
MACHINE LEARNING REPORTS

Combining Phenotypic and Genotypic
Learning

Report 01/2008
Submitted: 15.04.2008
Published: 18.04.2008

Udo Seiffert
Scottish Crop Research Institute (SCRI)

Mathematical Biology
Invergowrie, Dundee, UK

and
University of Magdeburg

Inst. for Electronics, Signal Processing, and Communications (IESK)
Neural Systems

Magdeburg, Germany

Machine Learning Reports,Research group on Computational Intelligence,
http://www.uni-leipzig.de/̃compint

Abstract

The terms phenotypic and genotypic learning refer to naturally inspired adaptive algo-
rithms, based on the information processing in the brain and evolution of individuals of
a population, respectively. Their appearance might be, among others, artificial neural
networks and genetic algorithms, both fundamental columns of computational intelli-
gence, but serving rather different purposes. There are many approaches to combine
both worlds, particularly to optimize the many control parameters of neural network
design and training using genetic algorithms as optimization tool. Beyond that, this
paper demonstrates the direct combination of the underlying principles of phenotypic
and genotypic learning to obtain neural network training that is qualitatively improved
compared to the traditional method to apply genetic algorithms to neural network train-
ing. This is achieved by making the GA aware of the semantic that is coded in its
chromosomes. The results clearly show the advantages of this method.

Machine Learning Reports,Research group on Computational Intelligence,
http://www.uni-leipzig.de/̃compint

Combining Phenotypic and Genotypic Learning

1 Introduction

The recently increasing research area of computational intelligence is considered to
mainly consist of three major techniques - artificial neural networks, genetic algorithms,
and fuzzy logic. All three components have in common to be inspired by nature and
have been subject to a steadily growing interest. The research activities have been
rapidly forced throughout the last years. This has paved the way to develop some hy-
brid techniques such as a combination of neural networks and genetic algorithms as
considered in this paper. Artificial neural networks (ANN) are concerned with learn-
ing of individuals, often called phenotypic learning, whereas genetic algorithms (GA)
deal with the adaptation of a population to a changing environment, so called geno-
typic learning. Evolution in a wider sense builds the base for this class of optimization
methods.

Genetic or evolutionary algorithms were significantly inspired and developed by
HOLLAND [1] in the 1970s. They are based on the Darwinian theory of the survival
of the fittest. This strategy, whereby potential solutions (individuals) to a problem com-
pete and mate with each other in order to get increasingly better individuals (by means
of their genotype), offers an efficient search method for a complex problem space that
is mapped onto a corresponding gene space. Each solution to a problem to be solved
is represented by a single individual and its genotype, respectively [2].

Generally, neural networks offer an attractive paradigm to solve many real-world
problems, e.g. pattern classification, clustering, function approximation, associative
memory, non-linear system modelling, control as well as prediction and forecasting.
They are robust in the presence of noise, fault tolerant, and suitable for massively par-
allel computation [3, 4]. Due to their important feature of learning by example, neural
nets are often used in applications with little or incomplete understanding of the prob-
lem to be solved but available training data [5]. In contrast to genetic algorithms, neural
networks tackle a particular problem within the original data space – the phenotype.

Practical implementations of ANNs require the choice of a suitable network topol-
ogy and a proper learning strategy as well. Since the performance of an ANN strongly
depends on the used network architecture, its design is very important. Therefore,
some investigations [6, 7, 8, 9] have been done to use GAs to search the space of
potential ANN architectures for optimal or at least sub-optimal but satisfactory designs.
That concerns above all the network type and its topology. This is one possible in-
tersection between neural nets and genetic algorithms. Due to particular features of
different network types, practical implementations are often depending on the target
system [10, 11, 12]. In the end, this automates only the network design and not its
training.

Once a suitable network type and topology has been found, this network must be
trained by an appropriate learning scheme. A number of free parameters must be han-
dled again. In [13, 14, 15, 16] some suggestions were made to integrate at least some
of these parameters into the genetic algorithm and to combine the above mentioned de-
sign optimization with the network training. This leads to some important advantages.
The design and training processes become one self-contained step. The user does not
have to care about possibly confusing and complex design and learning parameters.
However, the black-box character of neural nets becomes even more dominant.

Nevertheless, this process remains very difficult (handling the parameters of the
GA), yielding only limited results on rather selective problems. In many of these ap-

2 Machine Learning Reports

Combining Phenotypic and Genotypic Learning

proaches genetic algorithms have been used to optimize global network parameters.
The core network control and training strategy has been changed scarcely. In other
words, these approaches usually lead rather to more comfort for the user than to a
better performance of the neural network.

Another possibility to join ANNs and GAs in a natural way is to enhance parts of
the network control and training strategy by an evolutionary algorithm. Independent
of how a network was designed, either conventionally or by a genetic algorithm, a
specific component of the training scheme, to be motivated in the next section, can
be improved or even substituted. Due to the global and universally valid character
of this strategy, this network is not limited to any particular problem. It can be used
and handled the same way as the original network, but may lead to better results.
Moreover, the user retains more control of the network’s learning and is able to tune its
performance manually.

These considerations define the scope of this paper: improving the performance of
phenotypic learning, as key step in neural network development, by combining it with
the advantages of genotypic learning in terms of the natural principles of evolution.

2 Motivation

The very frequently used Multiple Layer Perceptron (MLP) [17] has its roots in the
simple Perceptron introduced by ROSENBLATT [18], which was able to classify only
linearly separable input patterns. Due to its multiple layer structure, MLPs can sepa-
rate complex non-linearly separable classes. An error value is calculated based on a
comparison between desired and actual output response of the network. PARKER [19]
and RUMELHART [20] are associated with Backpropagation, the commonly used MLP
control and training scheme. It got its name from how it handles these error values
and stands even as a synonym for this network type by now. Because it is wide-spread
and really a standard algorithm, the MLP is not explained in detail now, but only as it
is necessary to understand the further paper. For more information refer for instance
to [21].

A key assumption of Backpropagation is that all neurons, resp. all weights, are
somewhat responsible for an occurring output error. The global error value Q of training
example s is a function of all weights w, the actual output y and desired output d as
well as the input vectors x.

Q(s) = Q(s)(w1 . . . wl, y1 . . . ym, d1 . . . dm, x1 . . . xn) (1)

Responsibility for the global error of the network is affixed by propagating the out-
put response error backward through all weighted connections to the previous layers
until the input layer is reached. This assumes a differentiable and continuous transfer
function of all neurons. Commonly the sigmoid or hyperbolic tangent functions are
applied.

The aim of the training process is to minimize the global error

Q =
∑
(s)

Q(s) → min (2)

Machine Learning Reports 3

Combining Phenotypic and Genotypic Learning

Q

w

Qstart

wstart

Qi

wi

Qi+1

wi+1

Qmin

wmin

Q ≤ Qstop

Figure 1: Gradient descent by means of a simple one-dimensional error surface. Be-
ginning at an initial point (marked with index start), the aim of the learning process is
to minimize the global error Q (indexed with i as it proceeds) until it falls below a given
threshold Qstop.

by modifying the weights w. For the update of a single weight element can be written

wjnew = wj − γ · ∂Q

∂wj

(3)

where γ is the learning coefficient. Depending on the number of weights, the error
spans a multi-dimensional error surface, which is more or less rugged. In other words,
each weight will be changed according to the size and direction of a negative gradient
on the error surface. Commonly this algorithm is called gradient descent (see Fig. 1).

Despite its popularity and a large number of significant improvements in the past,
the gradient descent, as minimization (optimization) function for Backpropagation, has
several drawbacks. It is dependent on the error surface, the initial weights, and some
further parameters, (e.g., the learning coefficient γ). A common error surface has many
local minima.

The system often suffers from getting stuck in a local minimum depending on the
shape of the error surface and the size of the learning coefficient (see Fig. 2). If a
plateau is entered, the size if the gradient (Eq. 3) is very small and its direction may
alternate from one training step to the next. This is due to the local character of the
gradient descent. Generally, global optimization schemes will ease these problems [22,
23].

Changing the weights as a linear function of the partial derivative (Eq. 3) assumes

4 Machine Learning Reports

Combining Phenotypic and Genotypic Learning

Q

w

plateaulocal minimum

global
minimum

best possible
moveimpossible

move

stuck in a
local minimum

Figure 2: Stylized one-dimensional error surface showing the most significant problems
of the gradient descent algorithm – local minimum, plateau, and the influence of the
learning coefficient.

a piecewise (according to the size of the learning coefficient) locally linear error sur-
face. Especially at points of high curvature this may lead to divergence. Although the
concept of the momentum term (see [21] for a discussion) solves this particular prob-
lem, convergence of the gradient descent is still depending on the size of γ. If it is too
small, the system suffers from very slow learning. On the other hand, a too large γ
may prevent the system from finding a minimum. A synchronized decreasing learning
coefficient is typically used.

Another assumption, as already mentioned above, the demand for a differentiable
and continuous transfer function, leads sometimes to conflicts with other requirements,
e.g. using alternative (non-differentiable) transfer functions to achieve a particular be-
haviour of the neurons.

Besides these disadvantages of the gradient descent algorithm, evolutionary algo-
rithms are claimed to have a good performance for complex optimization problems to
find near-optimal solutions. Thus, GAs promise to be a suitable substitution for several
elements of a neural network control and training scheme. In the present case the
complete Backpropagation algorithm will be replaced by a GA.

So far, the motivation to use GAs to substitute the gradient descent algorithm and
error Backpropagation when training MLPs is mostly based on:

• drawbacks of the gradient descent algorithm,

• the demand for a differentiable and continuous transfer function in Backpropaga-
tion, and

• the suitability of genetic algorithms for large and complex optimization problems.

In order to allow a direct comparison between modified and original networks, in terms
of both training results and computation time, a variation of the transfer function has
been left out here.

Machine Learning Reports 5

Combining Phenotypic and Genotypic Learning

3 Implementation

3.1 General Considerations

It would also go beyond the scope of this paper to explain the basic terminology, imple-
mentation, and properties of GAs. Therefore a key knowledge of genetic algorithms is
assumed. Otherwise [2] may be a good introduction to GAs within this context. The ef-
fects of modified parameters controlling genetic algorithms will be explained in Sect. 4.

The first step is to develop an appropriate representation of the networks weights
within the genotype. Here, it has to be distinguished between the phenotype or prob-
lem space, in other words the weight distribution over the neural network, and the
representation space, the chromosomal structure of an individual within the GA, that
is called genotype. Each potential solution to the problem is one weight set. Its size
depends on the topology of the MLP. Each weight set has to be mapped onto the linear
structure of one particular chromosome within the representation space as shown in
Fig. 3.

w1,0

w3,0

Input

Hidden1

Hidden2

Output

x1 x2

y

w1,1
w1,2 w2,1

w2,2

w3,1
w3,2 w4,1

w4,2

w5,2w5,1
w5,0

w2,0

w4,0

w1,0
w1,1
w1,2
w2,0
w2,1
w2,2

w5,1
w5,2

w3,0

H
id
de
n1

O
ut
pu
t

N
od
e1

N
od
e2

N
od
e5

Figure 3: Mapping the weights of the neural network from phenotype or problem space
(left side) onto a chromosome (genotype; representation space) and vice versa. Since
the architecture of the ANN is predefined and remains fixed after the initialisation (see
introductory section for detailed explanation), the chromosome solely consists of the
weight values.

Being part of a population, each chromosome is subject to a sequence of genetic
operations. In order to evaluate the fitness of a chromosome, it must be re-mapped
into a weight set of the problem space, where just a recall of the ANN is performed.
The choice of an appropriate and reversible chromosomal representation is rather im-
portant, because all further genetic operations are based on these chromosomes. A

6 Machine Learning Reports

Combining Phenotypic and Genotypic Learning

comprehensive discussion can be found in [7], although it mainly focuses on the evo-
lutionary design of neural networks, and not their training. Since the network topology,
including the transfer function of the neurons, is assumed to be predefined and remains
fixed during the evolutionary network training process, it is not necessary to take any
architectural information into consideration. Thus a chromosome solely consists of the
network weights [24].

The initial population can be created now. This can be done by setting a given
number of chromosomes to random values (direct initialisation). Uniform or normal
distributions in a certain range are possible. If a more complex initialisation is required,
e.g. in the context of the networks layered structure, the original initialisation procedure
of the net must be run repeatedly until the desired number of the initial individuals
is reached (network initialisation). Then each weight set has to be mapped onto its
chromosomal representation.

Within the main loop (see Fig. 4) always the fitness of all members of the current
population is evaluated at the beginning. The fitness is in the simplest case the mean
error of all training examples during the network recall with one particular weight set
being re-mapped from the chromosome.

The overall stopping criterion is based on the following single measures:

• desired network error,

• max. number of iterations (generations), and

• convergence to a single solution without changes from the previous to the current
generation.

If one of these three criterions is met, the training is stopped and the fittest chromosome
is re-mapped into the problem space and considered to be the final weight set of the
satisfactorily trained ANN. Otherwise, a new generation has to be created. This task
corresponds to the internal loop shown in Fig. 4 (center).

A fitness normalization is performed to scale the single fitness values of all chro-
mosomes into a certain range. Another frequently applied algorithm, either combined
with fitness normalization or run separately, is ranking. All chromosomes of the cur-
rent population are ordered according to their fitness. These ranks are used by the
selection mechanism instead of the direct fitness values. Ranking is used to force a
constant selective pressure and ratio between the fittest and worst chromosome. Es-
pecially when several or even almost all fitness values are close together, either in the
first few iterations after initialisation or near convergence, the fittest chromosome has
always an equal lead on the second chromosome, and this again on the next, and so
on.

After normalization and/or ranking is finished, a selection operator is applied. An
intermediate population is created by selecting members from the current one. Sev-
eral methods have been implemented and tested. The simplest operator is uniform
selection, where, regardless of its particular fitness, each chromosome has an equal
chance to be selected. Other, more complex methods are based on the previously
computed fitness values. The most frequently applied operators are integral selection
and roulette wheel, where the probability to be selected is proportional to the fitness.
This obviously seems to be much more sensible. A mixture of the above mentioned
operators is the tournament selection, where at first a small number of chromosomes

Machine Learning Reports 7

Combining Phenotypic and Genotypic Learning

Create initial population

Evaluate fitness of each population member

Is the stopping criterion satisfied ?

Create members of the new population using reproduction

While (number of members in new population) < (population size) Do

Select two members randomly

Perform crossover with probability pc

Perform mutation with probability pm

Insert all members of intermediate population into new population

Stop
YesYes

NoNo

Figure 4: Simple flow chart of the standard genetic algorithm [2]. After the initialisation,
the main loop evaluates the fitness of all population members, checks the stopping
criterion, and creates a new population. The internal loop performs several genetic
operations to create an intermediate population.

are uniformly selected and then compete with each other based on their fitness values.
Finally, the winner of this tournament is selected. Standard elitism schemes should be
applied as well, which pass the fittest individual of the current population to the next
generation unmodified.

8 Machine Learning Reports

Combining Phenotypic and Genotypic Learning

3.2 ANN-specific crossover

Once the intermediate population is complete, a new generation is created by applying
several genetic operators to it. In standard implementations of evolutionary algorithms
these operators are mainly crossover and mutation. Since it is the only possible way to
exchange information between the individuals of a population and to pass information
to the next generation, crossover is the most important step within the whole genetic
algorithm. Thus, compared to all other described operators, crossover is probably the
most frequently investigated one (see [25] for one possible example in this context). In
the current implementation a standard algorithm has been selected as starting point: At
first two chromosomes are randomly selected from the previously created intermediate
population. Based on a predefined parameter, namely the crossover probability p(c),
it is decided whether these two chromosomes serve as parents and crossover takes
place at all. If so, m-point uniform or linear interpolation crossover is performed, where
typical values are m ∈ {1, 2, 3}.

cn
i() cn

j()

c i7
() c j

7
()

cn
i
−1
() cn

j
−1
()

c i6
() c j

6
()

c i5
() c j

5
()

c i4
() c j

4
()

c i3
() c j

3
()

c i2
() c j

2
()

c i1
() c j

1
() c ci j

1 12
3

() ()+

2
3

2 2c ci j() ()+

2
3

3 3c ci j() ()+

2
3
1 1c cn
i

n
j

− −+() ()

2
3

c cn
i

n
j() ()+

2
3

4 4c ci j() ()+

2
3

5 5c ci j() ()+

2
3

6 6c ci j() ()+

2
3

7 7c ci j() ()+

2
3

1 1c ci j() ()+

c ci j
2 22
3

() ()+

c ci j
3 32
3

() ()+

c ci j
4 42
3

() ()+

c ci j
5 52
3

() ()+

c ci j
6 62
3

() ()+

c ci j
7 72
3

() ()+

c cn
i

n
j

− −+1 12
3

() ()

c cn
i

n
j() ()+ 2

3

N
od
e1

N
od
e2

N
od
e5

Figure 5: Example of semantical or ANN-specific crossover along with linear interpo-
lation between parental genes. All potential crossover points are located according to
the underlying semantic structure of the neural network topology.

Commonly, crossover points may potentially be located between any two neigh-
bouring genes. In most cases, the actual crossover points are chosen randomly from
them. If the genes carry rather unstructured information and their order within the chro-

Machine Learning Reports 9

Combining Phenotypic and Genotypic Learning

mosome does not really matter, this procedure seems to be applicable. However, in
the present case each single gene represents one weight value of the neural network.
The suggested mapping, as shown in Fig. 3, ensures that the weights belonging to
the same neuron are located next to each other. Due to the dependence of a weight
on its neighbours within the same neuron, it is rather unlikely that the performance of
this neuron gets better and the overall network error is decreased, when only a few
weights of this particular neuron are changed. Keeping this in mind, it seems to be
advantageous to restrict potential crossover points to those locations separating entire
neurons (Fig. 5). This might be called semantical or ANN-specific crossover.

In contrast to the standard operator this kind of a network specific crossover keeps
the unity of weights belonging to the same neuron (see also [25]). Here, the approach
of combining phenotypic and genotypic learning offers another advantage. It consid-
ers the phenotypic network topology, and thus the distribution or arrangement of the
weights upon the networks’s layout, on the one hand and the genotypic coding of the
weights in the chromosome, as topological basis of all genetic operations, on the other,
as a self-contained unit. In other words, the genetic algorithm is aware of the pheno-
typic relation of all genes within the chromosomes. As the result section will show, this
generally leads to an improved performance of the learning process.

After crossover the mutation operator, depending on some predefined parameters
(e.g., mutation probability p(m)), is applied. It is the only operator which can introduce
new genetic information rather than just re-arranging it. Commonly a Gaussian dis-
tributed offset is added to each gene to be mutated. In [26] a mutation-based genetic
neural network (MGNN) is proposed to replace Backpropagation by using the mutation
strategy of local adaptation of evolutionary programming to effect the weight learning.

4 Results

4.1 A simple exclusive-or problem to demonstrate the basic prop-
erties

In order to have the results comparable to other studies and approaches, especially
to conventionally trained MLPs, some frequently applied benchmarks have been se-
lected to evaluate performance and properties of the evolutionarily trained ANN. One
of the most frequently used benchmark applications to test MLPs is the exclusive-or
(xor) problem and its extension to the continuous case. Furthermore, the system
has been applied to substitute some conventionally trained MLP networks solving real-
world problems in the field of classification tasks in image segmentation.

Generally it can be confirmed, that, as it would be expected, not all parameters of
the GA have the same significant effect. The influence of the most important param-
eters, as seen from the angle of the user, is briefly discussed now. In the course of
an extensive parameter variation some hundred networks were trained. Fig. 6 shows
the typical training progress of six neural networks trained with different GA parameter
sets. These results are alike to other studies dealing with similar tasks. Due to the high
complexity of the system, some similar results could be achieved using different pa-
rameter sets. Changing two or more parameters might lead to an increase or decrease
of a particular effect. Thus, the impact of a particular parameter could not be proved

10 Machine Learning Reports

Combining Phenotypic and Genotypic Learning

Table 1: Standard parameter set used for reference training (see also Fig. 6 for a graph
of the training progress) of xor with 2 inputs, 2 hidden neurons, and 1 output.

Parameter Value

Neural activation function tanh

Population size pop size = 50

Weight initialisation routine Gaussian; mean = 0.0; std = 5.0

Stopping criterion network error = 0.01; max iter = 500;

conv = 20; eps = 10−4

Fitness normalisation norm; rank

Selection operator roulette with elitism

Crossover p(c) = 0.8; two-point; uniform;

ANN-specific crossover points

Mutation p(m) = 0.1; mean = 0.0; std = 1.0

in every combination. Based on a multitude of experiments a standard parameter set
has been defined as reference (Tab. 1; Fig. 6, top left panel).

Both the average and minimal error is decreased in the progress of training. As
to be expected, the average error starts at about 0.5 and is always higher than the
minimal error. The fittest individual of the initial population has an error of 0.4. After 42
generations the error of the fittest chromosome falls below the desired threshold and
the training is stopped at an error of 0.0061.

The population size is one of the primary parameters. Depending on the size (num-
ber of weights) of the neural network and the problem (complexity, dimensionality) to be
solved by it, a range from 20 . . . 100 individuals is sufficient. A smaller population size
quickly leads to a steady state with identical chromosomes of an insufficient fitness
(Fig. 6, top center). The training is cancelled at 500 iterations at an error of 0.25. On the
other hand, a very large population entails not necessarily better results, but computa-
tion time and required resources increase. The danger of running into a steady state
can be diffused by a relatively high mutation probability. That way more new genetic
information is introduced to overcome this.

Besides general interaction of crossover rate and type concerning all genetic algo-
rithms, the question where to set potential crossover points is in the context of neural
network training of tremendous interest (see Sect. 3). For this reason ANN-specific
crossover as suggested in Sect. 3.2 has been applied. Depending on the number of
actual crossover points the probability to disrupt the weights belonging to the same
neuron decreases with an increasing total amount of neurons within the network. In
other words, especially in small neural networks the ANN-specific crossover is advanta-
geous. For all evaluated parameter combinations the ANN-specific crossover resulted
in a lead of 12% . . . 47%. Thus it can beneficially contribute to the performance in addi-
tion to well chosen control parameters for selection and mutation.

The influence of several selection operators is shown in Fig. 6 (bottom row). Com-
pared to the standard selection operator roulette wheel, the gap between minimal and
average error is smaller, if tournament selection is used. The error threshold is met

Machine Learning Reports 11

Combining Phenotypic and Genotypic Learning

100 200 300 400 500

0.2

0.4

0.2

0.4

20 40 60 80 100

0.2

0.4

10 20 30 40

10 20 30 40

0.2

0.4

0.2

0.4

50 100 150 200 150

0.2

0.4

10 20 30

Figure 6: Training progress by means of recall error, scaled to [0, 1], with the best weight
set (lower line) and the average recall error (upper line). Several parameter combina-
tions: Reference graph with standard parameters according to Tab. 1 (top left); popula-
tion size reduced to 10 (top center); mutation disabled (top right); tournament selection
(bottom left); uniform selection (bottom center); elitism disabled (bottom right). Note
the variable scaling of the x-axes, showing the number of generations.

slightly earlier. Since uniform selection is not based on the fitness values and thus
ranking is not applicable, the average error decreases hardly and the minimal error
decreases very slowly. The probability, that the fittest chromosome, saved by elitism,
finds another fit partner for reproduction is less.

If mutation is disabled (top right) minimal and average error meet each other quickly.
That means, all chromosomes are identical. Without mutation there was no way out.
In general, mutation should be considered in its close interaction between mutation
probability p(m) and mutation type (e.g., Gaussian). If the mutation values have a high
impact on the chromosomes, i.e. when adding Gaussian distributed values with a high
standard deviation, p(m) should be reduced.

4.2 Generalizing the results

Similar behaviour could be observed for both the continuous xor and a number of
real-world image classification (feature based image segmentation) tasks.

There is of course a rather strong correlation between the complexity of the problem
to be solved by the ANN, which directly manifests oneself in the length of the chromo-

12 Machine Learning Reports

Combining Phenotypic and Genotypic Learning

Table 2: Impact of maintaining phenotypic-genotypic-learning coherence (ANN-specific
crossover) on the performance of the network training. Using a standard parameter
set, derived from Tab. 1 and modified according to the network size, neural networks
of different size and complexity have been trained either with ANN-specific crossover
or without. The shown results are based on the number of generations that were
necessary to obtain a particular network error and on statistical 10-fold cross validation.

Network size Generations without Generations with

(input − hidden − output) ANN-specific crossover ANN-specific crossover

2− 2− 1 43± 8 30± 5

improved: 30%

4− 3− 3 62± 10 44± 9

improved: 29%

18− 12− 8− 4 121± 26 96± 16

improved: 21%

68− 40− 20 148± 32 116± 19

improved: 22%

68− 50− 30− 20 173± 41 142± 20

improved: 18%

192− 128− 64− 8 315± 102 291± 82

improved: 7.6%

192− 16− 8 764± 524 371± 117

improved: 51%

some, and the required training time, in terms of both the number of generations and
the computation time to run each single generation. The particular impact of a number
of control parameters on the training performance, as shown in the previous subsec-
tion, is more or less evident as well. Much more interesting is the influence of the
phenotypic-genotypic-learning coherence (ANN-specific crossover). This is shown in
Tab. 2.

The results in Tab. 2 clearly confirm the presumption that maintaining an ANN-
specific crossover is generally beneficial and that its impact is more visible in smaller
networks. Compared to randomly selected crossover points the number of generations
necessary to obtain a particular error value is always smaller and seems to asymptoti-
cally reach it as the network size increases.

The last network impressively shows the benefit for networks with very long weight
vectors. Here, there are just 16 neurons of the hidden layer each of them having a
weight vector of length 192. Obviously, this network needs much more learning cycles
than a larger one to obtain the same error threshold, but may serve as a very good
example to demonstrate the properties of ANN-specific crossover. Based on the mean
number of cycles there is a lead of about 50% compared to the randomly selected
crossover points.

Machine Learning Reports 13

Combining Phenotypic and Genotypic Learning

5 Conclusion

This paper demonstrates the advantages of combining phenotypic and genotypic learn-
ing by means of substituting Backpropagation by a genetic algorithm that is aware of
and observes the coded topology of the neural network when applying its crossover
operator. Crossover points are chosen along the chromosome according to the under-
lying structure of neural weights rather than randomly. This prevents the phenotypic
weight vector of any neuron to get disrupted by the recombination of the genotype.

This approach appeared to be most beneficial in smaller networks or in networks
with rather long weight vectors, where it is more likely that the weights belonging to
the same neuron could get disrupted by the genetic recombination operator. Since no
negative effects appeared and the additional cost of this approach is pretty small (the
topology information of the network is available anyway), it seems to be worth to be
considered as default way to design the recombination operator of genetic algorithms
in case of their application to neural network training.

Future work will focus on the extension of this approach to further supervised
trained neural networks that are likely to benefit from this as well.

References

[1] J. Holland, Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[2] A. van Rooij, L. Jain, and R. Johnson, Neural Network Training Using Genetic
Algorithms. Singapore: World Scientific, 1996.

[3] U. Seiffert, “Training of large-scale feed-forward neural networks,” in Proc. Int. Joint
Conf. on Neural Networks. IEEE Press, 2006, pp. 10 780–10 785.

[4] T. Czauderna and U. Seiffert, “Implementation of MLP networks running Back-
propagation on various parallel computer hardware using MPI,” in Proc. Int. Conf.
on Recent Advances in Soft Computing, 2004, pp. 116–121.

[5] R. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Maga-
zine, vol. 4, pp. 4–23, 1987.

[6] G. Miller, P. Todd, and S. Hegde, “Designing neural networks using genetic algo-
rithms,” in Proc. Int. Conf. on Genetic Algorithms, 1989, pp. 379–385.

[7] K. Balakrishnan and V. Honavar, “Properties of genetic representations of neural
architectures,” in Proc. World Conf. on Neural Networks, Washington, DC., USA,
1995, pp. 807–813.

[8] B. Sendhoff and M. Kreutz, “Evolutionary optimization of the structure of neural
networks by a recursive mapping as encoding,” in Proc. Int. Conf. on Artificial
Neural Nets and Genetic Algorithms, Norwich, U.K., 1998, pp. 368–372.

14 Machine Learning Reports

Combining Phenotypic and Genotypic Learning

[9] V. Bevilacqua, G. Mastronardi, F. Menolascina, P. Pannarale, and A. Pedone, “A
novel multi-objective genetic algorithm approach to artificial neural network topol-
ogy optimisation: The breast cancer classification problem,” in Proc. Int. Joint
Conf. on Neural Networks. IEEE Press, 2006, pp. 1958–1965.

[10] P. Robbins, A. Soper, and K. Rennolls, “Use of genetic algorithms for optimal
topology determination in back propagation neural networks,” in Proc. Int. Conf.
on Artificial Neural Nets and Genetic Algorithms, Innsbruck, Austria, 1993, pp.
726–730.

[11] P. Angeline, G. Saunders, and J. Pollack, “An evolutionary algorithm that con-
structs recurrent neural networks,” IEEE Trans. Neural Networks, vol. 5, no. 1, pp.
54–65, 1994.

[12] A. Hämäläinen, “Using genetic algorithms in Self-Organizing Map design,” in Proc.
Int. Conf. on Artificial Neural Networks and Genetic Algorithms, Ales, France,
1995, pp. 364–367.

[13] H. Kitano, “Neurogenetic learning: An integrated method of designing and training
neural networks using genetic algorithms,” Physica D, vol. 75, pp. 225–228, 1994.

[14] J. Branke, “Evolutionary algorithms for neural network design and training,” Uni-
versity of Karlsruhe, Institute AIFB, Tech. Rep. 322, 1995.

[15] F. Leung, H. Lam, S. Ling, and P. Tam, “Tuning of the structure and parameters
of a neural network using an improved genetic algorithm,” IEEE Trans. Neural
Networks, vol. 14, no. 1, pp. 79–88, 2003.

[16] J. Tsai, J. Chou, and T. Liu, “Tuning the structure and parameters of a neural
network by using hybrid Taguchi-genetic algorithm,” IEEE Trans. Neural Networks,
vol. 17, no. 1, pp. 69–80, 2006.

[17] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geome-
try. Cambridge, MA, USA: MIT Press, 1969.

[18] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain,” Psych. Rev., vol. 65, pp. 386–408, 1958.

[19] D. Parker, “Learning-logic,” MIT, Center for Computational Research in Economics
and Management Science, Tech. Rep. TR47, 1985.

[20] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal representations by
error propagation,” in Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, D. R. et al., Ed. Cambridge, MA, USA: MIT Press,
1986, pp. 318–362.

[21] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
Networks, vol. 12, pp. 145–151, 1999.

[22] Y. Shang and B. Wah, “Global optimization for neural network training,” Computer,
vol. 29, no. 3, pp. 45–54, 2003.

Machine Learning Reports 15

Combining Phenotypic and Genotypic Learning

[23] A. Torn and A. Zilinskas, Global Optimization. New York, NY, USA: Springer-
Verlag New York, Inc., 1989.

[24] U. Seiffert, “Multiple Layer Perceptron training using Genetic Algorithms,” in Proc.
European Sympos. on Artificial Neural Networks, 2001, pp. 159–164.

[25] N. Garcı́a-Pedrajas, D. Ortiz-Boyera, and C. Hervás-Martı́nez, “An alternative ap-
proach for neural network evolution with a genetic algorithm: Crossover by com-
binatorial optimization,” Neural Networks, vol. 19, no. 4, pp. 514–528, 2006.

[26] P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural network,”
IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 587–600, 2005.

16 Machine Learning Reports

MACHINE LEARNING REPORTS

Report 01/2008

Impressum
Machine Learning Reports ISSN: 1865-3960
5 Publisher/Editors

PD. Dr. rer. nat. Thomas Villmann & Dr. rer. nat. Frank-Michael Schleif
Medical Department, University of Leipzig
Semmelweisstrasse 10, D-04103 Leipzig, Germany •
http://www.uni-leipzig.de/̃compint

5 Copyright & Licence
Copyright of the articles remains to the authors. Requests regarding the content
of the articles should be addressed to the authors. All article are reviewed by at
least two researchers in the respective field.

5 Acknowledgments
We would like to thank the reviewers for their time and patience.

Machine Learning Reports,Research group on Computational Intelligence,
http://www.uni-leipzig.de/̃compint

	1 Introduction
	2 Motivation
	3 Implementation
	3.1 General Considerations
	3.2 ANN-specific crossover

	4 Results
	4.1 A simple exclusive-or problem to demonstrate the basic properties
	4.2 Generalizing the results

	5 Conclusion

