. high Latency
 - anytime results vs. final results
Text-to-speech
Text-to-speech

- Mapping text to phones

- The simplest (and most common) solution is to record prompts spoken by a (trained) human
- Produces human quality voice
- Limited by number of prompts that can be recorded
- Can be extended by limited cut-and-paste or template filling
Text-to-speech

Central steps:
1. Analyse text and select sound segments
2. Determine prosody and how to model it with single segments
3. Turn into acoustic waveform (speech synthesis)
Crucial choice: which segments?

- **Phonemens?**
 - problematic due to co-articulatory effects

- **Allophones**
 - Variants of a phoneme in specific contexts
 - Example: Phoneme /p/ → [p] in spill and [ph] in pill

- **Diphones („Zweilautverbindungen“)**
 - Diphones start half-way thru 1st phone and end half-way thru 2nd
 - ⇒ critical phone transition is contained in the segment itself, need not be calculated by synthesizer
 - Example: diphones for German word „Phonetik“: f-o, o-n, n-e, e-t, t-i, i-k

Co-articulation = change in segments due to movement of articulators in neighboring segments
Phonetic analysis
from words to segments

- Look up pronunciation dictionary
- Words/wordforms
 - e.g. CMUdict: ~125,000 wordforms
 - primary stress, secondary stress, no
 primary stress, secondary stress, no
 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

- always a lot of unknown words left
- map letters to sounds with rules
 - MITalk (1987): 10,000 rules repository: p → [p]; ph → [f]; phe → [fi]; phes → [fiz];
 - Festival: rules account for co-articulation: [c h] + any
 consonant = `k`, else `ch` (christmas vs. choice)
 - Usually machine learned from large data sets
Prosodic analysis
from words+segments to boundaries, accent, F0, duration

TTS systems need to create proper prosody by adapting:

- Prosodic phrasing/boundaries:
 - Break utterances into units
 - Punctuation and syntactic structure useful, but not sufficient

- Duration of segments:
 - Predict duration of each segment
 - Helps to create prominence

- Intonation/accents on/over segments:
 - Predict accents: which syllables should be accented?
 - Realize as F0 contour ("pitch") with special form for accents

![Diagram of prosodic analysis](image-url)
Pitch accents

- In the first place, properties of words
- Decisive for how words are interpreted, used to...
 - emphasize new information ("Then I saw a church.")
 - contrast parts ("I like blue tiles better than green tiles.")
 - explicitly focus parts ("I said I saw a church.")

- Different pitch accents serve different functions in discourse
 - Emphase (H*)
 - Kontrast (L+H*)

- Which to choose depends on content and context
 - Given (topic, theme) or new information (rheme)?
 - Information mutually agreed or not?
 - "concept-to-speech, content-to-speech"
Duration

Generate segments with appropriate duration. Influenced by

- Segmental identity
 - /ai/ in ‘like’ twice as long as /I/ in ‘lick’

- Surrounding segments
 - vowels longer following voiced fricatives than voiceless stops

- Syllable stress
 - stressed syllables longer than unstressed

- Word “importance”
 - word accent with major pitch movement lengthens

- Location of syllable in word
 - word ending longer than starting longer than word internal

- Location of the syllable in the phrase
 - phrase final syllables longer than in other positions
Waveform synthesis
from segments, f0, duration to waveform

Signal modeling
- Rule-based
 - Formant synthesis
- Data-based
 - Diphone concat.
 - Unit selection

Physiological modeling, Articulatory synthesis

Start with acoustics, rules to create formants
Use databases of stored speech to assemble new utterances
Model movements of articulators and acoustics of the human vocal tract
Articulatory synthesis

- based on physical or nowadays computational models of the human vocal tract and the articulation processes occurring there
- few of them currently sufficiently advanced or computationally efficient
Articulatory synthesis

Talking robots WT-4, WT-5
Waseda University, Tokyo

Air from Lung
Nasal Cavity
Soft Palate
Oral Cavity
Tongue
Vocal Cords
Nose
Upper Lip
Corners of Mouth
Lower Lip
Teeth

(C) Takaniishi Lab

„sasisuseso“
Formant synthesis

- **Formant**: Frequenzregion, in der die dort hineinfallenden Teiltöne besonders stark sind
- Wesentlichen Elemente der Klangbildung, je nach Lage und Stärke verschiedene Vokale und Timbre
Formant Synthesis

- Annahme: Die für die menschliche Perzeption wesentliche Information ist durch die Töne in den Formanten kodiert

- Dabei prägen vor allem die beiden am tiefsten gelegenen Formanten (F1, F2) die Lautwahrnehmung, mitunter reicht zur Wahrnehmung bestimmter Vokale auch nur ein Hauptformant
Formant Synthesis

- Rules model relations between tones and acoustic features
- Advantages
 - flexibility
 - not much storage space needed
- Disadvantages
 - Sounds mechanical
 - Complicated rule sets
- Most common systems while computers were relatively underpowered
 - 1979 MIT MITalk (Allen, Hunnicut, Klatt),
 - 1983 DECtalk system, ‘Klatt synthesizer’
Data-based synthesis

- Nowadays all current commercial systems (1990’s-)
- Steps:
 1. Record basic inventory of sounds (offline)
 2. Retrieve sequence of units at run time (at run-time)
 3. Concatenate and adjust prosody (at run-time)

- What kind of units?
 - Minimize context contamination, capture co-articulation
 - Enable efficient search
 - Segmentation and concatenation problems

- How to join the units?
 - dumb (just stick them together)
 - PSOLA (Pitch-Synchronous Overlap and Add), MBROLA (Multi-band overlap and add)
<table>
<thead>
<tr>
<th>Einheitenlänge</th>
<th>Einheit</th>
<th>#Einheiten (Englisch)</th>
<th>#Regeln</th>
<th>Qualität</th>
</tr>
</thead>
<tbody>
<tr>
<td>kurz</td>
<td>Allophone</td>
<td>60-80</td>
<td>hoch</td>
<td>gering</td>
</tr>
<tr>
<td></td>
<td>Diphone</td>
<td><40<sup>2</sup>-65<sup>2</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triphone</td>
<td><40<sup>3</sup>-65<sup>3</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halbsilben</td>
<td>2K</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silben</td>
<td>11K</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doppelsilben</td>
<td><11K2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wort</td>
<td>100K-1.5M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phrasen</td>
<td>∞</td>
<td></td>
<td>gering</td>
</tr>
<tr>
<td></td>
<td>Satz</td>
<td>∞</td>
<td></td>
<td>hoch</td>
</tr>
</tbody>
</table>

Source: E. Andre
Diphone synthesis

- Units = diphones
 - Phones are more stable in middle than at the edges
- Typically 1500-2000 diphones, reduce number
 - *phonotactic constraints*: constraints on the way in which phonemes can be arranged to form syllables
 - collapse in cases of no co-articulation
- Record 1 speaker saying each diphone
 - “Normalized”: monotonous, no emotions, constant volume
- Example: MBROLA (Dutoit & Leich, 1993)
Example: TTS for Max

- TXT2PHO (IKP) → lexical stress, neutral prosody
- MBROLA + German diphon database
- SABLE tags for additional intonation commands

Phonic text:
```
S 105 18 ...
P 90 8 153
a: 104 4 ...
s 71 28 ...
```

IPA/XSAMPA
Example: TTS for Max

Manipulation of phonetic text

- Overlay stereotyped contours to create accents + durations
- No suprasegmental analysis
- Flexible form, height, duration
Unit selection

- One example of a diphone is not enough!
- Unit selection:
 - Record multiple copies of each unit with different pitches and durations
 - How to pick the right units? Search!
 - Example (Hunt & Black, 1996):
 - Input: three F0 values per phone
 - Database: phones+duration+3 pitch values
 - Cost-based selection algorithm
- Non-uniform unit selection
 - Units of *variable* length
 - Reduced need of automatic prosody modeling
Unit selection

```
sent: "To be ..."

phonet: _ t U b i: ...
stress:  
\ ^ \ ...
tone: I H ...
dur: 210 40 55 80 198 ...
f0: ...
```

```
Very Large corpus
```

```
sent: "... to bear."
phonet: t U b E@ ...
stress:  
\ ^ \ ...
tone: I L ...
dur: 150 50 85 90 150 ...
f0: ...
```

```
Formants:
```

```
Target j
```

```
Target cost tc(j,i)
```

```
Unit i
```

```
```
Academic TTS systems - demos

<table>
<thead>
<tr>
<th>Institution</th>
<th>Methodology</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSS (IKP, Bonn)</td>
<td>non-uniform unit-selection</td>
<td>Mp3 (2001)</td>
</tr>
<tr>
<td>Uni Duisburg</td>
<td>Formant synthesis</td>
<td>Mp3 (1996)</td>
</tr>
<tr>
<td>Mary (DFKI)</td>
<td>Diphone synthesis, MBROLA</td>
<td>Mp3 (2000)</td>
</tr>
<tr>
<td>SVox (ETH Zürich)</td>
<td>Diphone concat.,</td>
<td>Mp3 (1998)</td>
</tr>
<tr>
<td>HADIFIX (IKP, Bonn)</td>
<td>HSlsilben, DIPhone und suffIXe</td>
<td>Mp3 (1995)</td>
</tr>
</tbody>
</table>
Commercial TTS systems - demos

<table>
<thead>
<tr>
<th>System</th>
<th>Technology</th>
<th>Format (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT&T</td>
<td>non-uniform unit-selection</td>
<td>Mp3 (1998)</td>
</tr>
<tr>
<td>IBM ctts</td>
<td>non-uniform unit-selection</td>
<td>Mp3 (2002)</td>
</tr>
<tr>
<td>Nuance RealSpeak</td>
<td>non-uniform unit-selection</td>
<td>Mp3 (2006)</td>
</tr>
<tr>
<td>SVox Corporate</td>
<td>Diphone concat.</td>
<td>Mp3 (2005)</td>
</tr>
</tbody>
</table>
- Comparison of state-of-the-art TTS systems
 http://ttssamples.syntheticspeech.de/deutsch/index.html

 http://xenia.media.mit.edu/~cahn/

- Demos and links for speech synthesizers
 http://felix.syntheticspeech.de/

- Lecture on speech synthesis by Bernd Möbius
 http://www.ims.uni-stuttgart.de/~moebius/teaching.shtml
Next week:

Text-to-Speech
Speech Recognition
Morphol., Syntax
Semantics
Response Generation
Discourse Interpretation
Pragmatics, discourse
Phonetics, Phonology
Syntactic analysis and Semantic Interpretation
Dialogue Management
User
Student projects

- **Aufgabe 1**: Evaluiere die Usability eines Systems/Interface nach einem der drei Standardverfahren. Die Evaluationen soll jeweils geplant, durchgeführt und ausgewertet werden. Alle Schritte sind schriftlich zu dokumentieren (max. 10 Seiten) und bis zum 21.6. abzugeben.

- **Schriftlicher Abschlusstest**:
 - vorauss. Termin: 3.8.06
 - Dauer: 1,5 Std.
 - Anmeldung per EMail an skopp@techfak bis 14.7.06