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Preview

Jacek Blazewicz∗, Klaus Ecker†, Barbara Hammer‡

The annual Polish-German workshop on Computational Biology, Scheduling, and
Machine Learning, ICOLE’2010, took place in Lessach, Austria, from 27.9. –
1.10.2010, gathering together twenty-two scientists who are actively involved in
the field from different universities including Poznan University, Clausthal Univer-
sity of Technology, University of Applied Sciences Mittweida, Ohio University, and
Bielefeld University. The workshop continued the tradition of scientific presenta-
tions, vivid discussions, and exchange of novel ideas at the cutting edge of research
connected to diverse topics in bioinformatics, scheduling, and machine learning,
covering fundamental theoretical aspects, applications, as well as strategic devel-
opments in the fields.

This volume contains sixteen extended abstracts accompanying the presentations
given at the workshop. The first eight papers deal with current problems in com-
putational biology: The contribution ‘A Computational Approach for Extracting
Common Signals in Sets of CIS-Regulatory Modules’ compares and extends search
strategies in DNA sequences for CIS-regulatory motifs, which constitutes an impor-
tant step to investigate and understand gene regulation, resulting in a promising
and sensitive new hybrid search technique. In the contribution ‘The exact algo-
rithm and complexity analysis for RNA Partial Degradation Problem’ RNA as
a fundamental player not only for protein synthesis but also gene expression is
investigated with respect to the crucial aspect of its degradation. An abstract
computational model is proposed and its biological relevance as well as its theo-
retical properties e.g. concerning its complexity are investigated. RNA structure
also plays a role in the article ‘Comparison of RNA structures in torsional angle
space’ where a new subtle and powerful local structure representation and structure
comparison technique for RNA structures is proposed and extensively evaluated
using benchmark databases. The next two contributions also address the problem
of structure prediction for proteins or RNA, respectively, as a fundamental step
to understand the respective function. The approach ‘Automated prediction of
3D structure of proteins based on descriptors approach’ proposes de novo protein
structure prediction techniques based on local structural descriptors. The article
‘RNAComposer and the art of composing RNA structures’ presents an advanced
∗Institute of Computing Science, Poznan University of Technology, Poznan, Poland
†Department of Computer Science, Clausthal University of Technology, Clausthal-Zellerfeld,

Germany
‡CITEC centre of excellence, Bielefeld University, Bielefeld, Germany
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tool which allows a reliable prediction of RNA structure using a hybrid de novo
and comparative approach. The next two contributions address the problem of ef-
ficiently assembling a DNA sequence from local structures in the presence of errors.
The problem being NP hard, efficient approximation techniques have to be devel-
oped, such as hyper heuristics, as investigated in the contribution ‘Hyper-heuristic
study for the SBH problem’. Further, computational acceleration should be used
as far as possible such as e.g parallelization on modern multi-core processors, as
investigated in the approach ‘Different approaches to parallel computing in the
DNA assembly problem.’. As the final contribution in the field of computational
biology, the article ‘Modeling HCV infection using multi-agent simulation’ investi-
gates techniques to reliably model high level biological processes, more specifically
viral infections are simulated by means of multi agent technology as compared to
differential equations.

A second block of papers centers around simulation and scheduling techniques.
Two contributions deal with an interesting project which presents a tool for traffic
simulation in cooperation with a major car manufacturer in Poznan. In the first
article, ‘Effective data representation in traffic simulation and visualization’ the
basic data structures are discussed, representing the roadways by means of an
elegant graphical model. In the second contribution, ‘Researching the influence of
changes in traffic organization on car factory production’, model simulations and
the possibilities to built strategic decisions of traffic routing based on simulation
results are discussed. The article ‘Survey of scheduling of coupled tasks with chains
and in-tree precedence constraints’ reviews the state of the art of an interesting
scheduling problem, the scheduling of coupled tasks. Depending on the nature of
the coupling, different complexity results can be derived.

A third block of papers centers around current developments connected to the field
of machine learning. The contribution ‘The Research Group Theoretical Computer
Science at CITEC’ gives an overview about typical machine learning problems and
applications. One challenging problem of modern data inspection consists in the
rapidly increasing size of data sets. This problem is particularly pronounced if data
are represented indirectly in terms of dissimilarity matrices since these matrices
scale quadratically with the number of data. The contributions ‘Patch Affinity
Propagation’ and ‘Relational generative topographic mapping for large data sets’
propose two different techniques to get around this problem and investigate their
suitability for two different unsupervised data inspection tools. Another challeng-
ing issue of modern data mining techniques relies in a reliable formal quantitative
evaluation of mostly unsupervised approaches. A few general evaluation measures
have been recently proposed in the context of data visualization, but their suit-
ability to evaluate related tasks such as clustering has not been addressed so far.
The paper ‘Quality Assessment Measures for Dimensionality Reduction Applied on
Clustering’ presents first steps to investigate this problem. Finally, the contribu-
tion ‘Functional Relevance Learning in Generalized Learning Vector Quantization’
presents an interesting approach how modern data analysis techniques can benefit
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from the incorporation of auxiliary structural information, in this case a functional
nature of the given data.

Altogether, these contributions demonstrate the lively and fruitful scientific atmo-
sphere caused by the interesting scientific range of the workshop, its international
participants, and, last not least, the excellent possibilities offered by Daublebsky’s
wonderful house in Lessach and its surroundings.
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A Computational Approach for Extracting 
Common Signals in Sets of Cis-Regulatory 

Modules 
K. Ecker 

Ohio University, Athens, Ohio 
University of Technology, Clausthal, Germany 

 

Abstract. In recent years it became apparent that gene regulation is a key issue for understanding the 
development and functioning of organisms. In a widely accepted regulatory mechanism, transcription factors 
are able to bind on special places of short length, mostly found up-stream in non-coding areas, thus mediating 
the gene expression apparatus. One purpose of this article is to analyze pros and cons of particular search 
strategies for cis-regulatory modules. From this we can learn to what extent the specificity of a search 
strategy influences the possible outcomes. Each known search method has its inherent limitation and covers 
specific search aspects. Tools based on different search strategies may nevertheless propose similar modules, 
which could then be interpreted as a stronger evidence of a practically relevant result. We consequently 
propose a “consolidation” strategy that analyzes the outputs for common signals with the objective selecting 
more reliable results than is possible by the individual tools. 

1. Introduction 
In recent years it became apparent that gene regulation is a key issue for understanding the 
development and functioning of organisms. In a widely accepted regulatory mechanism, trans-
cription factors are able to bind on transcription factor binding sites (TFBS or motifs, i.e., on 
special places of short length, mostly found up-stream in non-coding areas), thus mediating the 
gene expression apparatus [1].  

In the attempt to reveal regulation mechanisms, earlier research focused on detecting and 
identifying binding sites in non-coding areas situated closely to the genes, where it is conjectured 
that most of the information responsible for gene regulation is located. The basic idea behind is that 
functional regulatory elements should have been highly conserved during evolution. Also, genes 
that are expressed or suppressed in similar situations may have similar regulatory mechanisms. 
From Davidson’s book on gene regulatory networks [2] and other sources we learn that it is 
expected that there exist about 10 times more transcription factor binding sites than genes. 
Numerous tools for discovering TFBSs have been developed during the last 20 years [3].  

Particularly in higher organisms it is known that sets of binding sites often bind multiple 
transcription factors [4], mediating gene regulation by enhancing or silencing. These multiple 
TFBSs are called transcription factor binding modules, or cis-regulatory modules. In fact, only few 
modules are experimentally assured so far, and it must be assumed that many more are waiting to 
be discovered. Experiments for elucidating regulatory structures are costly and time consuming; 
hence discovering putative modules with the aid of computers is an important step to alleviate the 
work of the biologist.  

The purpose of this article is to analyze pros and cons of particular search strategies for cis-
regulatory modules. Each known search method has its inherent limitation and covers specific 
search aspects. We consequently propose a “consolidation” strategy that combines the tools in a 
way that commonly found structures are preferred and deficiencies of the component tools are 
cancelled out, and thus allow for more reliable results than by the individual tools.  

Chapter 2 gives an overview on existing algorithmic approaches for module discovery. In 
Chapter 3 we propose a novel concept of combining different module discovery tools into a single 
consolidation tool. Chapter 4 refers to a case study with an application to a benchmark data set that 
indeed shows a higher success rate than with the single component tools.   
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2. Coarse Classification of Module Discovery Strategies 
With the objective of understanding the gene regulation network, it is essential to separate cis-
regulatory modules from the background data of the gene sequences. Unfortunately, because of the 
limited manpower, material, and financial resources, it is almost impossible to solve this problem 
solely by biological experiments. On the other hand, with the help of computational search methods 
putative modules can be provided with – hopefully – a high degree of trustworthiness, which can 
then be tested in biological experiments. Thus, for reducing cost and time it is important to develop 
computational methods that reliably allow detection and prediction of cis-regulatory modules.  

A number of computational tools are already available. Some tools do not care about a detailed 
“fine structure” of the regulatory elements. Other tools try to elucidate the binding sites composing 
a regulatory module. In our understanding, a detailed view of modules is much better suited to 
reflect the basic structure underlying a regulatory network. Accordingly we define a module M in a 
non-coding sequence S as a list of words (or sites) from S, M = ((p1 , l1 ),…, (pk , lk )), where p1 , …, 
pk are the – increasingly ordered – start positions of the module words, and l1 , …, lk are the 
respective word lengths. The set of words defined in M is denoted by W(M). 

The search strategies behind the computational tools can be coarsely classified as follows. 

Type (a): The perhaps oldest and most straight forward computational method starts from known 
TFBSs, chosen from a public TFBS data base such as TRANSFAC [8] or AGRIS [9]. These 
methods implement a search for clusters of motifs which may then be considered as cis-regulatory 
modules [10, 11 – 24, 27]. Unfortunately nobody knows how complete TFBS data bases are, and it 
has hence to be expected that many important modules will be missed.  

Tybe (b): Alternatively one can start with putative motifs found by computational motif search 
tools. Many such tools are based on stochastic analyses. Words occurring with unexpectedly high 
or low frequencies are often involved in biologically functions, and accordingly module tools 
typically perform a search guided by probabilistic criteria such as log likelihood ratio, information 
content, z-score, or frequencies or probabilities of potential binding sites [6, 21, 26 – 31]. However, 
the quality of the results not only depends on the module search strategy, but also on the quality of 
the motif discovery tool. As it is known that motif discovery tools have an average success rate 
between 40 and 60 % [3], the chance of identifying a real module decreases with higher numbers of 
motifs in the module. For example, if the chance of a true positive motif is 50% , the chance that a 
module with four such words is true positive is 0.54, or ≈ 6.3% .  

Type (c): A completely different approach is motivated by the hypothesis that the same or similar 
word combinations appearing at different places of the non-coding genome may have regulatory 
function. Such tools consequently perform a comparative search for common module structures in 
promoter sequences, without assessing known motif data bases or applying motif discovery tools 
[5, 6, 10, 31, 33, 34]. For example, if the same cluster of words is found in two or more places, 
with similar word order, they may be considered as rather unusual and are consequently assumed to 
be associated with regulatory functionality 

Comparing the above methods, we see that each method has its obvious practical justification but 
also shows certain drawbacks. For instance, type (a) method may miss modules containing words 
not listed in a motif data base. Similarly, type (b) tools will miss modules containing words not 
identified by the applied motif discovery tool. For example, a module tool using frequency-based 
word selection will work poorly for modules containing words that are neither under- nor over-
represented. Another concern arises in situations where a gene has more than one cis-regulatory 
module, with possibly interleaved word sequences. Though a module can be regarded as a cluster 
of motif words, the converse is not necessarily true. Methods searching for motif clusters have 
therefore to be regarded with care because the cluster words may belong to different modules. 
Modules obtained by comparative methods of type (c) may be more credible because, by definition, 
they occur at different places of a promoter or in different promoters. On the other hand, modules 
occurring only once cannot be detected by these methods. 
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3. Consolidation Strategy 
As each search method has its own practical justification and shows advantages and drawbacks, it 
may be a good idea comparing the results of different tools and, if possible, bringing at least parts 
of them to an agreement. The motivation for a consolidation tool combining the advantages of 
different tools is therefore driven by the expectation of identifying a higher percentage of new, yet 
unknown, modules as is possible by the individual tools. This leads to the question of how to 
combine the results of the component tools. The problem hereby is, as can also be seen from 
Klepper’s assessment [7] and from our own experiments of the kind mentioned later in Chapter 4, 
that the modules found by different tools often have little in common.  

Suppose there are given two or more tools for discovering cis-regulatory modules, T1 , T2, … 
Tk0

 , each implementing another search strategy. Let {S1, …, Sn} be a set of promoter sequences 

expected to have some module in common. Each tool Ti , when applied to sequence Sj with 
particularly chosen search parameters, produces some set of putative modules Ri(Sj) . In order to 
reveal putative cis-regulatory modules we analyze the overlaps and differences of the outputs 
R1(Sj), …, Rk0

(Sj) of the respective tools. When comparing the modules, say M1 and M2 , we may 

encounter different situations such as completely different modules with no common word, or some 
words may overlap, or one module may be contained in the other module, or may even have 
exactly the same words in the same order. The question is how to treat such different possibilities. 
Accepting all presented modules for output would not make sense if the objective is to create a 
better tool. The other extreme, accepting only modules that are commonly found by all tools, will 
possibly lead to no new results at all. The reality should be somewhere between these extremes.  

As supposedly already high quality modules are to be compared, we want to credit situations 
where modules, showing some degree of similarity, are identified by two or more tools or occur in 
different non-coding places. In the proposed consolidation approach we take into account the 
number of pair-wise word matches in the sets W(M1) and W(M2). The simplest solution would be 
by saying “count the common words in the modules M1 and M2.” As it turns out, this definition is 
not well defined because there may be, for example, a word in M1 that has more than one match in 
M2 . How many words do they then have in common? The possibility that binding sites are similar 
but not necessarily identical complicates the situation.  

In the following, let M1 and M2 be modules chosen from the set ∪
i = 1

k0
 ∪
j = 1

n
 Ri(Sj) of all modules. For 

convenience reason we use two different ways for capturing the similarity of words v ∈ W(M1) and 

w ∈ W(M2). The first uses the Hamming or edit distance d(v, w). Words v, w are regarded similar if  

d(v, w) ≤ dmax , a given upper bound for word distance. To measure the degree of concordance of 

M1 and M2 we define the set of pairs of similar words in W(M1) × W(M2) by 

M1 ∧∧∧∧ν M2 := { (v, w) ∈ W(M1) × W(M2) | d(v, w) ≤ dmax } ,  

The projection pr1(M1 ∧∧∧∧ν M2) onto the first component contains all words of M1 for which a similar 

word in M2 exists. pr2(M1 ∧∧∧∧ν M2) is defined analogously for M2 . For later purposes we introduce 
the abbreviations  

ν1(M1, M2) = pr1(M1 ∧∧∧∧ν M2)   and   ν2(M1, M2) = pr2(M1 ∧∧∧∧ν M2) . 

Notice that the cardinalities of ν1(M1, M2) and ν2(M1, M2) can be different as a word in M1 can 
have two or more matching words in M2 .  M1 (respectively M2) is considered admissible for output 

if the cardinality ν1 (respectively ν2) is not smaller than a given bound νmin . 
The second defines the degree of overlap of words v and w of respective lengths l(v) and l(w) as 

ω(v,w)/l(v) and ω(v,w)/l(w) , where ω(v,w) is the number of overlapping characters, and introduce  
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OVL(M1| M2) = { v ∈ W(M1) | ∃ w ∈ W(M2) , ω(v,w)/l(v) ≥ ωmin } , 

and, symmetrically,  

OVL(M2| M1) = { w ∈ W(M2) | ∃ v ∈ W(M1) , ω(v,w)/l(w) ≥ ωmin }  

for the number of words in one set having an overlapping word in the other set. The consolidation 
method declares module M1 [resp. M2] admissible for output if OVL(M1| M2) [resp. OVL(M2| M1)] 

has at least πmin elements, which is a given lower bound (an analogous definition is used for M2).  

In the following, we distinguish three scenarios with remarkable coincidences.  

Case (a): Two different tools find modules M1 and M2 in a sequence S. Let M1 and M2 be 

modules chosen from the set ∪
i = 1

k0
 Ri(S) . In general, tools based on different search methods will find 

different modules. Therefore, modules with strong similarity may already give strong evidence of 
biological function. For admitting modules for output we have two criteria at hand: one uses 
similarity and the other overlap of binding sites. The number of similar words criterion is motivated 
by the observation that modules with many similar word pairs are rather unusual. Therefore, M1 

and M2 are admitted for output if |ν1(M1, M2)| ≥ νmin
(a)  and |ν2(M1, M2)| ≥ νmin

(a)  , where νmin
(a)  is some 

given lower bound. A sufficiently large number of overlapping words can also be considered as 
unusual, and correspondingly M1 [resp. M2] is as well admitted for output if  |OVL(M1| M2)| ≥ πmin

(a) 

[resp. and |OVL(M2| M1)| ≥ πmin
(a) ] , where πmin

(a) is a given lower bound.  

Case (b): A tool finds modules with similar words in different sequences. Let M1 and M2 be 

chosen from the set  ∪
j = 1

n
 Ri(Sj) of modules found by tool Ti . After counting the number of similar 

words, M1 and M2 are admitted for output if |ν1(M1, M2)| ≥ νmin
(b)  and |ν2(M1, M2)| ≥ νmin

(b)  . The lower 

bound νmin
(b)  can be chosen differently from that in case (a). As in case (a), the acceptance criterion 

may also use word overlaps, but with an independently chosen lower bound πmin
(b) .  

Case (c): Different tools find modules with similar words in different sequences. Finally, let 

M1 and M2 be modules chosen from the total module set, ∪
i = 1

k0
 ∪
j = 1

n
 Ri(Sj) . As in case (b) we can use 

the similar words criterion or the criterion for accepting modules for output. For flexibility reason, 
lower bounds νmin

(c)   and  πmin
(c)  are chosen independently of the previous bounds.  

The bounds for maximum word distance and minimum word overlap influence the choice of 
module candidates admitted for output. With large word distance or small word overlap pairs of 
admitted modules can have very different appearance. On the other hand, a required high degree of 
modules similarity implies a low upper bound for the word distance and a large overlap ratio. 
Regarding the sizes of the word sets ν1(M1, M2) and ν2(M1, M2) we can say that the larger they are, 
the higher the chance that their words belong to a cis-regulatory module. The same can be said for 
the word sets OVL(M1| M2) and OVL(M1| M2). The corresponding lower bounds of νmin

(a)  , πmin
(a) , νmin

(b)  , 

πmin
(b) , νmin

(c)  , and πmin
(c)  hence define important criteria for the module selection.  

4.  Experience 
In a first experimental study we considered three module discovery tools, Hierarchical 
Agglomerative Clustering (HAC), Enumeration Module Discovery (EMD), and CRMODULES 

(CRM), all developed at the Ohio University [5, 27]. The first two are of search types (a) and (b) 
and either use TFBS files of known motifs or apply the regulatory genomic analysis package 
WordSeeker [35]. The third tool performs comparative search of type (c) and is hence apt of any 
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motif discovery strategy. The tools were applied to the liver benchmark data set [36] which were 
also used by Klepper et al. in their tool assessment [7]. These data contain a list of experimentally 
verified cis-regulatory modules. For the selection conditions, the distance and overlap bounds are  
dmax = 0 and ωmin = 1, and a module is accepted if either the same tool finds another module with at 

least three common words, i.e., νmin
(b)  = 3 and πmin

(b) = 3, or if two different tools find modules with at 

least two common words, i.e., νmin
(a)  = 2 and πmin

(a) = 2, νmin
(c)  = 2, and πmin

(c)  = 2. 
Naturally, a tool being able to identify a larger number of known modules will be given higher 

confidence in its ability of identifying real, yet not experimentally confirmed, modules. In [37] the 
success rate of a tool is measured as the average ratio of correctly predicted and experimentally 
verified modules. For the liver data, the success rates of EMD, HAC, and CRM are shown in Table 
1. For more details we refer to our new consolidation paper [38, in preparation]. 

Table 1: Success rates of CRM, EMD, HAC, and Consolidation Approach 

Tool CRM EMD HAC Consolidation Approach 

Success rate 0.67 0.47 0.45 0.86 
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In the last few years there has been observed the increasing interest in the ribonu-
cleic acids research according to the discovery of the role that RNA molecules play in
the biological systems. They do not only take part in the protein synthesis or serve as
adaptors translating information encoded in nucleotide sequences but also influence
and are involved in gene expression. It was demonstrated that most of them are pro-
duced from the larger molecules due to enzyme digestion or spontaneous degradation
and play an essential role in the cellular processes. The involvement of RNA in many
complex processes requires the existence of highly effective systems controlling its ac-
cumulation. In this context, it appears that the mechanisms of degradation are one of
the most important factors influencing RNA activity. In this work, we would like to
present our recent results concerning the spontaneous degradation of RNA molecules.
We report our first attempt to describe this process using the bioinformatics methods.
In our model studies we used the model RNA molecules designed in such a way that
they should be very unstable, according to the rules developed by Kierzek and co-
workers. On the basis of the results of their degradation we should be able to identify
the regions of RNA molecules which are weak and the most susceptible to the cleav-
age. The undertaken biochemical and bioinformatics analyses confirmed the predicted
and expected pattern of RNA degradation. Based on the obtained data, we would
like also to propose a formulation of a new problem, called RNA Partial Degradation
Problem (RNA PDP) and the exact algorithm based on the branch-and-cut idea,
capable of reconstructing RNA molecule using results of biochemical analysis of its
degradation. We present also laboratory and computational tests results in a case of
real and randomly generated data. We also give the strong NP-completeness proof of
the decision version of the RNA PDP problem which is equivalent to a non-existence
of a polynomial-time exact algorithm for the analyzed problem in question.
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1 Introduction

Structure comparison is a very important issue in many fields of bioscience. A
well-known fact is that structural similarity often means functional resemblance.
This means that comparing molecules structurally provides us with crucial in-
formation about their behaviour. Another fact is that well established measures
are useful in the field of molecule structure prediction, where a need for a li-
brary of homologues arises. Therefore, it is essential to investigate and seek for
measures, hopefully addressing needs specified above.

Structural similarity measures can be global or local. The first methodology
aims to answer to what degree are two or more molecules similar. The second
one provides methods and algorithms useful in all the situations where more de-
tailed similarity information is needed. In local similarity the important factors
are the fragments interesting from researcher’s point of view. This may mean
fragments of highest similarity, but also those with lowest resemblence. At best,
a researcher is provided with a map of similarity regions for the whole structure.

In our previous work [1] we focused on global similarity measure MCQ based
on trigonometric representation. The measure was found to be both reliable
and fast. Thus it is a good alternative to well known global RMSD. Recently
we focused on possible use of trigonometric representation in local similarity
measures. The paper is a presentation of results we obtained in this research.

2 Methods

There are several possible representations of 3D structures. The basic one is
algebraic representation, with Cartesian coordinates given for every atom in the
structure. It is the most common one and widely used in the databases of molec-
ular structures. However it has its limitations, among which are: dependence
on structure’s spatial features and large memory consumption. In consequence,
all algorithms basing on algebraic representation are limited according to the

1Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-695
Poznan, Poland

2E-Mail: tzok@cs.put.poznan.pl
3Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
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mentioned disadvantages. It is thus important to analyse equivalent, alternative
representations.

A dihedral or torsional angle is an angle between two planes. These are
defined by three successive chemical bonds – i.e. a chain of four atoms. In RNA
there are several dihedral angles with high importance for biochemistry. Their
values represent folding of structure backbone, each ribose ring and organic base
binding. A set of torsion angles calculated for each residue of RNA is called its
trigonometric representation.

In [1] we proposed an MCQ measure based on trigonometric representation
of RNA. In this measure each residue was described by eight torsion angles:
α, β, γ, δ, ε, ζ, χ, P . To calculate MCQ similarity between structures Q and R
with K residues, the following algorithm was used:

1. for ] in {α, β, γ, δ, ε, ζ, χ, P} do:

2. for i := 1 to K do:

3. ∆ := Q(]i)−R(]i)

4. x := x+ cos4

5. y := y + sin4

6. x := x
8K

7. y := y
8K

8. MCQ = arctan
(

ȳ
x̄

)

In the above formulation, the third step needs additional clarifications. The
angles are circular values, so the difference between them is defined differently
then between real, integer or natural numbers. Before executing fourth and fifth
steps of the algorithm, it is needed to normalise the difference ∆.

Another problem arises for missing values. It may happen that one structure
was acquired incorrectly and some of its atoms’ coordinates are not present in
the dataset. In consequence some of dihedrals cannot be calculated and the
difference between angles in the third step of the algorithm is undefined. In
such situations, the difference ∆ obtains one of the predefined values:

• π – as a penalty if one structure does not have angle information while
the other has got it,

• 0 – as a reward if both structures do not have angle information.

MCQ was found to be good global similarity measure. Thus we decided to
encompass its good features in a new measure of local similarity.

We based our research on trigonometric representation as well. Our goal was
to provide information about local similarity in the context of each individual
residue in two corresponding structures. Contrary to global measures, a process
of comparing two structures locally needs to be interactive. These methods and
algorithms provide large amounts of data and user input is required to correctly
visualise the result. What we wanted to achieve was a map of similarity re-
gions. Using trigonometric representation, we were able to provide such regions
mapping for each of eight dihedral angle types and for local-MCQ. The latter
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Figure 1: Differences of β dihedral angle for each residue in structures 1EHZ
and 1EVV.

is a mean value of eight torsion angles defining a single residue. Thus, for two
structures we obtained nine plots for values: α, β, γ, δ, ε, ζ, χ, P,MCQ. Each
plot represents a difference in value of current dihedral angle for every residue.
The closer the curve is to x-axis, the more similar are corresponding residues.
It is thus a visual and qualitative evaluation of similarity. The plots provide
information about:

• the most similiar residues,

• the least similiar residues,

• arguable residues for which there is no clear answer to the question of
their resemblence.

In figure 1 we can see a plot for β dihedral angle for each residue in two
example structures 1EHZ and 1EVV. Visually it is easy to distiniguish between
residues with small difference (very similar) and big difference (very dissimilar).
To the latter we can for sure include the beginning and ending residues, which
are often dynamic and flexible fragments of RNA structures. However the high-
est peak on the plot corresponds to the region containing 16-18 residues, what
clearly shows, that this is a very dissimilar fragment of the structures under
consideration. Analogously to that, we can find that there is a long fragment of
residues 45-61 which is very similar. Thanks to our local measure, we can easily
point out candidates for deeper analysis.
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Figure 2: Differences of P dihedral angle for each residue in structures 1EHZ
and 1EVV.
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The plot for P angle (fig. 2) is more steady meaning that values for the
neighbouring residues do not differ as much as for β. P is representing ribose
ring folding and so it is less exposed to rapid changes. However this plot confirms
our previous findings concerning 45-61 residues similarity and 16-18 residues
dissimilarity. Even more, despite steadiness of the curve, the difference for the
latter is bigger and completely outstanding in scope of whole plot. This reveals
that listed residues are totally different and unaligned. Such conclusions can be
drawn only by collation of results from multiple plots.

3 Conclusions

Mean of circular quantities can be applied to all dihedral angles in a structure
or iteratively to a subset of them. This means that trigonometric representation
is useful in both global and local structure comparison. Our experiments were
successful and we created a visualisation tool for the new measure. It allows to
plot maps of similarity regions for specified torsional angles which are interac-
tive and helps to determine structure similarity in global as well as point out
locations and fragments of low or high resemblance.
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1 Introduction

Understanding details of machinery of human organism has been a great chal-
lenge for humanity. Proteins are the machinery of life as they are involved in all
important processes which occur in an organism. In the last decade the number
of identified protein sequences gathered in databases increased tremendously
but only for the fraction of them the three dimensional structure is known.
Determination of a native folded structure of a particular protein is a key
to understand its function. Such a determination is difficult and requires time
and money consuming experiments such as crystallography or NMR techniques.
Hence, prediction of the secrets of protein structure nature using efficient com-
puter aided modeling techniques is of great interest because progress in that
area can generate profits in medicine, chemistry.
Nowadays, homology modeling approaches are the most powerful protein struc-
ture prediction methods. One can assume that two proteins, with sufficient
amino acid sequence similarity between them and similar function, can be usu-
ally considered as homologous. First for a given amino-acid sequence of the
unknown protein called target one has to find homologous protein (or usu-
ally its part) called template. Next additional information about secondary
structure of proteins are applied to improve alignments between target and
template in order to obtain better prediction model. However, for new protein
folds homologous can not be found in DB. In such case the approaches based
on simulation of basic protein driving forces should be applied, in order to solve
fold recognition problem, which are called ”ab initio” or ”de novo methods”.
The native conformation of the protein is the one with significantly lower free
energy than others, thus the protein folding process can be defined as the prob-
lem of energy function minimization. The energy function usually takes into
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account hydrophobicity, electrostatic potential, non-bonding energy potentials
(e.g. Lennard-Jones) and others. Due to the computational complexity of the
problem, a protein structure is usually presented in a simplified manner and
placed in a simplified space.

1.1 Local descriptors of proteins

The Structural Classification of Proteins (SCOP) (Murzin et al. 1995) database
is a largely manual classification of protein structural domains based on sim-
ilarities of their amino acid sequences and three-dimensional structures. It
provides a comprehensive ordering of all proteins of known structure according
to their evolutionary and structural relationships. The spatial structures of do-
mains from SCOP are stored in ASTRAL database (Chandonia et al. 2004). A
protein local substructure (descriptor) is a set of several short non-overlapping
fragments of the polypeptide chain. Each substructure describes local environ-
ment of a particular residue and includes only those segments of the main chain
that are located in the proximity of that residue (Kryshtafovych et al. 2003).
A detailed description of descriptor construction can be found in (Hvidsten
et al. 2003) and finally reorganizing these groups with respect to redundancy,
we have created a library of popular geometrical substructures of proteins which
is called ”descriptors library”.

Figure 1: An example of a descriptor group: (a) The first 10 sequence frag-
ment sets (i.e. descriptors) with sufficiently similar structure to the descriptor
1qgoa #8 (descriptor name syntax: protein domain #central amino acid). The
group actually contains 233 descriptors. (b) A ribbon representation of descrip-
tor 1qgoa #8 showing its secondary structure. (c) The structure of the whole
group (i.e. structure of all descriptors in the group).(Kryshtafovych et al. 2003)

A decision on the similarity of descriptors is made by comparing the follow-
ing parameters: number and length of segments, shape of individual segments,
number of geometrically similar segments and the overall fit quality in terms
of the RMSD score of their superposition (Hvidsten et al. 2003). The library
provides a set of building blocks for protein structures that are common to
proteins independent of their global fold.
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2 Problem Formulation

Protein tertiary structure prediction, including determination of protein folding
pathways, is currently one of the most complex computational problem in the
field of protein analysis which remains unsolved. In general the protein folding
is a process of a building of a spatial structure from a linear structure of the
polypeptide chain. Main aim of our research is to design and implement the
automatic ab initio approach which can be used to protein tertiary structure
prediction based on only unknown target sequence with using descriptors li-
brary. Using this information we can assign specific geometrical conformations
to the target protein and, in principle, assemble the protein structure from the
local substructures in descriptors library.

3 Method

In this paper, we present the automatic, computational methodology that can
be used to protein tertiary structure prediction based on only unknown target
sequence. In general the presented approach consists of three main phases:

• descriptor assignments based on target sequence,

• quality control of descriptor assignments,

• design of 3D structure based on descriptor assignments and global struc-
tural verification.

Research initialization: Local descriptors library includes descriptors rep-
resentation based on residue serial number ranges and corresponding sequence
of segments without the particular atoms coordinates. For each descriptor an
identification tag which reflects information about the domain of its belonging,
is assigned according to the ASTRAL nomenclature, as well as the number of
the central residue (e.g. 1e43a2#231 is the descriptor from protein 1e43, chain
a, domain 2 with origin at residue number 231). Designed database needed for
our approach is a composition of the ASTRAL database in version 1.75 and
the actual version of local descriptors library extended by additional entities
which are used during machine learning discrimator designing.
Descriptors assignments: The main goal is to find the descriptors assign-
ments to the unknown, target sequence defined as input. One can distinguished
following solution components:

• sequence profiles generation based on the target sequence,

• sequence profiles or hidden markov models generation based on the aligned
sequences of descriptors forming each descriptor group,

• descriptor group – target sequence assignments making,

• descriptor assignments confidence/probability evaluation.

For sequence similarity based assignment techniques one used FragHMMent
(Bjrkholm et al. 2009) approach. As a result a confidence ranked list of de-
scriptor to target sequence assignments was obtained. In order to minimize the
complexity of profiles generation processing for groups with many descriptors
included the most representative geometries within a group was defined.
Descriptors assignments filtering: During research following test sets were
defined:
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1. Native structures of descriptors.

2. Reconstruction of descriptors themselves. Strip a descriptor of its sidechains,
reassign the same sidechains and compute the scoring function result.
This should produce correct rotameric states.

3. Reconstruction of descriptor sidechains using backbones from other de-
scriptors in the same group. Success in doing this could be reported as
a function of the RMSD difference between the descriptor being recon-
structed and the descriptor backbone being used.

4. Takes two descriptors from different descriptor groups. Verify that struc-
tures do not match (select according to high RMSD value of backbones
superposition). Swap seqeunces between descriptors. Reconstruct the
descriptor and compute the scoring function result.

5. Generate random strings of sequence from real proteins. Swap for desrip-
tor sequences. Reconstruct the descriptor and compute the scoring func-
tion result.

6. Generate altogether random sequences from the amino-acids alphabet.
Swap for descriptor sequences. Reconstruct the descriptor and compute
the scoring function result.

In the test sets 1–3 descriptor reconstruction should produce a favorable
scoring function result. In the test sets 4–6 descriptor reconstruction should
produce an unfavorable scoring function result.

Additionally the side-chain refinement method was proposed with using
Monte Carlo simulation (Metropolis algorithm (Metropolis et al. 1953)) in the
dihedral angles space of particular descriptor rotameric configuration. We con-
sidered as energy function Lennard-Jones (LJ) (Brooks et al. 1983) potential
which is also used in SCWRL (Canutescu et al. 2003) software.
Molecular mechanics (LJ, Coulomb’s law), statistical knowledge-based (DFIRE)
(Hongyi & Yaoqi 2002) potentials were used in order to rate and classify the
results of test sets in two general classes (positive, negative examples). To
improve the quality of classification a novel potential was proposed, called
congruency score, which describes the atoms density (packing degree) of all
superimposed descriptors in the particular group. The most important task
was development of a machine learning discriminator which can be used to
structural classification of descriptor assignments from corresponding pair of
test sets (positive–negative examples). The cost function is induced based on
results of classification experiment with using support vector machine classifier.

Final structure assembling & global structural verification: The
final structure model of the unknown protein should be build with using struc-
ture consistency between descriptor to target sequence assignments stored on
the confidence ranked list obtained from previous phase. The proposed solution
consists of following steps:

• hierarchical construction method of putative extended local structures
based on assignment confidences and overlaps with the starting descriptor
assignment,

• structure extension approach based on the degree of segment overlap,
backbone consistency between segments, and possibly rotameric consis-
tency in the overlapping region of structure,
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• consensus method to compare and choose the best extended structure
from many structures obtained from multiple start points in the current
level of assembling.

In other words the iterative local structure extension method should be de-
signed which will proceed hierarchically starting with the strongest assignment.
The overlap quality measure computed between the descriptor assignments may
be based both on sequence and structure based features. It is necessary to de-
vise assembly algorithms that cope with low quality assignments, including (a)
elimination of erroneously assigned segments, (b) generation consensus align-
ments, (c) alignments based on contact consensus, and (d) Molecular Dynamics
refinements with constraints that are generated with consensus alignments. Fi-
nally the Modeller can be used to extend the core model with loops. As a result
the final protein structure will be obtained in PDB format.

4 Implementation and Tests

Data: We used the ASTRAL (version: ASTRAL SCOP 1.75) database with
less than 40% sequence identity to each other have for generating descriptors
and fold-oriented groups. Groups with fewer than ten descriptors or fewer than
three segments were not used. The descriptors obtained from library which spa-
tial coordinates based on ASTRAL SCOP 1.75 are subsequently referred to as
the training set.
Test sets: To train the machine learning discriminator, we tested it on a set
of descriptors assignments represented in the group (positive test) and a set of
randomly drawn descriptors assignments not in the group (negative test) We
also required that the negative test only included descriptors assignments from
other folds than the fold associated with the group. Although the main rule
was to have the same number of proteins in both sets, too few negative test pro-
teins might result in signals that work well for these descriptors assignments,
but do not generalize to unseen cases (is often referred to as overfitting).
Experiment & results performance: Experiment was conducted accord-
ing to ten-fold cross validation approach and with using the WEKA machine
learning software. We compute following statistical measures to evaluate the
performance of machine learning approach.

• accuracy is the percentage of descriptor assignments obtained from possi-
tive and negative test set class that are classified properly to all analysed
cases,

• sensitivity is the percentage of descriptor assignements from positive test
set class according to all descriptor assignments classified as correct,

• specificity is the percentage of descriptor assignements from negative test
set class according to all descriptor assignments classified as incorrect.

The example of side-chain refinement simulation results based on 9 descrip-
tors, are presented in table 1.

The partial results, describing the quality of machine learning classification
for corresponding test sets, are presented in tables 2, 3, 4 (where LJ – Lennard-
Jones; CL – Coulomb’s law):
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Descriptors SCWRL Metropolis
1a9xa6#a927.pdb 13.52 7.85
1dvpa1#a90.pdb 4.66 0.00
1h5qa #a17.pdb 2.47 0.00
1k8kc #c76.pdb 20.99 13.75

1muma #a157.pdb 13.68 6.46
1pgua2#a429.pdb 4.89 0.00
1qqga2#a238.pdb 18.98 3.18
1wmza #a129.pdb 4.69 0.00
2pbea1#a167.pdb 23.94 8.16

Table 1: Descriptors LJ energy comparison before (SCWRL) and after side-
chain refinement simulation (Metropolis MC).

Potential Quality Accuracy Sensitivity Specificity
LJ 89.70% 0.90 0.89 0.90

Table 2: Classification quality between 1–6 test sets

Potential Quality Accuracy Sensitivity Specificity
LJ 88.61% 0.89 0.87 0.90

DFIRE 89.71% 0.90 0.89 0.90
CL 84.13% 0.84 0.83 0.86

Table 3: Classification quality between 2–5 test sets

Potential Quality Accuracy Sensitivity Specificity
LJ 88.61% 0.89 0.87 0.90

DFIRE 89.71% 0.90 0.89 0.90
CL 84.13% 0.84 0.83 0.86

Table 4: Classification quality between 3–4 test sets
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5 Conclusion

In this paper a new method of protein tertiary structure prediction has been
proposed. Partial results show the proposed approach to be promising but our
research is still under construction. The solution of the protein folding problem
requires an accurate potential that describes the interactions among different
amino acid residues. The potential that would yield a complete understanding
of the folding phenomena should be derived from the laws of physics. It can be
seen that the side-chain refinement sampling is efficient. It quickly gets close to
the target, and then remains in its attraction basin. The machine learning dis-
crimiator achieved an average accuracy of 75% of correctly assigned descriptor
assignements to the target sequence but the results can be improved when all
test sets will be used during training phase. The conglomerate of introduced
potentials should be taken into consideration during side-chain refinement simu-
lation or machine learning dicriminator improvement. Finally assembly, global
structural verification phase should be designed and developed in order to verify
the quality of presented approach.
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Introduction 
 
The knowledge of three-dimensional structures of RNA molecules is the clue to 
understanding their biochemical functions. Thus, a great stress has been always 
imposed on the development of technologies which provide structural information. 
Among them, X-ray crystallography and NMR spectroscopy play a crucial role. 
These two have delivered the majority of RNA structures deposited in the Protein 
Data Bank [1] and the Nucleic Acid Database [2]. However, the amount of solved 
three dimensional structures of RNAs is far behind the increasing number of known 
RNA sequences. This fact in conjunction with the quest to answer perennial 
questions about structure–function relationship has given rise to the new, 
computational methods for molecular structure modeling. 
 There are two general approaches to the three-dimensional structure 
prediction by computational methods: de novo prediction and comparative 
(homology) modeling. The first one builds molecular models based on the 
thermodynamic hypothesis stating that the native structure of a molecule 
corresponds to the global minimum of its free energy. Following this physical 
principle, de novo predicting methods simulate the folding process by computing 
conformational changes and searching for the free-energy minimum. The second 
approach has resulted from an observation that evolutionarily related (homologous)  
RNA molecules usually adopt similar structure. Comparative methods following 
this approach construct the model of target RNA using template structure from 
homologous molecule [3].  

The problem of RNA tertiary structure prediction has remained untouched 
until the late 90-s of the XX century. The first semi-automated systems for 
comparative modeling of RNAs have been released in 1998 [4][5]. The preliminary 
de novo solutions have appeared in 2006 [6]. To the best of our knowledge, the 
following systems for RNA structure prediction have been available as of October 
2010: MANIP, PARADISE, ERNA-3D, NAST, C2A, MC-Fold/MC-Sym and 
ModeRNA for comparative modeling, YUP, NAB, RosettaRNA and iFoldRNA for 
de novo prediction.  
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 Methods and tests 
 
Here, we present RNAComposer - a new system for RNA tertiary structure modeling. 
Its general idea has been introduced in 2006 [7] and combines comparative modeling 
and de novo approach. RNAComposer has been designed for large-scale fully 
automated modeling of RNA structures. It is based on fragment matching and 
assembly and uses our own database of RNA fragments named RNA FRABASE 
[8][9]. The modeling process starts from the user-defined, preferentially 
experimentally adjusted, RNA secondary structures. In general, the tertiary model is 
composed in the following steps: (i) the secondary structure is cut into pieces, (ii) the 
database of RNA three-dimensional fragments is searched for fragments matching the 
pieces from the previous step, (iii) the best fragments are selected on the basis of the 
predefined criteria, (iv) de novo prediction algorithm is launched for the unmatched 
pieces, (v) three-dimensional fragments are merged to compose the whole structure, 
(vi) the model is optimized according to its energy and stereochemistry. 
RNAComposer can generate either one or a set of 3D models with atomic resolution. 
The number of generated models depends on the mode selected by the user. Two 
running modes are available in RNAComposer server: an interactive mode, in which 
user is provided with the single output structure and a batch mode, in which up to 
1000 models can be predicted at a time. Theoretically, the length of the input RNA 
sequence for modeling is unlimited. However, in order to ensure the effectiveness of 
the computation and due to the optimization complexity, we have set the limit to 500 
nucleotides.  
 RNAComposer can build high resolution models of large molecules in a very 
short time. Its performance has been compared to two other, fully automated tools: 
MC-Fold/MC-Sym and iFoldRNA. Selected results of computational tests are shown 
in Figure 1 and Figure 2. We have analyzed computation time (Figure 1) of the 
systems as well as the RMSD of the output models (Figure 2). Since the test set 
included the instances with already known tertiary structures, the global RMSD in 
each case has been computed between the predicted model and the original structure 
(PDB identifier is provided for each example – see Figures 1, 2). 
 

 
Figure 1. Time of 3D RNA structure computation by RNAComposer and iFoldRNA. 
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Figure 2. Global RMSD of the models predicted by RNAComposer,  

MC-Fold/MC-Sym and iFoldRNA. 
 
Summary 
 
We have presented RNAComposer, a new system for RNA tertiary structure 
modeling. The results of first computational tests have been performed to compare 
our tool with the existing ones. The tests show the superiority of RNAComposer 
over the other tools in both, time of computation and the quality of prediction. We 
believe that RNAComposer will greatly facilitate an analysis of RNA structures.  
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1 Introduction

Sequencing by hybridization (SBH) is one of the methods of recognizing DNA
sequences [5]. The method is composed of two phases: the first one, in which
all the subfragments of an unknown sequence (the spectrum) are determined in
the biochemical experiment on a microarray, and the computational phase, in
which these subfragments are combined together with combinatorial algorithms
in order to reconstruct the sequence. In the ideal biochemical experiment, all
the subfragments of an unknown sequence are in the spectrum. In the real-life
situation a spectrum may contain some additional subfragments, which do not
occur in the sequence. They are called positive errors. On the other hand,
some subfragments of a DNA sequence can be missing in spectrum and those
errors are called negative. As the input to the computational phase one gets a
spectrum of subfragments, and length n of an unknown sequence. The goal is
to find a sequence not greater than n which is composed of the most number of
spectrum elements. The process of reconstructing a DNA sequence in case of
errors in spectrum is computationally hard.

In this paper we investigate the use of hyper-heuristic methodologies for
solving the sequencing by hybridization problem. A hyper-heuristic approach
operates on the heuristic search space, rather than operating on a direct rep-
resentation of the problem. At each decision point, the hyper-heuristic decides
which heuristic to execute from the set of those available [2]. A key aim of
hyper-heuristic approaches is to enable the search methodology to operate across
different problem instances, or even different problem domains, without having
to manually adapt the search algorithm.

In the next section studied hyper-heuristics are described, while in the fol-
lowing section the designed set of low-level heuristics for the SBH problem is
presented.
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2 Hyper-heuristic study

The hyper-heuristics which were analyzed are derived from three different heuris-
tic approaches – Choice Function, Tabu Search and Simulated Annealing. All
of them are composed of two phases. The first phase is a selection of low-level
heuristics. The second one is the acceptance phase, when it is decided whether
the new solution obtained from the application of the selected low-level heuristic
should be accepted or rejected. In the procedure the set of low-level heuristics
and an initial solution is given on input. During each turn the hyper-heuristic
selects one low-level heuristic and uses it to obtain new solution when accepted.
If selected heuristic is rejected by the acceptance procedure then the current
solution remains unchanged.

At the first phase (selection), the computation of a new solution can be very
expensive and various techniques try to optimize the number of applied heuris-
tics during each turn. The first hyper-heuristic was the choice function(CF)
[3], which is a weighted sum of three functions f1, f2 and f3 to measure and
rank low-level heuristics. Function f1 for any low-level heuristic h evaluates the
change of the value of the old solution to a new solution value, obtained after
applying h. Function f2 evaluates the ratio of the change in the solution when
applying a pair of heuristics. The goal of function f2 is to find and promote
a co-operational behavior of two low-level heuristics. Function f3 is equal to
the amount of time passed since heuristic h was used the last time. Functions
f1 and f2 are designed to intensify search. Function f3 introduces an element
of diversification. The CF ranks all available low-level heuristics and selects
one according to one of the selection methods: straight choice, ranked choice,
roulette choice and decomp choice [3]. Every solution obtained here is accepted
in the acceptance phase.

Tabu search hyper-heuristic is based on classical tabu search method. All
low-level heuristics initially have a rank equal to zero. At every iteration, the
low-level heuristic with the highest rank is selected and a new solution is ob-
tained. If this solution brings any improvement to the objective, then the rank
of h is increased by one. If the solution is not improved then the rank is de-
creased by one and h is put on the tabu list which prevents it from being used
for k iterations. Every solution is accepted in the acceptance phase.

The last hyper-heuristic is based on the simulated annealing. It ranks low-
level heuristics in exactly the same way as in tabu search selection but this rank
is used as a probability of selecting low-level heuristic h. The hyper-heuristic
selects h at random with weighted probability specified by the current rank.
The acceptance method, different than for the other hyper-heuristics, is called
monte carlo. It accepts improved solutions always. If a solution is worsened
then it is rejected with some probability, which is an exponential function of
the solution objective value change divided by the current temperature. At the
beginning, the temperature is high and the algorithm is more likely to accept
deteriorated solutions. As time passes, the temperature cools down and the
method is less likely to accept worse solutions.
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3 Low-level heuristics for SBH problem

The solution is encoded using two collections: an ordered set (list) of subfrag-
ments from which a DNA sequence is reconstructed and an unordered trash set
which contains all the remained subfragments from the spectrum. The DNA
sequence can be reconstructed by traversing the list and appending every sub-
fragment at the closest position possible to the end of the constructed sequence.
The reconstructed sequence might have length greater than n. Thus, feasible
solutions are only those with length not greater than n.

The moves described in [1] are used as a template for the low-level heuristics.
The moves operate on single subfragments and on clusters. A cluster of sub-
fragments is a sequence of following subfragments that are shifted by only one
nucleotide with the preceding subfragment. There are five different low-level
heuristics.

• A single subfragment from the trash set is inserted into the solution.

• A subfragment is shifted from one position in the list to another. During
the shift no cluster can be destroyed.

• Shift of a cluster to another position in the list. A cluster can be shifted
only if it does not break another cluster.

• Deletion of the subfragment from the solution to the trash set. Only
subfragments outside the cluster or being at one of the cluster ends may
be deleted.

• Deletion of the cluster to the trash set. This low-level heuristic is quite
invasive. It can break the solution and change it extensively.

4 Experimental results

The hyper-heuristics were tested with different subsets of low-level heuristics
(some heuristics were also parametrized). All algorithms were tested on data
coming from real DNA sequences obtained from GenBank [6]. The DNA se-
quences were of length 200-600 nucleotides. Spectra of these sequences were
created and experimental (positive and negative) errors were artificially intro-
duced. Errors are added to the spectra by removing some of the subfragments
from the spectra (negative errors) and by adding some new random subfrag-
ments to the spectra (positive errors). The number of removed or added sub-
fragments is determined by the error percentage. 5% of errors means that 5% of
subfragments from the spectrum were removed and the same number of random
subfragments were added to the spectrum.

In Table 1 the results of the best performing hyper-heuristics are presented:
simulated annealing and roulette CF. Three measures evaluate each result. ’Avg
usage’ is the percentage of subfragments from the spectrum used to construct
the solution. ’Optimal count’ is the number of instances out of 40, which were
solved with 100% of the usage. The above measure can evaluate the solution
from the mathematical point of view, but for the biologists the most important
is the similarity of the solution to the examined sequence. The last measure,
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Instance 200 400 600
5% 20% 5% 20% 5% 20%

Hyper-heuristic Simulated Annealing
Optimal count 37/40 34/40 35/40 22/40 30/40 14/40
Avg. usage [%] 99.81 99.64 99.83 98.93 99.66 98.20
Alignment [%] 98.06 91.48 95.69 82.00 93.25 74.18
Hyper-heuristic Roulette Choice Function
Optimal count 40/40 40/40 36/40 37/40 23/40 5/40
Avg. usage [%] 100.00 100.00 99.89 99.92 98.94 97.20
Alignment [%] 99.52 98.74 95.61 94.68 92.92 86.03

Table 1: The results of the best performing hyper-heuristics

’alignment’, calculates the number of the same letters in two sequences with the
Needelman-Wunsch algorithm [4].

Analyzing the results in the table it can be observed that hyper-heuristics
result in the solutions of very high usage. Simulated annealing appeared to be
the best. Surprisingly, the roulette CF - the most random among CF selections
- found the best solutions (considering similarity to the original sequence). For a
bad configuration of low-level heuristics the roulette choice function could easily
destroy solution by randomly using ’cluster delete’ heuristic. But, for a good
set of low-level heuristics all the hyper-heuristics were searching around local
optimum, while roulette CF by destroying a good solution, could jump into
different place in the solution space and resulted in finding better solutions.

Thus, both things are important in constructing a hyper-heuristic frame-
work: to design a good learning mechanism (hyper-heuristic) and a good set of
low-level heuristics: some heuristics which aim to intensify the search and some
random which diversify the search.
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1. Introduction 

Progress in technology and science led to the development of a few different approaches to 
speed up the algorithms. For many years due to Moore’s law CPU speed doubles every two 
years. However, recently processor makers designed multi-core chips instead of increasing the 
clock rate. 

This situation implies that parallel computation has become necessary to take full advantage 
of modern computers. Authors described and compared usability of a few types of common 
used computation platforms: 

- single processor computation and its extension to SMP (symmetric multiprocessing), 
- computation in distributed systems using cluster and grid architecture, 
- computation on SIMT (Single Instruction Multiple Thread) architecture on example of 

GPU computing. 

2. Problem Formulation 

In the DNA assembly problem the most time-consuming part is finding alignments between 
sequences. The most known algorithms which find alignment between two sequences are: 
Smith-Waterman algorithm [1] and Needleman-Wunsch algorithm [2]. The first finds global 
alignment and the second semiglobal alignment. In the DNA assembly problem Needleman-
Wunsch algorithm gives results which are more appropriate than the above mentioned Smith-
Waterman algorithm. Therefore algorithm for finding semiglobal alignment between two 
sequences was parallelised. 

3. Methods and results 

For the defined problem parallelism was introduced by parallel computing of many different 
alignments. Authors implemented algorithms according to three different approaches to 
parallel computation.  

The first implementation involves SMP architecture (POSIX threads were used as a 
programming API). It is the easiest way to parallelise the algorithm – all threads have access 
to all data and the only one issue thing under consideration is the synchronisation in access to 
the memory. This solution has also some disadvantages. The scalability is far from linear (see 
Figure 1.) and what is more important increasing the number of processors in computer is not 
an easy or cheap task. 
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Figure 1Speedup of SMP version 

The second implementation works 
in distributed system such as a grid 
or a computer cluster (OPENMPI 
was used as a programming API). 
This approach is harder to 
implement because of distributed 
memory and a need of passing data 
between nodes all the time. 
However results are more 
promising because of the 
scalability which is limited by the 

bandwidth of the network 
connection. In the Figure 3 and 

Figure 4 results for small number of 
nodes were presented. There is one 
thing which is worth of mention: for 
two processors speedup is equal to 1, 
because one processor is a host which 
manages the data. 

The third version was developed for 
GPU (Graphics processing unit) 
computation. Although there are a 
few GPGPU (general-purpose 
computing on graphics processing 
units) technologies like ATI Stream 
or OpenCL on the market, one of 
them - CUDA [7], is a bit more 

established than others. Our implementation of alignment algorithms was done using this 
technology. There are a few substantial differences between CPU and GPU architectures that 
make GPU more powerful tool for executing parallel algorithms. Firstly, GPUs have much 

Figure 3 Speedup of gird version 
 

Figure 2 Speedup of cluster version 
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more cores, which are the main computational units, e.g. NVIDIA GeForce 280 has 240 
cores. Secondly, there is much less cache memory available on the GPU. Moreover, the cache 
memory on the graphics card is not managed automatically, but by a programmer. Such 
architecture gives opportunities to utilize the hardware more efficiently. On the other hand, 
writing parallel algorithms on GPU is more time-consuming. As a platform for comparison 
GPU and CPU version the following hardware was used: 

- CPU: Intel Core 2 Quad Q8200, 2.33GHz, 

- GPU: NVIDIA GeForce GTX 280 with 1GB of RAM, 
- RAM: 8GB. 

The GPU implementation was about 68 times faster than the CPU-based version. In this case 
also Smith-Waterman algorithm was implemented. The GPU version of SW algorithm was 
about 108 times faster.  

4. Conclusion 

All versions of the algorithm show significant speedup. However to achieve better results a 
mixed platform is taking into consideration (for instance a cluster of computers with powerful 
graphics card). Such platform would combine advantages of presented methods. 
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Abstract

Currently the approach most commonly used to model a viral infection is the system of

di�erential equations. In this paper we compare it with the approach based on multi-agent

systems. First we present the system designed to simulate the HCV infection and present its

advantages. Then we propose method to determine values of parameters used in this model

which is much more di�cult that in case of di�erential equation. Finally we present some

results obtained using this method.

1 Introduction

The approach most commonly used to model a viral infection is the system of di�erential equations.

First time it was used to model the HIV infection in 1989 [3]. Since that time many models based

on di�erential equations have been de�ned. Most of the models try to simulate HIV infection (see

for example the review in [10]). However other viral infections are also analyzed using this type of

model. The example can be HCV infection investigated in [4, 5, 2] or HBV infection in [6]. This

is a very well known and well understood way of modeling but it can describe only some statistics

about the population of cells (for example their amount). That is why other types of models are

designed and analyzed, for example statistical models [8, 9]. Recently more popular become models

based on multi-agent systems. They have many advantages in comparison with models based on

di�erential equations [1].

In this paper we would like to present model based on multi-agent system that were designed by

us and compare it with di�erential equations approach. First in sections 2.1 and 2.2 both types

of models are presented and then in section 2.3 the comparison of them is made. In section 3 the

method of determining values of parameters that appear in multi-agent model is investigated and

section 4 presents some results.

2 Models of HCV infection

2.1 Di�erential equations model

Following equations describing HCV infection can be de�ned and this form of them is commonly

used in literature:
∗Institute of Computing Science, Poznan University of Technology, Poznan, POLAND
†Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, POLAND
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dU

dt
= s+ rUU

(
1− U + I

Umax

)
− dUU − (1− η)βV U + qI

dI

dt
= rII

(
1− U + I

Umax

)
+ (1− η)βV U − dII − qI

dV

dt
= (1− ε)pI − cV

In above equations U denotes number of uninfected hepatocytes, I number of infected hepatocytes

and V number of free virions. Uninfected hepatocytes are produced by di�erentiation of precursors

at rate s and are infected at rate β proportional to the number of uninfected cells and free virions.

Both uninfected and infected hepatocytes die at rate dU and dI respectively and proliferate at

maximum rate rU and rI respectively until the maximal number of hepatocytes Umax is reached.

Infected cells can be also cured through a noncytolytic process at rate q. Free virions are produced

from infected hepatocytes at rate p and are cleared by immune system at rate c. Coe�cients ε

and η model the treatment with antiviral drugs (interferon and ribavirin) and when no treatment

is set they equal 0. Time is measured in days and all quantities are measured in one milliliter of

the tissue.

2.2 Multi-agent system

Another approach that can be used to model HCV infection is multi-agent system. In the base

form of this method we can de�ne two types of agents:

• Hepatocytes - liver cells that can be in infected or uninfected state. Hepatocytes can pro-

liferate and after some time they die. Uninfected cells can become infected after interaction

with virions and infected cells can produce free virions.

• Virions - free virus particles that exist in blood.

For agent types described above the simulation can be performed. In each step of simulation �rst

the interactions between agents that are close to each other are analyzed and executed and then

interactions between agents and environment are performed. During the simulation the number of

cells of each type and other useful statistics are gathered and saved. The simulation in each step

can utilize even hundreds of thousands of agents.

2.3 Comparison of models

In comparison with di�erential equations the approach based on multi-agent simulation has many

advantages [1]. It describes each cell separately so it makes possible to add some attributes to

them and easily distinguish and model di�erent cells of the same type. It also allows incorporating

space and more precisely describing the human body and its di�erent parts. Multi-agent models

make the modeling of interactions much easier and if needed model can be modi�ed easily and

quickly. This way of modeling is also intuitive and easy to understand by biologists which facilitates

the collaboration between them and computer scientists or mathematicians and can make it more

productive. The main problems with this type of models are larger demand for computing power

and the way of �nding parameters values. The recent development of e�cient multi-core processors
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and GPU devices makes it possible to simulate multi-agent systems in satisfactorily short time and

solves the �rst problem. The further one can be solved using genetic algorithms [7].

3 Determining values of parameters

After gathering data in some clinical experiment the coe�cients used in di�erential equations can

be quite easily calculated using well known mathematical and numerical methods. Unfortunately

determining values of parameters used in the multi-agent system is much more di�cult. To solve

this problem the reversed simulation method [7] was used. The comparison of this method with

the classical, forward simulation is presented in the �gure 1. In this method, as opposed to forward

simulation, instead of setting values of parameters at the beginning the objective function is de�ned

and the genetic algorithm is used to optimize the value of this function. After the simulation ends

results of optimization are evaluated and if they are not satisfying the model can be redesigned.

Figure 1: Operations �ow in two simulation approaches - forward (left) and reversed (right) sim-
ulation.

4 Results

To verify the approach based on multi-agent simulation the input data set were de�ned using results

of simulation of di�erential equations. The objective function tried to minimize the di�erences in

values of both models at these points. The result is presented in the �gure 2. It can be observed that

results are similar which proves that the proposed method is correct and multi-agent simulation is

at least as useful as di�erential equations approach.
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Figure 2: Comparison of model based on di�erential equations and multi-agent system using the
default values of parameters de�ned for di�erential equations. Crosses present some data points
taken from di�erential equations results.

Figure 3 presents the result of simulation when the objective was to maximize the number of

uninfected hepatocytes but at the same time �t the model to the clinical data about level of

virions in blood. This is an example of objective that can not be calculated using di�erential

equation. As it can be observed from the plot the approach based on multi-agent simulation works

and the chart presents the maximum possible number of uninfected liver cells according to the

model presented in sections 2.1 and 2.2.

Figure 3: Maximization of the number of uninfected cells when number of virions �ts the experi-
mental data.
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5 Summary

The method utilizing multi-agent simulation to analyze the HCV infection were proposed. There

are some problems connected with this method but all of them can be solve using e�cient personal

computers or arti�cial intelligence methods (genetic algorithms). Presented results shows that the

method has big potential and makes possible to perform analyzes that were not available with the

use of di�erential equations.
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1 Introduction

The significant role of traffic simulation is invaluable in the process of developing
new traffic control strategies and improvement of roads infrastructure. The
problem is vast, complicated and involves large amount of calculations, which
makes the process hard to visualize in the real time. The representation of the
real world and the way of how it changes with the flow of the time is important
and is considered as a problem itself.

Each traffic simulation model has its own assumptions which restrict the
model to simpler cases. In fact, the models differs each other in the way of how
they work, but also how the representation of the data is computed during the
simulation. The simulations run in the real-time manner and sometimes it is
impossible to run the same simulation again. What is more, the simulations
cannot be rewound in any way, which makes the analysis of results hard to
accomplish.

2 Problem description

In the typical real-time approach one of the things that matters is the current
state of the simulated fragment of reality. The representation of a time stamp
T can be divided into two sub-representations: static components of the real
world and dynamic one. The static components consist of the road positions,
junctions and everything that is not changing during the simulation. Thus, this
representation needs to be interpreted only once during the simulation process.
Dynamic components of the world describe each object that can change in the
time. The most common objects are vehicles and traffic control lights. This
leads to the observation that in two given time stamps T1 and T2 the dynamic
object can have different values of the properties such as position, speed or
current state, to name a few. The ability to change state of dynamic objects
makes them harder to track if one want to be able to rewind the simulation and
replay it in the exactly the same way as before.

Before working out a solution, we define the requirements we want to meet
with our representation of the real world. First of all, the simulation should be
smooth and clear to interpret. Secondly, the amount of data should be as small
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as possible. Otherwise, the process of re-creating of a state in time stamp T will
take too much time. And lastly, the simulation should run with a reasonable
time interval between two following states, so the result would look like real-time
simulation.

3 Representation of the real world

To present our problem in a more formal way, we prepared a model for urban
traffic simulation. In our model we treat the static components of the world
as a directed graph. The nodes are representing the points in the real world
where vehicle can change its direction or the roads crosses. The arcs represent
the possible ways from one point to others and the direction of the arc is rele-
vant to the traffic flow direction on the road [2]. The sample fragment of this
representation was shown in Figure 1.

Figure 1: The graph representation example of consecutive crossroads

In Figure 1 nodes represent simple crossroads, i.e. orange rectangle repre-
sents road that splits into two roads and purple rectangle represents two roads
merging into one. A group of nodes can represent larger crossroads, i.e. red
rectangle represents a crossroad between double-lane road and single-lane road.

However, above representation is only the logical layer [1] of traffic archi-
tecture. Thus, we extended it to representation the real world scenario with
the spatial coordinates included. We had to add simple nodes that were just
used to pass the car from the input arc to the output arc without possibility
of choosing from different paths. The nodes of the graph were placed in space
according to the real satellite photo and the lengths of the arcs were preserved
proportionally to reality. The sample crossroad was shown in Figure 2.

The arcs are called segments identified by ID and a group of consecutively
connected segments, which means that from the first segment we can reach the
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Figure 2: Example of the crossroad model

last segment going through the arcs, makes a road also identified by ID. The
roads can join another road or a crossroad. The crossroad is a special group
of segments that joins multiple roads. To make a double-lane road we put two
segments in the same direction side by side. The segment can also be described
by direction attribute, which is used to draw the arrows on the crossroads, but
has no special meaning for simulation process.

We differentiate nodes by the role which they play in the system. The
most common nodes have no special meaning and they are used to connect two
segments. One segment goes into the node and the second one goes out of the
node (white). If a node has two or more input arcs, then it serves as a road
connection node (yellow). Green nodes are called decision points, have at least
two output arcs and store the probability values [2, 3] for different car types for
picking their further path from the possible output arcs (green). Those points
can be grouped into a virtual decision point which spreads through more than
one road. Another type of decision point are control points, which play the same
role as decision point but they include the traffic lights state [2], before allowing
the vehicle to move forward (pink). The crossroad nature makes it very difficult
to model due to multiple road crossings. Each crossed road is connected with
collision point which can have multiple input and output segments (orange).
During simulation the vehicles will not collide with others when crossing those
points. Lastly, we have a sink node(red) and a source (blue) nodes. The first
one is used to remove vehicle from the system and the second one spawns new
vehicles.

The nodes are very important for the simulation process and the properties
assigned to them are used in modeling of real world. They provide distributions
for the vehicles which determine the path of each vehicle and also the quantity
of vehicles spawned in given period of time. The values can be specified with
the precision bounded to minutes. The common types of vehicle move within
the system based on the distributions in the control and decision points. The
fixed tracks for special vehicles are modeled by using a 100% chance of picking
the next segment of designated path.
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4 Time line concept

In our dynamic component of the world representation we had to decide how to
represent all moving objects. We introduce a common approach which uses time
line with frames and key frames. However, the frames contain only parameters
of the objects that changed their state and the key frames contain the whole set
of the state parameters. It makes possible to restore the state using key frame,
i.e. at a given time stamp T1 the car moved forward on the segment, thus this
information will be included in the following time stamp T2. If the same car
had to stop because there was another car in front of it, so it did not change its
state thus providing this information in following time stamp T3 is unnecessary.

To describe each possible situation in our world we created a list of possible
state changes which will include only necessary data about the state which we
call events. The vehicle can move along its current segment and the position of
it is given in per mile value of segment length calculated from the beginning of
the segment. Vehicle can change segments and the new segment ID is sufficient
to determine the new assignment. In case of two segments of the same road lay
side by side, which makes a double-lane road, the vehicle can also shift from
one lane to another. To do this we need the progress of vehicle on the current
segment just like in the move situation and also the progress of the shift move
which is perpendicular to the vehicle move direction. We also provide special
state for marking the cars in traffic including the state of being in traffic and
leaving the traffic. Of course spawning new vehicle is also described in time line
by providing the vehicle type, road ID and segment ID on which the car should
be spawned. If car leaves our world the information is send in destroy message
which only needs the ID of vehicle. Because those messages are set per vehicle,
each of them contains information about the car they describe.

This event model on framed time line gives the possibility to run the simula-
tion forward. To ensure that the previous states can be restored, we used special
type of structure which we call extended structures. Basically, they provide the
same amount of information as standard structures, but additionally they al-
ways describe exact position of the car within the static component of the world
by providing information about road ID and a segment ID. The simulation
writes the frames using standard structures described above with the given tick
interval, however each Xth frame is written with the use of extended structures,
so its called a key frame. To keep the simulation rewind smoothly we set X to
10 with the tick interval of 50 ms, which gives us a tick interval of 0.5 second
in rewind mode.

5 Serialization

We designed the simulation and visualization as separate software modules.
Thus, we had to provide sufficient data protocol to communicate between them.
The first approach included generating a XML file which will describe each key
frame as separate tag in which the presented events would be stored as inner
tags. This lead to a problem of the size of output files which reduced the possible
length of simulation. That is why we introduced the concept of serialization
of data, which enabled us to drastically reduce the file size of simulation and
lengthen the simulation duration up to required 24 hours.
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However, by analyzing the data from the considered area we found out that
we can reduce the size of resulting file even more. It can be done by operating on
the bits instead of using standard numeric types of programming language, i.e.
to store car ID we need only 12 bits instead of 16, because we will never have
more than 4096 cars simultaneously in the system. By using such reductions
we were able to keep the file size at approximately 25% of size of XML file
describing the same simulation. Thus, we created special binary serializer which
is responsible for packing and unpacking data structures presented in previous
section. What is important, this reduction did not impact the time line rewind
capabilities, which still working smoothly. Finally, in Table 1 we present sample
file sizes and simulation generation times.

Description File size Generation time
1h, small traffic 9,9 MB 103 s
1h, large traffic 50,5 MB 163 s
3h, small traffic 27,1 MB 263 s
3h, large traffic 404 MB 763 s

Table 1: Results of the computational experiment. The file size depends on the
traffic load and simulation duration.

6 Summary

Current traffic simulations are not capable of saving the simulation flow, which
makes further analysis harder to accomplish. The approach with time line gives
the opportunity to watch the scenario multiple times and share it with others.
The used model can be extended to include more complex rules, but it will
not affect the visualization. The data protocol can be slightly modified without
additional effort in case of larger area investigation. By using serialization we
can generate longer simulations to observe anomalies in traffic flow, for example
traffic jams at certain hours.
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1 Introduction

The fluency of production in a car factory depends on many factors. A very
important one is an undisrupted flow of parts in the transportation system be-
tween different plants. Car parts always need to be delivered to specific locations
at certain time period. This is a crucial point where the manufacturing process
will not suffer from slowdowns. However, even small disturbances in traffic or-
ganization may have negative effect on the cars flow on the roads. This, in turn,
has a direct impact on the regularity and certainty of deliveries.

The problem of predicting traffic flow is very complex. On the other hand, it
is essential to counteract the negative effects of congested roads. In that case the
factory logistic may take some actions to keep the transportation system fluent.
It could be for example: increasing the number of lorries, choosing different
routes or even restructuring the plants logistic organization.

2 Problem description

Many factors have an influence on the traffic on urban roads. There are acci-
dents, weather anomalies, road construction etc. Although, many of them are
spontaneous, some of them (like the latter one) are predictable and planned. It
means that it is possible to try to simulate the traffic flow on the roads before
such events occur in reality. This, can help better prepare for factory managers
by taking the appropriate actions. In case of a car factory the knowledge about
future traffic flow may have a tremendous impact on the efficiency of parts deliv-
eries. We would like to present a traffic simulation model that gives the ability
to predict traffic flow on roads.

Our model should be very realistic and the the simulation must running fast
at the same time. Sometimes, it is necessary to simulate a complex connection
of roads. At peak hours hundreds of cars pass them every hour. Traffic control
lights (often adaptive), subordinate roads, complicated junctions with many
lanes - all of this needs to be perfectly mapped. To achieve this much input
data is required. The number of cars, passing each crossroad is received from
magnetic loops. From, at least, the most important crossroads are necessary.
This historical data must be appropriately parsed before used in the simulation
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software tool. Current traffic lights control programs and junctions schemes
are necessary to realistically simulate crossroads. In case of roads reconstruc-
tions detailed information about the traffic organization during that time are
necessary.

This input data analysis needs to be processed very carefully. Even minor
errors in this phase may have a huge impact on the final results. Therefore, as
much real data as possible should be acquired to minimize the approximations.

The software simulation tool should also provide some reports as the re-
sults. The visualization for the simulated process of predicted traffic flow is
very important. It shows how the traffic flow changes during the time. How-
ever, a report with the most important parameters, summed up, is essential. It
provides a fast way of detecting the sources of the traffic flow anomalies such as
the length and liquidation time of traffic jams.

3 The traffic modeling problem

We created a model of real roads in the urban area. The roads are modeled as
a directed graph. Each road consists of several segments connected by mark-
ers. There are different types of points. Decision points fork roads. Injection
markers merge two of them into one. It is possible to put traffic control lights
on supervised control points. Every collision point denotes a place where two
or more roads are crossing. Source and sink markers create and destroy cars in
the system, respectively. These six categories of points give the possibility to
create any junction, from the simplest one, through very complex with many
lanes and traffic control lights to even roundabouts.

Every junction was built based on real schemes. At first a logical graph was
created by detecting specials point. An exemplary graph of real Baltycka-Lesna
streets junction is presented in Figure 1. Using this graph a simulation model
of the junction could be constructed. It consists of the same markers as the
logical graph connected by segments of roads. To remove the angularity these
straight sections were later replaced by Bézier curves in the visualization tool.
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Figure 1: Exemplary logical graph presenting Baltycka/Lesna junction

Cars also are described by a few important parameters. There is a unique ID
assigned to each of them. There are eleven types of cars - 7 factory cars, 2 city
buses, 1 passenger car and a non-factory truck. Vehicles differ in the maximum
speed they may achieve and the value of acceleration - trucks are always slower
than passenger cars. The length of the cars we also take into consideration

4 Simulation process

One of the most important features of the simulation process is its ability to
detect traffic jams. In the visualization software each car that is stuck in a traffic
jam changes its status. This happens after such a vehicle is not active for
a specified amount of time.

The simulation software also creates a report containing some additional
information. There is every factory car type listed with the minimum, maximum
and average time that it was stuck in a traffic jam. Bottlenecks in the traffic
flow are also presented. There is every road marked where traffic jams used to
generate with some details: the cumulative time of all traffic jams, number of
traffic jams, average time of liquidation, average length and cumulative number
of cars stuck in this traffic jam.
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5 Input data analysis

5.1 Traffic control lights

A very important part of the simulation are traffic lights. In our simulation it
is possible to assign many traffic lights to one marker. There could be one light
for cars going straight on junction and a special right arrow light at the same
time.

We received 24h traffic control lights programs from the City Roads Au-
thority for all of the traffic lights in the simulation. They were implemented in
our software tool accordingly. Their job confines to presenting specified light
at certain time. It is also possible to assign the flashing yellow color - in such
situation roads priorities take precedence.

Adaptive traffic lights are also available. The color that is currently pre-
sented by them depends on current traffic conditions.

Each car may pass any junction in one of three ways:

• with stoppage in case of red traffic light

• with speed reduction in case of yellow or red traffic light when the speed
of car is too high to stop or in case of green traffic light on a curve

• without speed reduction [1]

5.2 Historical traffic data

Historical traffic data is the core on which depends the accuracy of prediction.
It was accumulated on magnetic loops. Numbers of different types of vehicles
were gathered. This allowed to create a more accurate model as cars differ in
many parameters - maximum speed and acceleration value, length etc.

Unfortunately, this data does not differentiate between factory logistics and
non-factory trucks. Internal company information about deliveries was used to
fill this gap.

One hour granular data is used to supply the simulation software. This
means that the number of different types of cars for every hour is calculated
and assigned to the source markers. 24-hour traffic distribution is obtained in
this process. Vehicles are then created in specified numbers at random time
intervals.

The historical data also contains information about the distribution of cars
on junctions in every direction. In our simulation we achieved this effect by
specifying probability of choosing one or the other routing direction for each
vehicle type. Therefore, it is easy to notice that non-factory routes are not
deterministic. Every simulation may present a bit different situation on roads
despite of the fact that the input parameters are identical.

There were lack of data from smaller junctions because no magnetic loops
where there installed. In that case the calculations of the traffic density, com-
bining the data from the main junctions, have been performed.

5.3 Roads reconstructions

In the presented simulation example, where the three phases of junction recon-
struction in the considered urban area. In each of them, the different road traffic
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organization was applied. Appropriate road models were created for those three
stages. Figure 2 presents a first phase model. Brown areas determine places
which are not available for traffic flow.

Figure 2: First phase of reconstructions modeled in the visualization software

6 Results

There are three variants corresponding to all reconstruction phases and one
matching the state before the beginning of road constructions. The latter one
could be used to verify the accuracy of the traffic flow prediction during the
simulation, since it is easy to compare it with traffic conditions derived from
the gathered data. Three types of simulations for each of these stages were
generated - one for the morning peak (6:00 - 9:00 a.m.), one for the shift change
(1:00 - 3:00 p.m.) and one for the afternoon peak (4:00 - 7:00 p.m.).

The average time of passing the route from Z1 to Z4 plant for all of the
factory trucks was about 9 minutes in the morning peak, 12 minutes during the
shift change and 11 minutes in the afternoon peak. In the reverse direction they
needed 7.5, 11 and 7.5 minutes at the same time ranges, respectively. Table 1
presents detailed results.

First junction reconstruction phase introduced two significant changes in
statistics. The average time of travel between Z1 and Z4 plants lengthened by
almost 2 minutes during shift change and by 14 minutes in the afternoon peak.
Second phase showed similar changes. Z1-Z4 route took 30 minutes during shit
change and 18 minutes in the afternoon peak. The results were almost the same
in the last stage of reconstructions.

7 Summary

Studies showed that this simulation model accurately predicts real traffic on
roads. As a consequence it can be used to localize the sources of congestions
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Car type From To No of cars Min Max Avg

Z4 truck Z1 plant Z4 plant 20 00:07:40 00:12:02 00:09:01
Z4 plant Z1 plant 24 00:06:46 00:09:40 00:07:48

JIT Swarzedz Z1 plant Z4 plant 13 00:07:45 00:10:53 00:09:02
Z4 plant Z1 plant 7 00:05:58 00:08:15 00:07:04

FBU Z1 plant Z4 plant 7 00:07:43 00:10:02 00:09:01
Z4 plant Z1 plant 10 00:06:11 00:10:04 00:07:28

Total Z1 plant Z4 plant 40 00:07:40 00:12:02 00:09:02
Z4 plant Z1 plant 41 00:05:58 00:10:04 00:07:36

Table 1: Times of deliveries of different types of factory cars between Z1 and
Z4 plants

on roads. These results can then be used to improve the efficiency of deliver-
ies in the factory logistic system. This, in turn, leads to increase car factory
productivity and the reduce the logistic systems costs.
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Survey of scheduling of coupled tasks with chains

and in-tree precedence constraints

Michal Tanas∗, Jacek Blazewicz†, Klaus Ecker‡

1 Introduction

A scheduling problem is, in general, a problem answering the question of how
to allocate some resources over time in order to perform a given set of tasks,
according to the definition given by Baker in [3]. In practical applications re-
sources are processors, money, manpower, tools, etc. Tasks can be described by
a wide range of parameters, like ready times, due dates, relative urgency fac-
tors, precedence constraints and many more. Different criteria can be applied
to measure the quality of a schedule. The general formulation of scheduling
problems and the commonly used notation can be found in books such as ones
written by Brucker [8] or Blazewicz et al. [6]. A very interesting survey of the
most important results is given in the handbook edited by J. Leung [13].

One branch of scheduling theory is concerned with scheduling of coupled
tasks. A task is called coupled if it contains two operations where the second
has to be processed some time after a completion of the first one. This variant
of scheduling problem, described by Shapiro in [19] and by Orman et al. in [17],
often appears in radar-like devices, where two subsequent radar pulses are used
to calculate speed and trajectory of a moving object.

The complexity of various scheduling problems with coupled tasks has been
deeply studied by Orman and Potts in [15]. Although they proved that most
of the cases, like 1|(aj , Lj , bj)|Cmax, 1|(pj , pj , pj)|Cmax, 1|(a, Lj , b)|Cmax and
1|(a, L, bj)|Cmax are strongly NP-hard, they also found some important poly-
nomial algorithms for 1|(p, p, bj)|Cmax and 1|(p, L, p)|Cmaxin [16].

A coupled task scheduling problem with non-exact gap is surveyed by Gupta,
who proved NP-hardness of 1|(aj , [Lj ,∞], bj)|Cmax in [11]. NP-hardness of this
case with unit processing times, i.e. the case of 1|(1, Lij , 1), chains|Cmax was
proven by Wenci Yu in [22], where some interesting connections between coupled
tasks and flow shops are also given. A similar problem of scheduling tasks with
time-lags was studied by Brucker and Knust, and some important complexity
results, i.e. NP-hardness of 1|pj = 1; intree(L); rj |Cmax and polynomial solv-
ability of 1|pj = 1, outtree(L), rj |

∑
Cj and 1|pj = 1; prec(L = 1)|∑Cj were

found [9].
In recent years the coupled tasks scheduling problem is widely studied, and
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a lot of new important results have been achieved. In 2003 a polynomial algo-
rithm for the problem 1|(a, L, b)|Cmax was found by Ahr et al. [2]. Later Potts
and Whitehead created new important heuristics to solve coupled tasks schedul-
ing problems [18], while Li and Zhao analyzed heuristic algorithms applied to
coupled tasks scheduling on a single machine [14]. Recently, new applications
of coupled tasks scheduling in production systems in single machine no-wait
robotic cells were introduced by Brauner, Finke, Lehoux-Lebacque, Potts and
Whitehead [7], and also a cyclic case of the one machine coupled task problem
was proven to be solvable in polynomial time by Lehoux-Lebacque, Brauner
and Finke [12]. Approximation algorithms for coupled tasks problems with unit
processing times were analyzed in [1] and [4] and coupled tasks problem with
compatibility constraints was researched by Simonin et al in [20].

For this paper, especially interesting is the case of single machine schedul-
ing of identical coupled tasks with unit processing time, i.e. the problem
1|(1, L, 1)−coupled, exactgap|Cmax with various types of precedence constraints.
The strong NP-completeness of the case where the precedence constraints graph
is a general graph is shown in [5]. On the other hand polynomial solvability of
the 1|(1, 2, 1)− coupled, strict− tree|Cmax case was shown in [21] and polyno-
mial solvability of the 1|(1, 2k, 1)− coupled, strict− chains|Cmax was shown in
[10].

In this paper, we complement the above results by presenting polynomial
time algorithm for the 1|(1, L, 1) − coupled, strict chains, exact gap|Cmax and
1|(1, L, 1) − coupled, strict in − tree, exact gap|Cmax problems. Moreover we
state a hypotesis of equivalence of the 1|(1, L, 1)−coupled, strict prec, exact gap|Cmax

and P (L+ 1)|pj = 1, prec|Cmax problems with the same type of graph of prece-
dence constraints.

The organization of the paper is as follows. The problems are formulated
in Section 2. The idea of polynomial time algorithm for the chains case is
presented in Section 3.2. The idea of polynomial time algorithm for the in-tree
case is presented in Section 3.3. The hypothesis of equivalence of 1|(1, L, 1) −
coupled, strict prec, exact gap|Cmax and P (L+1)|pj = 1, prec|Cmax is presented
in Section 4. We conclude in Section 5.

2 Problem formulation

Adapting the commonly accepted notation for scheduling problems, the schedul-
ing problems considered here (see also [6]) can be denoted by
1|(1, L, 1), strict chains, exact gap|Cmax and
1|(1, L, 1), strict in− tree, exact gap|Cmax which means:

• There is a single processor in the system.

• There is a set of identical tasks, denoted by T1, . . . , Tn, to be scheduled.

• Each task Tj is a pair of operations with a gap between them.

• Every operation has unit processing time.

• Gaps are exact and have uniform constant length L, where L is a positive
integer.
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• The precedence constrains are strict, which means that the first operation
of a subsequent task depends on the second operation of the preceding
task.

• Precedence constraints graph has the form of chains or in-tree respectively.

• The optimization criterion is to minimize the schedule length Cmax = max{Cj2}
where Cj2 is the completion time of the second operation of Tj .

Note that for any instance of the problem, provided the precedence constraints
graph has no directed cycle, there is a trivial feasible (but not necessarily op-
timal) solution in which tasks are scheduled ”one after another” in their topo-
logical order. If the precedence constraints graph has a directed cycle, there is
no feasible solution for such instance.

3 A polynomial-time algorithms

3.1 General idea

In general, each coupled tasks scheduling problem contains in fact two separate
subproblems, which both must be solved to obtain the final solution. These
problems are:

• Which is the optimal permutation of tasks. To solve every scheduling
problem the correct order of tasks must be found, so this problem is quite
common amongst the scheduling problems.

• In which time units the machine must remain idle, despite there are free
tasks to be processed. This problem is specific to the coupled tasks prob-
lems, in which the optimal permutation is not enough to obtain the opti-
mal solution.

3.2 Chains case

As the problem 1|(1, L, 1)− coupled, strict chains, exact gap|Cmax splits in fact
into two separate sub-problems: how to find the optimal order of tasks and how
to optimally schedule tasks in a given order.

The optimal order of tasks can be found through conversion to the problem
P (L + 1)|pmtn|Cmax which then can be solved by a McNaughton rule. The
optimal order of tasks in the coupled tasks problem may be computed using
such a parallel schedule.

The idea of the second stage is based on observation that any feasible sched-
ule for the problem 1|(1, L, 1) − coupled, strict chains, exact gap|Cmax can be
decomposed into a sequence of partial schedules (called segments) and each seg-
ment contains an upper-bounded number of pairwise independent coupled tasks.
Such decomposition limits the solution space to a polynomial size, which renders
any algorithm working on such space (even the full search one) polynomial.
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3.3 In-tree case

Similary, the problem 1|(1, L, 1)− coupled, strict in− tree, exact gap|Cmax also
splits into the same two separate sub-problems: how to find the optimal order
of tasks and how to optimally schedule tasks in given order.

In this case, the optimal order of tasks can be found through conversion to
the problem P (L+1)|pj = 1, in− tree|Cmax which then can be solved by a Hu’s
algorithm. The optimal order of tasks in the coupled tasks problem can then
be easily determined from such a parallel schedule.

The idea of the second stage is the same as in the chains case, and is again
based on observation that any feasible schedule for the problem 1|(1, L, 1) −
coupled, strict in− tree, exact gap|Cmax can be decomposed into a sequence of
partial schedules (called segments) and each segment contains an upper-bounded
number of pairwise independent coupled tasks. Such decomposition again limits
the solution space to a polynomial size, which renders any algorithm working
on such space (even the full search one) polynomial.

4 Hypothesis of equivalence

The similarities between the two problems allows us to state the following hy-
pothesis.

Hypothesis 1. There are exists a bidirectional polynomial transformation be-
tween problem 1|(1, L, 1), strict prec|C(dec)

max and P (L+1)|pj = 1, prec|C(dec)
max with

the same graph of precedence constraints. This means that both these problems
are equivalnet in terms of theory of complexity.

5 Conclusion

In this paper the complexity of coupled tasks scheduling problems are discussed.
It is presented that the problem of scheduling of identical coupled tasks on a
single machine is solvable in polynomial time if the precedence constraints graph
has form of chains or in-tree. Moreover, a hypothesis is stated that the cou-
pled tasks scheduling problems are equivalent to the corresponding problems of
scheduling of unit processing time tasks on a parallel system. The confirmation
or refutation of this hypothesis nees further research.
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Introduction

The research group ‘Theoretical Computer Science for Cognitive Systems’ (TCS)
has been newly established at Bielefeld University starting from April, 1st, 2010 at
the Faculty of Technology. It is located in the Centre of Excellence Cognitive Inter-
action Technologies (CITEC), which is funded within the frame of the excellence
initiative of the German government (see http://www.cit-ec.de/). The mission
of CITEC is to shape the command of technical systems into the ease and nat-
uralness of human communication. As such, it boosts interdisciplinary research
in diverse areas including robotics, sports sciences, natural language acquisition
and understanding, human memory and learning, neuronal control strategies, or
the investigation of animal behavior such as stick insects with the ultimate goal
to understand how cognitive processes take place at different levels such that cog-
nitive interaction with technical systems can be realized based on these findings.
Computer Science constitutes a key enabling technology within this research envi-
ronment to provide and implement functional algorithmic realizations of cognitive
interaction, to establish a technical base e.g. by means of robotic platforms and
to establish intuitive cognitive interfaces towards low-level functionalities, and to
provide a formal mathematical background which substantiates the models by ac-
cording guarantees and characterizations.

An ubiquitous feature in all these research areas is an increasing amount of electron-
ically available data. This increases with respect to both, size and complexity due
to improved sensor technologies and dedicated data formats and storage facilities.
Hence automatic techniques which help humans to extract relevant information
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from the data are required. Typical data analysis tasks include data clustering,
data visualization, the inference of data models for classification, regression, or
density estimation, relevance learning and feature extraction, etc. The main focus
of the TCS research group is the development, investigation, and application of
cognitively inspired data analysis methods which provide an intuitive interface of
digital data for humans. Within this line of research, different topics are currently
investigated within the group.

Prototype based methods

Prototype based methods represent data in terms of prototypical representatives,
and a clustering or classification is usually based on the distance of a data point
to the given prototypes. Thus, prototype-based models provide very intuitive
data analysis tools since they allow human insight by a direct inspection of the
prototypes. A variety of intuitive training techniques for both, supervised and un-
supervised settings exist, such as the popular self-organizing map (SOM), neural
gas (NG), learning vector quantization (LVQ) and generalizations such as general-
ized LVQ (GLVQ), and statistical counterparts such as the generative topographic
mapping (GTM) or soft robust learning vector quantization (SRLVQ).

Albeit very intuitive, one of the main drawbacks of the technologies is the cru-
cial role of the Euclidean metric for data representation. Commonly, the simple
Euclidean metric is not well suited for the given data due to very high dimensional-
ity, inappropriate scaling, and correlations of the features. Within the TCS group,
several approaches to get around this problem and to extend the techniques to in-
corporate more general metrics which are automatically adapted according to the
given data have been developed, such as metric learning in supervised techniques
[15, 13, 14, 17] or supervised or unsupervised metric adaptation for topographic
mapping [8, 3]. These results can be accompanied by interesting theoretical inves-
tigations of the dynamics and generalization ability [4, 18, 5] as well as technologies
to speed up and parallelize the models [1].

Dealing with dissimilarity data and structures

A further step abstracts even from vectorial representations and rather takes pair-
wise dissimilarities of data as inputs – this way, a wide applicability to modern
data structures including discrete structures such as sequences, trees, or graphs be-
comes possible by means of dedicated dissimilarities such as information theoretic
models, edit distances, or graph kernels. To apply prototype based techniques in
such settings, an adequate representation of prototypes as well as efficient ways
of how to adapt the prototypes have to be found. Within the TCS group, several
techniques have been developed to extend the classical approaches towards general

ICOLE 2010

60 Machine Learning Reports



dissimilarities by either median approaches or relational variants of the techniques
[9, 7]. The excellent results in several practical applications can be accompanied by
a thorough theoretical foundation embedding data in so-called Pseudo-Euclidean
space, and techniques to speed up the systems to avoid the usually quadratic
complexity caused by the size of the dissimilarity matrix.

Data visualization

Due to only vaguely specified objectives and more and more complex data, data
visualization becomes more and more relevant to allow humans to rapidly scan
through large volumes of complex data and to detect structures therein, rely-
ing on their astonishing cognitive capabilities as concerns visual perception. In
consequence, fast and reliable nonlinear data visualization tools constitute a key
technology in modern data analysis. Within the group, several different lines of
research are taken in this frame including visualization models with high func-
tionality such as an explicit mapping and its approximate inverse [2] or methods
which help to shape the inherently ill-posed task of data visualization such as the
incorporation of auxiliary information [6].

Biomedical applications

Apart from applications for technical systems, a large application area where the
algorithms as developed and investigated in the TCS group concerns biomedical
applications. Here complex settings and the necessity of human insight into the
models make the methods developed in the TCS group ideal candidates for au-
tomatic data analysis tools. Application areas include, for example, the analysis
of mass spectrometric data for proteomic profiling or rapid bacteria identification
[16, 11, 12, 10].

References

[1] N. Alex, A. Hasenfuss, and B. Hammer. Patch clustering for massive data sets.
Neurocomputing, 72(7-9):1455–1469, 2009.

[2] B. Arnonkijpanich, A. Hasenfuss, and B. Hammer. Local matrix adaptation in
clustering and applications for manifold visualization. Neural Networks, 23(4):476–
486, 2010.

[3] B. Arnonkijpanich, A. Hasenfuss, and B. Hammer. Local matrix adaptation in
topographic neural maps. Neurocomputing, to appear.

[4] A.W.Witolaer, A.Ghosh, J. de Vries, B. Hammer, and M.Biehl. Window-based ex-
ample selection in learning vector quantization. Neural Computation, 22(11):2924–
2961, 2010.

ICOLE 2010

Machine Learning Reports 61



[5] M. Biehl, A. Ghosh, and B. Hammer. Dynamics and generalization ability of LVQ
algorithms. Journal of Machine Learning Research, 8:323–360, 2007.

[6] K. Bunte, B. Hammer, A. Wismueller, and M. Biehl. Adaptive local dissimilarity
measures for discriminative dimension reduction of labeled data. Neurocomputing,
73(7-9):1074–1092, 2010.

[7] T. Geweniger, D. Zülke, B. Hammer, and T. Villmann. Median fuzzy-c-means for
clustering dissimilarity data. Neurocomputing, 73(7-9):1109–1116, 2010.

[8] A. Gisbrecht and B. Hammer. Relevance learning in generative topographic map-
ping. Neurocomputing, to appear.

[9] B. Hammer and A. Hasenfuss. Topographic mapping of large dissimilarity datasets.
Neural Computation, 22(9):2229–2284, 2010.

[10] F.-M. Schleif, B. Hammer, M. Kostrzewa, and T. Villmann. Exploration of mass-
spectrometric data in clinical proteomics using learning vector quantization meth-
ods. Briefings in Bioinformatics, 9(2):129–143, 2008.

[11] F.-M. Schleif, B. Villmann, M. Kostrzewa, B. Hammer, and A. Gammerman. Can-
cer informatics by prototype networks in mass spectrometry. Artificial Intelligence
in Medicine, 45(2-3):215–228, 2009.

[12] F.-M. Schleif, T. Villmann, and B. Hammer. Prototype based fuzzy classification in
clinical proteomics. International Journal of Approximate Reasoning, 47(1):4–16,
2008.

[13] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in learning
vector quantization. Neural Computation, 21:3532–3561, 2009.

[14] P. Schneider, M. Biehl, and B. Hammer. Distance learning in discriminative vector
quantization. Neural Computation, 21:2942–2969, 2009.

[15] P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, and M. Biehl. Reg-
ularization in matrix relevance learning. IEEE Transactions on Neural Networks,
21:831–840, 2010.

[16] S. Simmuteit, F.-M. Schleif, T. Villmann, and B. Hammer. Evolving trees for
the retrieval of mass spectrometry-based bacteria fingerprints. Knowledge and
Information Systems, 25(2):327–343, 2010.

[17] T. Villmann, B. Hammer, F.-M. Schleif, W. Hermann, and M. Cottrell. Fuzzy
classification using information theoretic learning vector quantization. Neurocom-
puting, 16-18:3070–3076, 2008.

[18] A. Witoelar, M. Biehl, A. Ghosh, and B. Hammer. Learning dynamics and ro-
bustness of vector quantization and neural gas. Neurocomputing, 71:1210–1219,
2008.

ICOLE 2010

62 Machine Learning Reports



Patch Affinity Propagation

Xibin Zhu∗, Barbara Hammer†

Theroretical Computer Science,
CITEC, Bielefeld University,

Germany

Acknowledgements: This work has been supported by the Cluster of
Excellence 277 Cognitive Interaction Technology funded in the frame-
work of the German Excellence Initiative.

Abstract

Affinity Propagation (AP) is a novel exemplar-based clustering algo-
rithm, which is fast and finds more reliably clusters than other exemplar-
based methods, e.g. k-centers [1]. But one constraint of AP is given by its
quadratic space complexity due to its dependency on the similarity ma-
trix. In consequence, data can often not be loaded in the main memory,
and AP cannot work. In this paper we extend AP to patch clustering
so that it can also work for large data sets. We test this extension of
AP, called Patch Affinity Propagation (PAP) on benchmark data, e.g.
11clouds, and also on a huge real-life data set, the idw text data set. The
results show that PAP works very well.

1 Affinity Propagation

Affinity Propagation (AP) is an exemplar-based clustering algorithm; it
finds exemplars by passing messages between data points [1]. Affin-
ity propagation takes pairwise similarities as input, where the similarity
s(i, k) = sik indicates how suitable data point k is as exemplar of data
point i. The goal of affinity propagation is to maximize the cost function
C given by the global similarity of data points to their exemplars:

C =
1

2

NX

i=1

s(i, I(i)) +
NX

i=1

δi(I(i))

I : {1, · · · , N} → {1, · · · , N}

δi(I) =

(
0 I(i) = i, I(j) = i

−∞ otherwise

(1)

N is the number of data points; the function I(i) is the assignment of
data point i to its exemplar; δi(I) is a punishment of this assignment: if
the assignment is valid, which means data point j chooses point i as its
exemplar, and i also chooses itself as exemplar, then the assignment will
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not be punished, otherwise it will be punished by −∞ [2]. AP optimizes
this cost function by means of a factor graph formalism for which the
max-sum algorithm yields to an approximate optimization. There are
two types of messages that can be calculated and iteratively updated:
responsibility and availability.

Update of responsibilities:

rik = sik −max
k′ 6=k

˘
aik′ + sik′

¯
(2)

Update of availabilities:

aik = min
˘

0, rkk +
X

i′ 6=i,k

max{0, ri′k}
¯

akk =
X

i′ 6=k

max{0, ri′k}
(3)

The final assignments of data points to their exemplars are determined
by searching the maximal sum of responsibilities and availabilities:

I(i) = argmax
k

(aik + rik) (4)

The number of clusters is determined by the self-similarities skk, also
called preferences, so it is not necessary to give the number of clusters in
advance [1]. Bigger values of preferences lead to more clusters, and on the
contrary small values lead to less clusters. As default the preferences of
all data points are set to the median of the similarities, so that all data
points have the same chance to become an exemplar.

2 AP for large data sets

The update rules of AP are simple, and can be easily implemented. AP
works faster and finds clusters with lower error than other exemplar-
based methods, e.g. k-centers[1]. As most similarity based clustering
approaches, affinity propagation runs in the worst case in time O(N2),
i.e. it is infeasible for huge data sets.

Patch clustering tries to get around this problem by means of an iter-
ative consideration of the data. Basically, instead of taking all the data
at once, the data are considered in patches of size P . First, data 1 to P
are considered, then data P + 1 to 2P and so on, until all data have been
considered [4]. Data are clustered consecutively, whereby the exemplars
of the previous patch serve as additional data points for the next patch.
These exemplars represent the data points in their receptive field, and
they are weighted with the number of points in their receptive field, also
called multiplicity. Thus, affinity propagation is iteratively executed using
points in the new patch and the exemplars of the previous patch, which
are weighted with multiplicities, as inputs. The pseudocode of patch clus-
tering is shown as Algorithm 1.

Instead of taking all the data points of the previous patch, only the ex-
emplars and their multiplicities are taken for the next patch. Due to this
compressed representation, information loss usually takes place. However,
we will see in experiments that patch AP closely resembles the perfor-
mance of AP, i.e. the information loss is usually not severe.
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Algorithm 1 Pseudocode of patch clustering
1: function Patch-Clustering(patchsize)
2: P = patchsize
3: l = 0
4: init (weighted) exemplars E as the empty set
5: repeat
6: read next patch of data B = {xl·P+1, ..., x(l+1)·P }
7: i.e. the similarities s(xi, xj), where xi, xj ∈ B
8: read the similarities of data in B and the exemplars in E,
9: i.e. s(xi, xj) where xi ∈ B, xj ∈ E, vice versa

10: read the similarities of the exemplars in E,
11: i.e. s(xi, xj) where xi, xj ∈ E
12: read the preferences of data in B and the exemplars in E
13: i.e. p(xi) where xi ∈ B or E
14: call affinity propagation for multiplicities on these similarities and
15: preferences, where points xi ∈ E are taken with multiplicities
16: reset E as the exemplars found by AP for multiplicities, weight
17: the points in E according to the number of points assigned
18: to them, counted with multiplicities
19: l = l + 1
20: until all data are read or all similarities are read
21: end function

3 Affinity propagation for multiplicities

To apply patch clustering, it is necessary to extend affinity propagation
so that it can take multiplicities of data points into account, because
original AP works only for standard data points, which corresponds to
multiplicities of data points equal to one (mi = 1). One possibility to
extend AP to multiple points is via the underlying cost function. We
assume the multiplicity of data point i is denoted as mi. Then, the cost
function (overall similarity of data points to their exemplars) of affinity
propagation becomes

C =
1

2

NX

i=1

mi · s(i, I(i)) +
NX

i=1

δi(I(i)) (5)

Thus, the multiplicities can be taken into account by simply multiplying
the similarities by the multiplicities mi, i.e. we have to multiply the simi-
larities corresponding to i by the multiplicity mi. So the update formula
of responsibilities 2 should be changed like follows

rik = mi · sik −max
k′ 6=k

˘
aik′ +mi · sik′

¯
(6)

Because the availabilities only depend on the responsibilities, they are not
changed. Furthermore the preferences should also take the multiplicities
into account so that the data points with bigger multiplicities can be
chosen as an exemplar with a higher probability than the data points
with smaller multiplicities. For instance, if the similarity is a negative
euclidian distance, then the preferences can be adapted like following

pi = pi/mi (7)
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Figure 1: 11 Clouds consists of 110 data points, which are separated into 11
apart sets.

4 Patch Affinity Propagation

With the new affinity propagation for multiplicities patch clustering can be
realized and implemented, we call this integration of affinity propagation
and the patch idea Patch Affinity Propagation (PAP). There are two
methods of patch affinity propagation that are implemented which differ
with respect to the heuristics according to which the preferences are set
for every new patch:

PAP K: by means of iteratively adjusting the preferences this method
tries to find a given number of clusters (e.g. K) or a number of
clusters in a given interval (e.g. between K-5 and K+5) for each
patch run.

PAP Heuristic: by means of adjusting the preferences this method tries
to find more exemplars in the earlier patch runs so that the informa-
tion loss of data points is low, and in the later patch runs the number
of exemplars is decreased, until eventually a reasonable number of
exemplars can be found.

Both methods work well in the tests (see chapter 5), but PAP K takes
more time than PAP Heuristic, because it adjusts the preferences many
times to find K exemplars for each patch run.

5 Tests and evaluation

First PAP is tested on the benchmark data set, 11 Clouds, which contains
11 separate sets of 2D data points, each with 10 points (see figure 1), then
PAP is tested on a large real-life data set, the idw text data set.

11Clouds

For different patch sizes both methods of PAP are tested on 11 Clouds.
Tabel 1 shows the results of PAP K, in this case we set an interval of
number of clusters between 5 and 17 so that PAP K can always find an
appropriate number of clusters for each earlier patch run. Table 2 shows
the results of the PAP Heurisitic.

mQErrTrain is the average quantization error of the training data,
mQErrTest is the average quantization error of the test data, mStd is the
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PAP K, 11Clouds, 10-fold cross validation, 50 runs
according to 11 classes, prc=60%, K ∈ [5, 17]

patch size mTime[m.] mQErrTrain(mStd) mQErrTest(mStd) mHitrateTrain(mStd) mHitrateTest(mStd)

10 156.66 -51.024(0.551) -6.869(0.281) 1.000(0.000) 1.000(0.000)
20 116.81 -49.030(0.488) -6.336(0.366) 1.000(0.000) 1.000(0.000)
30 87.77 -46.824(0.402) -5.829(0.342) 1.000(0.000) 1.000(0.000)
40 31.80 -47.517(0.402) -6.389(0.334) 1.000(0.000) 1.000(0.000)
50 23,34 -46.160(0.351) -5.924(0.306) 1.000(0.000) 1.000(0.000)

Table 1: evaluation of PAP K (with an interval [5, 17]) for 11Clouds

PAP Heuristic11Clouds, 10-fold cross validation, 50 runs

patch size mTime[m.] mQErrTrain(mStd) mQErrTest(mStd) mHitrateTrain(mStd) mHitrateTest(mStd)

10 8.83 -51.800(0.601) -6.780(0.403) 1.000(0.000) 1.000(0.000)
20 6.84 -48.813(0.491) -6.282(0.369) 1.000(0.000) 1.000(0.000)
30 6.92 -46.474(0.416) -5.850(0.280) 1.000(0.000) 1.000(0.000)
40 6.71 -47.517(0.495) -6.389(0.419) 1.000(0.000) 1.000(0.000)
50 6.33 -46.160(0.404) -5.924(0.309) 1.000(0.000) 1.000(0.000)

Table 2: evaluation of PAP Heuristic for 11Clouds

corresponding average standard deviation; mHitrateTrain is the average
hit rate of training data, mHitrateTest is the average hit rate of test
data, mStd is the corresponding average standard deviation; mTime is
the average runtime.

For 11Clouds both methods work well, every data point (either in the
training data or the test data) can be correctly classified into its class.
But a significant difference is the runtime, PAP K took much more time
than PAP Heuristic, because it adjusted the preferences many times to
find an appropriate number of clusters for each patch.

idw data set

idw1 is an abbreviation for “Informationsdienst Wissenschaft” (Informa-
tion service for the sciences), it collects over 190,000 text documents (so
far) in overall 33 areas, e.g. biology, medicine, politics, computer science,
etc. For our tests we took nearly 80.000 texts, and preprocessed the texts
by standard text preprocessing methods like stopwords reduction, stem-
ming. We use a dimensionality reduction given by random projection.
Because the idw texts are multi-labeled, we use the α-evaluation[5] to
evaluate the results of PAP, which is a generalized version of the Jaccard
Similarity Metric[3]. Tables 3 and 4 show the results of the two methods
of PAP on the idw data set for different patch sizes and dimensions. After
stopword reduction and stemming there are still 54553 words left, which
means the dimensionality is still high, so we used random projection to
reduce the high dimensions to 100, 500, and 1000 dimensions, respectively.

On the idw data both PAP methods work also well. For different
patch sizes the accuracy in low-dimensional space is comparable with the
accuracy of the original high-dimensional space, e.g. in 1000 dimensions
the accuracy is almost the same as for 54553 dimensions. Although the
average runtime in low dimensions is significantly shorter than in high
dimensions, the accuracy is not significantly worse, just nearly 2%.

1http://idw-online.de
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PAP K, idw(79810 documents, 54553 words/dimensions)
5-fold cross validation, 5 runs

according to 33 areas, prc = 20%,K ∈ [27, 39]

α-evaluation: α = 1, β = 1, γ = 1/4

Patch Dim/RP mTime [m.] mCATrain ML
(mStd)

mCATest ML
(mStd)

mCATrain ML Simp
(mStd)

mCATest ML Simp
(mStd)

300 54553 85.59 0.677(0.001) 0.677(0.001) 0.767(0.001) 0.767(0.001)
300 100 29.96 0.666(0.002) 0.666(0.002) 0.773(0.001) 0.773(0.001)
300 500 27.82 0.667(0.001) 0.666(0.001) 0.764(0.002) 0.764(0.002)
300 1000 34.08 0.669(0.001) 0.668(0.001) 0.762(0.001) 0.762(0.002)

1000 54553 382.36 0.680(0.001) 0.681(0.001) 0.761(0.001) 0.763(0.001)
1000 100 219.98 0.663(0.001) 0.662(0.001) 0.765(0.001) 0.765(0.001)
1000 500 248.07 0.668(0.001) 0.668(0.001) 0.759(0.001) 0.759(0.001)
1000 1000 322.74 0.680(0.001) 0.679(0.001) 0.760(0.001) 0.759(0.002)

Table 3: Results of PAP K on idw data

PAP Heuristic, idw(79810 documents, 54553 words/dimentions)
5-fold cross validation, 5 runs

α-evaluation: α = 1, β = 1, γ = 1/4

Patch Dim/RP mTime [m.] mCATrain ML
(mStd)

mCATest ML
(mStd)

mCATrain ML Simp
(mStd)

mCATest ML Simp
(mStd)

300 54553 74.90 0.667(0.001) 0.668(0.002) 0.765(0.001) 0.765(0.002)
300 100 19.94 0.667(0.002) 0.667(0.002) 0.773(0.001) 0.777(0.002)
300 500 32.04 0.667(0.001) 0.667(0.001) 0.765(0.001) 0.765(0.001)
300 1000 22.98 0.670(0.003) 0.670(0.003) 0.764(0.003) 0.764(0.003)

1000 54553 229.41 0.680(0.002) 0.681(0.001) 0.761(0.001) 0.763(0.001)
1000 100 48.91 0.664(0.000) 0.663(0.002) 0.763(0.001) 0.762(0.001)
1000 500 51.49 0.675(0.001) 0.674(0.001) 0.764(0.001) 0.763(0.001)
1000 1000 106.52 0.680(0.001) 0.679(0.001) 0.762(0.001) 0.761(0.001)

Table 4: Results of PAP Heuristic on idw data

6 Conclusion

With the simple idea of patch clustering affinity propagation can be used
on huge data sets. We demonstrated that it works well not just for the 11
Clouds benchmark, but also for the real data set given by the idw data
set. Thus PAP offers a promising tool for clustering on huge data sets.
In the future more more tests of PAP will be executed, e.g. on biological
data sets.
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1 Introduction

A wealth of dimensionality reduction methods exists, including t-SNE, LLE,
MVU, Laplacian eigenmaps, or Isomap, for example [7, 9, 8]. In a nutshell, these
technologies rely on the principle to map given data points to low dimensions
such that important data characteristics are preserved as much as possible. The
methods differ in the choice of the data characteristics (e.g. pairwise distances,
locally linear relationships, pairwise probabilities, . . . ) and the way in which the
objective is optimized (using e.g. spectral techniques or numerical optimization).

Unlike these approaches, the generative topographic mapping (GTM) takes
a fundamentally different perspective [1]. It is based on a generative statisti-
cal model which explains the observed data distribution. The parameters are
adapted such that the data log likelihood is maximized. The statistical model
is constraint such that the single Gaussian modes can smoothly be associated
with points in a low dimensional latent space. This way, data visualization is
obtained as a by-product of the method. Being based on a Gaussian mixture
model, it offers additional functionalities such as data clustering, neighborhood
browsing, outlier detection, and direct out of sample extensions.

Original GTM has been proposed for Euclidean data. Often, data display
a specific non-Euclidean structure: biological sequences and their alignment,
graph structures and corresponding kernels, or text and corresponding informa-
tion theoretic distances. In these cases, it is much more appropriate to work
with the given dissimilarities rather than to enforce a feature representation
of data. GTM has recently been extended to general dissimilarities, relational
GTM (RGTM) [2, 3]. While the mapping and visualization obtained this way
display a high quality for a number of benchmarks [2, 3], the method has a draw-
back: it has squared complexity and, thus, it is not feasible for large data sets -
this problem is common for all methods which rely on pairwise dissimilarities.

In this contribution, we show that, for RGTM, due to its algebraic formu-
lation of the training problem, the Nyström approximation of the dissimilarity
matrix leads to a linear time approximation of the full procedure. One can prove
that this approximation is exact if the approximation mirrors the embedding
space of the given dissimilarity data. For smaller sizes, the approximation may
lead to worse results. We test the method in two real world examples.

1Center of Excellence for Cognitive Interaction Technology, Bielefeld University, D-33594
Bielefeld, Germany

2E-mail: agisbrec@techfak.uni-bielefeld.de
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2 The generative topographic mapping

GTM: We shortly review GTM and its extension to relational data. Given
data x ∈ RD, GTM defines a constraint mixture of Gaussians with centers
induced by a regular lattice of points w in latent space. The prototypes are
mapped to target vectors w 7→ t = y(w,W) in the data space, where the
function y is typically chosen as a generalized linear regression model y : w 7→
Φ(w) ·W induced by base functions Φ such as equally spaced Gaussians with
bandwidth σ. Every latent point induces a Gaussian distribution

p(x|w,W, β) =
(

β

2π

)D/2

exp
(
−β

2
‖x− y(w,W)‖2

)
(1)

with variance β−1. In total, a mixture of K modes

p(x|W, β) =
K∑

k=1

1
K

p(x|wk,W, β) (2)

is generated. GTM training optimizes the data log-likelihood

ln

(
N∏

n=1

(
K∑

k=1

p(wk)p(xn|wk,W, β)

))
(3)

with respect to W and β. This can be done by means of an EM approach
which treats the generative mixture component wk for a data point xn as hidden
parameter. In explicit formulas, responsibilities

Rkn(W, β) = p(wk|xn,W, β) =
p(xn|wk,W, β)p(wk)∑
k′ p(xn|wk′ ,W, β)p(wk′)

(4)

of component k for point number n, and the model parameters by means of the
formulas

ΦT GoldΦWT
new = ΦT RoldX (5)

for W are subsequently computed until convergence, where Φ refers to the
matrix of base functions Φ evaluated at points wk, X to the data points, R to
the responsibilities, and G is a diagonal matrix with accumulated responsibilities
Gnn =

∑
n Rkn(W, β). The variance can be computed by solving

1
βnew

=
1

ND

∑

k,n

Rkn(Wold, βold)‖Φ(wk)Wnew − xn‖2 (6)

where D is the data dimensionality and N the number of data points. Usually,
GTM is initialized referring to PCA to avoid convergence to local optima.
Relational GTM: We assume that data x are given by pairwise dissimilari-
ties dij = ‖xi−xj‖2 with corresponding dissimilarity matrix D, where the vector
representation x of the data is unknown. As pointed out in [6, 4], if prototypes
are restricted to linear combinations of data points of the form tk =

∑N
n=1 αknxn

with
∑N

n=1 αkn = 1 the prototypes tk can be represented indirectly by means of
the coefficient vector αk and, further, distances of data points and prototypes
can be computed by

‖xn − tk‖2 = [Dαk]n −
1
2
· αT

k Dαk (7)
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where [·]i is component i of the vector.
As before, the targets tk induce a Gaussian mixture distribution in the

data space. They are obtained as images of points w in latent space via a
generalized linear regression model. Since the embedding space of tk is not
known, we directly treat the mapping as a mapping to coefficients: y : wk 7→
αk = Φ(wk) · W where, now, W ∈ Rd×N . This corresponds to a generalized
linear regression of the latent space into the (unknown) surrounding vector space
due to the linear dependency of the targets and coefficients. In the α-space of
linear combinations of data points, data points xi itself are represented by unit
vectors, in consequence, the data matrix X is now the unit matrix I.

To apply (7), we put the restriction
∑

n[Φ(wk) · W]n = 1. This way, the
likelihood function can be computed based on (1) where the distance compu-
tation can be performed indirectly using (7). As for GTM, we can use an
EM optimization scheme to arrive at solutions for the parameters β and W,
where, again, the mode wk responsible for data point xn serves as hidden
parameter. An EM algorithm in turn computes the responsibilities (4) using
the alternative formula for the distances (7), and it optimizes the expectation∑

k,n Rkn(Wold, βold) ln p(xn|wk,Wnew, βnew) with respect to W and β under
the above constraint on W. Using Lagrange optimization one can see that the
optimum automatically fulfills the constraints.

Hence the model parameters can be determined in analogy to (5,6) where,
now, functions Φ map from the latent space to the space of coefficients α. We
refer to this iterative update scheme as relational GTM (RGTM). Initialization
of RGTM can take place by referring to the first MDS directions of the given
dissimilarity matrix.

3 The Nyström method

We shortly review the Nyström technique as presented in [10]. By the Mer-
cer theorem kernels k(x,y) can be expanded by orthonormal eigenfunctions
φi and non negative eigenvalues λi in the form k(x,y) =

∑∞
i=1 λiφi(x)φi(y).

If k is represented by a matrix, the number of non zero eigenvalues is given
by the rank. The eigenfunctions and eigenvalues of a kernel are the solution
of
∫

k(y,x)φi(x)p(x)dx = λiφi(y), which can be approximated based on the
Nyström method by sampling xk i.i.d. according to p: 1

m

∑m
k=1 k(y,xk)φi(xk) ≈

λiφi(y). Using the matrix eigenproblem K(m)U(m) = U(m)Λ(m) of the m ×m
Gram matrix K(m) we can derive the approximations for the eigenfunctions and
eigenvalues

λi ≈
λ

(m)
i

m
, φi(y) ≈

√
m

λ
(m)
i

kyu
(m)
i , (8)

where u(m)
i is the ith column of U(m). Thus, we can approximate φi at an

arbitrary point y as long as we know the vector ky = (k(x1,y), ..., k(xm,y))T .
One well known way to approximate a n× n Gram matrix, is to use a low-

rank approximation. This can be done by computing the eigendecomposition of
the kernel K = UΛUT , where U is orthonormal and Λ is diagonal with Λ11 ≥
Λ22 ≥ ... ≥ 0, and keeping only the m eigenspaces which correspond to the m
largest eigenvalues of the matrix. The approximation is K ≈ Un,mΛm,mUm,n,
where Ab,c notes the matrix with the b first rows and c first columns of A. The
Nyström method can approximate a kernel in a similar way, without computing
the eigendecomposition of the whole matrix, which is an O(n3) operation. For a
given n×n Gram matrix K we randomly choose m rows and respective columns.
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After permutation, we assume without loss of generality that these are the first
m rows and columns. We denote these rows by Km,n and columns by Kn,m,
which are transposes of each other, since the matrix is symmetric. Using the
formulas (8) we obtain K̃ =

∑m
i=1 1/λ

(m)
i ·Kn,mu(m)

i (u(m)
i )T Km,n, where λ

(m)
i

and u(m)
i correspond to the m × m eigenproblem. In the case that some λ

(m)
i

are zero, we replace the corresponding fractions with zero. Thus we get, K−1
m,m

denoting the Moore-Penrose Pseudoinverse,

K̃ = Kn,mK−1
m,mKm,n. (9)

For a given matrix K with rank m, this approximation is exact, if the m chosen
m-dimensional points are linearly independent.

4 Nyström approximation for dissimilarities

Originally the Nyström method was presented for positive semidefinite Gram
matrices. For dissimilarity data, a direct transfer is possible: A symmetric
dissimilarity matrix D is a normal matrix and according to the spectral theorem
can be diagonalized D = UΛUT with U an unitary matrix whose column
vectors are the orthonormal eigenvectors of D and Λ a diagonal matrix with the
eigenvalues of D, which can be negative for non-Euclidean distances. Therefore
the dissimilarity matrix can be seen as an operator d(x,y) =

∑N
i=1 λiφi(x)φi(y)

where λi ∈ R correspond to the diagonal elements of Λ and φi denote the
eigenfunctions. As we can see, the only difference to an expansion of a kernel
is that the eigenvalues are allowed to be negative. All further mathematical
manipulations can be applied in the same way.

Using the approximation (9) for the distance matrix, we can apply this result
for RGTM. It allows to approximate (7) in the way

‖xn − tk‖2 ≈
[
Dn,m

(
D−1

m,m (Dm,nαk)
)]

n
− 1

2
·
(
αT

k Dn,m

)
·
(
D−1

m,m (Dm,nαk)
)

(10)
which is O(m2n) instead of O(n2), i.e. it is linear in the number of data points
n, assuming fixed approximation m. Again, the approximation is exact if m
suits the rank of the matrix.

5 Experiments

We test the applicability of the Nyström technique for RGTM on two real life
data sets: The Copenhagen chromosomes data set as presented in ([5]) con-
tains 4200 data from 22 classes representing distances of grey valued images
of chromosomes using a suitable dissimilarity measure. The idw data set con-
tains 79810 articles with scientific news from the data base ’Informationsdi-
enst Wissenschaft’ (a German service organization gathering research news, see
http://idw-online.de) which are multi-labeled with 8 categories. The articles are
preprocessed by stop word reduction, stemming, and random projection from
54553 to 100 dimensions, using cosine dissimilarity afterwards.
Chromosomes: For the chromosomes data, we use 50 cycles, 10 × 10 base
functions which standard deviation is set to the distance between two neighbor-
ing basis function centers, and 40×40 latent points. We report the classification
rate obtained by a 10-fold cross-validation with 5 repeats and a different per-
centage of points m ∈ {2, 90} for the Nyström approximation as depicted in
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Fig. 1. The rightmost number corresponds to a standard RGTM setting with-
out Nyström approximation. The red line denotes the time in seconds used for
training.

The distance matrix of the chromosomes data set has a high rank and many
large eigenvalues. Therefore, it cannot easily be approximated by a low rank
matrix. This fact is mirrored by the graph shown in Fig. 1: while the approx-
imation leads to a considerable speedup, it also causes a loss of information
corresponding to a decrease of the accuracy from almost .9 to less than .6.
Idw data: The idw data set is trained for the same number of epochs, using
10×10 latent points and 3×3 base functions. Unlike for the Chromosomes data,
a Nyström approximation using m = 101 leads to an exact reconstruction of the
matrix due to the inherent low dimensionality of the data. Posterior labeling,
where a relative cutoff of .8 is used, leads to a visualization of the represented
classes as shown in Fig. 2. The resulting topographic mapping allows an intuitive
inspection and retrieval of the main categories as present in the data set.

6 Conclusions

We investigated the suitability of the Nyström method to speed up relational to-
pographic maps for large data sets. While the technique leads to linear effort, its
suitability severely depends on the intrinsic dimensionality of the given dissimi-
larity matrix. As demonstrated in the experiments, there can be a considerable
loss of information if the dimensionality is higher.
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Percentage of points used for Nyström approximation
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Figure 1: Accuracy and time when using the Nyström technique to speed up
RGTM for Chromosomes
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Figure 2: Visualization of the idw data set using RGTM and the Nyström
approximation
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1 Introduction

The amount of electronic data available today increases rapidly in virtually
all areas of life, such that visualization techniques constitute important inter-
faces between the digital information and the human user. In order to visualize
high-dimensional data, there are numerous dimensionality reduction (DR) tech-
niques available to map the data points to a low-dimensional space, e.g., the
two-dimensional Euclidean plane, see [1, 2, 3] for an overview. As a general set-
ting, original data are given as a set of N vectors xi ∈ X ⊂ Sn, i ∈ {1, . . . , N}.
Using DR, each data vector is mapped to a low-dimensional counterpart for vi-
sualization, called target yk ∈ Y ⊂ Rv, k ∈ {1, . . . , N}, where typically n ≫ v
and v = 2. With an increasing number of such methods, a reliable assessment
of the quality of produced visualizations becomes more and more important, in
order to achieve comparability. One objective of DR is to preserve the avail-
able information as much as possible. In this sense, the reconstruction error
Ereconstr :=

∑
i ‖xi − f−1(f(xi))‖2 where f denotes the DR mapping of the

data, and f−1 its approximate inverse, could serve as a general quality mea-
sure. This has the drawback that, for most DR methods, no explicit mapping
f is available and an approximate inverse f−1 is also not known. As an al-
ternative, the existing quality assessment (QA) measures rely on statistics over
input-versus-output discrepancies, which can be evaluated based solely on the
given data points and their projections. Different QA approaches have been
proposed in the last years, see [4] for an overview. These specialized measures
represent a means to objectively assess an overall qualitative change under spa-
tial transformation. Recently, two generalized approaches have been introduced
that can serve as unifying frameworks, including some earlier QA concepts as
special cases:
CRM: The coranking matrix and its derived quality measure, presented in [4].
IR: An information retrieval perspective measuring precision & recall for vi-
sualization, see [2].
These frameworks have been evaluated extensively in the context of DR tools,

1Center of Excellence for Cognitive Interaction Technology, Bielefeld University, D-33594
Bielefeld, Germany

2E-mail: bmokbel@techfak.uni-bielefeld.de
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which map given data points to low-dimensional coordinates. The rapidly in-
creasing size of modern data sets, however, causes the need to not only project
single points, but to also priorly compress the available information. Hence, fur-
ther steps such as, e.g., clustering become necessary. While the QA approaches
can be used to evaluate DR methods, it is not clear in how far they can also
reliably measure the quality of clustering. Conversely, typical QA measures for
clustering such as the quantization error cannot be extended to DR methods,
since this would lead to the (usually infeasible) reconstruction error. Hence,
it is interesting to investigate if QA approaches for DR methods can be trans-
ferred to the clustering domain. This would open the way towards an integrated
evaluation of the two steps.

2 Quality Assessment for Dimension Reduction

Coranking matrix (CRM) The CRM framework, presented in [4], offers a
general approach to QA for DR. The coranking matrix is essentially a histogram
over all rank errors in the given projection, see [4] for a detailed definition. In
the originally proposed framework, ties of the ranks are broken deterministi-
cally, such that no two equal ranks occur. This has the advantage that several
properties of the coranking matrix (such as constant row and column sum) hold,
which are, however, not necessary for the evaluation measure. For our purposes,
it is more suitable to allow equal ranks, e.g., if distances are identical. Based on
the coranking matrix, various different quality measures can be computed. In
our experiments, we only report the overall quality indicator, which is proposed
as a reasonable objective, taking into account weighted averages of all intrusions
and extrusions, see [4] for details.

Information retrieval (IR) In the IR framework, presented in [2], visual-
ization is viewed as an information retrieval task. One data point xi ∈ X is seen
as a query of a user, which has a certain neighborhood Ai in the original data
space, called input neighborhood. It represents the truthful, but unretrievable
answer to the query. The retrieval result is based solely on the visualization
which is presented to the user. There, the neighborhood of its respective target
yi ∈ Y is denoted by Bi, called the output neighborhood. If both neighborhoods
are defined over corresponding notions of proximity, it becomes possible to eval-
uate, how truthful the query result is with respect to the given query. One can
define the neighborhoods by a fixed distance radius αd, valid in input, as well
as in output space, so Ai and Bi consist of all data points (other than i itself),
which have a smaller or equal distance to xi and yi respectively: Analogously,
the neighborhoods can be defined by a fixed rank radius αr, so the neighbor-
hood sets Ai and Bi contain the αr nearest neighbors. Note that Ai and Bi

usually differ from each other due the projection of data to low dimensionality.
These differences can be evaluated in terms of true positives, false positives, and
misses for each query, i.e., data point i, which leads to the information retrieval
measures precision and recall, see [2] for details. For a whole set X of data
points, one can calculate the mean precision and mean recall by averaging over
all data points xi, which we report for our experiments.
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3 Quality Assessment for Clustering

Clustering aims at decomposing the given data xi into homogeneous clusters,
see [5]. Prototype-based clustering achieves this goal by specifying M proto-
types pu ∈ P ⊂ Sn, u ∈ {1, . . . , M}, which decompose the data by means of
their receptive fields Ru, which are given by the points xi closer to pu than
to any other prototype, breaking ties deterministically. Many prototype-based
clustering algorithms exist, see, e.g., [6, 5]. If a large data set has to be visu-
alized, a typical procedure is to first use the clustering algorithm to represent
the dataset by a significantly smaller number of representative prototypes, and
to visualize these prototypes in low dimensions, afterwards. In consequence, a
formal evaluation of this procedure has to take into account both, the cluster-
ing step and the dimensionality reduction. To treat the two steps, clustering
and visualization, within one common framework, we interpret clustering as a
’visualization’ which maps data points to their closest prototype respectively:
xi 7→ yi := pu such that xi ∈ Ru. In this case, the visualization space Rv

coincides with the data space Sn. Obviously, by further projecting the proto-
types, a ’proper’ visualization could be obtained, which is equivalent to a classic
dimensionality reduction problem, so it is not discussed here. The typical error
measure for clustering is the quantization error Eqe :=

∑
u

∑
xi∈Ru

‖xi − pu‖2
which evaluates the averaged distance within clusters. Obviously, it coincides
with the reconstruction error of visualization as introduced above. Hence, since
the latter can usually not be evaluated for standard DR methods, the quanti-
zation error can not serve as evaluation for simultaneous clustering and visual-
ization. As an alternative, one can investigate whether the QA tools for DR,
as introduced above, give meaningful results for clustering algorithms. There
exist some general properties of these measures which indicate that this leads to
reasonable results: for fixed neighborhood radius αr, an intrusion occurs only if
distances between clusters are smaller than αr; an extrusion occurs only if the
diameter of a cluster is larger than αr. Hence, the QA measures for DR punish
small between-cluster-distances and large within-cluster-distances. Unlike the
global quantization error, they take into account local relationships and they
are parameterized by the considered neighborhood sizes.

In the following, we experimentally test in how far the QA measures for
DR as introduced above lead to reasonable evaluations for typical clustering
scenarios.

4 Experiments

We use two artificial 2-dimensional scenarios with randomly generated data
points, where data are arranged in clusters (11 clouds), or data are distributed
uniformly (random square), respectively. We use the batch neural gas (BNG)
algorithm [6] for clustering as a robust classical prototype-based clustering al-
gorithm. We use different numbers of prototypes per scenario, covering various
’resolutions’ of the data.
11 clouds data This consists of 1100 random data vectors as shown in
Fig. 1(a). We used 110, 11, and 5 prototypes, which lead to three respec-
tive situations: (I) M = 110 – each cloud is covered by ∼ 10 prototypes, none
of them located in-between the clouds, so one cluster consists of ∼ 10 data
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points; (II) M = 11 – there is one prototype approximately in the center of
each cloud, so one cluster consists of ∼ 100 data points; (III) M = 5 – there
are not enough prototypes to cover each cloud separately, so only two of them
are situated near cloud centers and three are spread in-between clouds. Cluster
sizes vary between ∼ 100 and ∼ 300 data points, which includes more than one
cloud on average.

The resulting prototypes are depicted in Fig. 1(a), the according QA results
are shown in Fig. 2(a) to 2(f). The graphs show the different quality values,
sampled over neighborhood radii from the smallest to the largest possible. The
figures on the left hand side refer to distance-based neighborhoods, the ones on
the right refer to rank-based neighborhoods.

In several graphs, especially in Fig. 2(c), 2(d), the grouped structure of the
11 clouds data is resembled by wave or sawtooth patterns of the QA curves,
showing that the total amount of rank or distance errors change rapidly as the
neighborhood range coincides with cluster boundaries. Similarly, in all graphs
there is a first peak in quality at the neighborhood radius where only a single
cloud is approximately contained in each neighborhood. Within such neighbor-
hoods, rank or distance errors are rare, even under the mapping of points to
their closest prototypes. This effect is visible, e.g., in Fig. 2(e), 2(f). Interest-
ingly, in Fig. 2(e), 2(f), there is a first peak where both, precision and recall
are close to 1 corresponding to the ’perfect’ cluster structure displayed in the
model, while Fig. 2(a), 2(b) do not possess such value for small neighborhood
corresponding to the structural mismatch because of the small number of proto-
types. Unlike the IR measures, the CRM measure leads to smaller qualities for
smaller numbers of prototypes in all cases. The structural match in the context
of 11 prototypes can be observed in a comparably large increase of the absolute
value, but the situation is less clear as compared to the IR measures. For the
IR measures, the main difference in between the situations where a structural
match can be observed (11 and 110 prototypes, respectively) is the smoothness
of the curves, but not their absolute value.
Random square data Data and prototype locations for 10 and 100 proto-
types are depicted, respectively, in Fig. 1(b). For M = 100, each cluster consists
of ∼ 10 data points, and with M = 10 the sizes were ∼ 100. As expected, the
QA graphs in Fig. 2(g) and 2(h) are continuously rising for the setting M = 100,
whereas the curves are less stable but still following an upward trend for M = 10.
This shows how the sparse quantization of the whole uniform data distribution
leads to more topological mismatches over various neighborhood sizes.

5 Conclusions

In this contribution, we investigated the suitability of recent QA measures for
DR to also evaluate clustering, such that visualization of large data sets, which
commonly requires both, clustering and dimensionality reduction, could be eval-
uated based on one quality criterion only. While a formal transfer of the QA
measures to clustering is possible, there exist qualitative differences between
the IR and CRM evaluation criteria. It seems that IR based evaluation criteria
allow to also detect appropriate cluster structures, corresponding to high pre-
cision and recall, while the situation is less pronounced for the CRM measures
where a smooth transition of the measures corresponding to the cluster sizes can
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be observed. One drawback of the IR evaluation is its dependency on the local
scale as specified by the radii used for the evaluation. This makes it difficult to
interpret the graphs due to the resulting sawtooth patterns even for data which
possess only one global scale. If the scaling or density of the data varies locally,
results are probably difficult to interpret. This question is subject of ongoing
work.
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Figure 1: 1(a) 11 clouds dataset and three independent prototype distributions
of 110, 11, and 5 prototypes. 1(b) random square dataset with two independent
prototype distributions of 100 and 10 prototypes.

ICOLE 2010

Machine Learning Reports 79



0 5 10 15 20 25
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Distance Radius for Neighborhood

Distance−based QA by IR: M=5

 

 

Mean Precision (IR)
Mean Recall (IR)

(a)

0 200 400 600 800 1000 1200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Rank Radius for Neighborhood

Rank−based QA by IR and CRM: M=5

 

 

Mean Precision (IR)
Mean Recall (IR)
Quality (CRM)

(b)

QA for 11 clouds dataset, clustered with 5 prototypes

0 5 10 15 20 25
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Distance Radius for Neighborhood

Distance−based QA by IR: M=11

 

 

Mean Precision (IR)
Mean Recall (IR)

(c)

0 200 400 600 800 1000 1200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Rank Radius for Neighborhood

Rank−based QA by IR and CRM: M=11

 

 

Mean Precision (IR)
Mean Recall (IR)
Quality (CRM)

(d)

QA for 11 clouds dataset, clustered with 11 prototypes
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QA for 11 clouds dataset, clustered with 110 prototypes
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Figure 2: QA results from the IR and CRM frameworks for the two artificial
clustering scenarios (11 clouds & random square) shown in Fig. 1. In the left
column are the results with neighborhoods defined over distance radii; in the
right column the neighborhoods were based on rank radii.
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Abstract

We propose a functional approach for relevance learning and matrix

adaptation for learning vector quantization of high-dimensional functional

data. We show, how parametrization of the functional relevance profile or

functional matrix learning can be established for a reasonable number of

parameters to be adapted.

Keywords: functional vector quantization, relevance learning, matrix

learning, information theory

1 Introduction

During the last years prototype based models became one of the widely para-

digms for clustering and classification. Thereby, different strategies are proposed

in classification. Whereas support vector machines (SVMs) emphasize the class

borders by the support vectors while maximizing the separation margin, the family

of learning vector quantization (LVQ) algorithms is motivated by class represen-

tative prototypes and decision margin optimization to achieve high classification

accuracy [2]. Based on the original but heuristically motivated standard LVQ in-

troduced by Kohonen [7] several more advanced methods were proposed. One
key approach is the generalized LVQ (GLVQ) suggested by Sato&Yamada [10]
approximating the accuracy by a differentiable cost function to be minimized by

stochastic gradient descent. This algorithm was extended to deal with metric

adaptation to weight the data dimension according to their relevance for classifi-

cation [4]. Usually, this relevance learning is based on weighting the Euclidean dis-

tance, and, hence, the data dimensions are treated independently leading to large

number of weighting coefficients, the so-called relevance profile, to be adapted in
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case of high-dimensional data. The extension of this approach is matrix learning

where a parametric quadratic form is used [12].

If the data dimension is huge, as it is frequently the case for spectral data

or time series, the relevance determination and the parameter adaptation may

become crucially or instable. However, functional data have in common that

the vectors can be seen as discrete realizations of functions, i.e. the vectors are

so-called functional data. For those data the index of the vector dimensions is a

representative of the respective independent function variable, i.e. frequency, time

or position etc. In this sense the data dimensions are not longer uncorrelated.

The aim of the new relevance and matrix learning methods proposed here is to

make use of this interpretation. Then, the relevance profile can be also assumed

as a discrete representation of a one-dimensional relevance function. For the para-

meter matrix of the quadratic form in matrix learning a two-dimensional function

description is assumed. We suggest to approximate these functions as a superposi-

tions of only a few basis functions depending on a drastically decreased number of

parameters compared to the huge number of independent relevance weights or ma-

trix elements. We call the resulting algorithms Generalized Functional Relevance

LVQ (GFRLVQ) and Generalized Functional Matrix LVQ (GFMLVQ). Further,

we propose the integration of a sparseness criterion for minimizing the number of

needed basis functions based on an entropy criterion resulting in Sparse GFRLVQ

(S-GFRLVQ) and Sparse GFMLVQ (S-GFMLVQ).

2 Relevance and Matrix Learning in GLVQ —

GRLVQ

As mentioned before, GLVQ is an extension of standard LVQ based on energy

function E approximating the accuracy. Given a set V ⊆ RD of data vectors v
with class labels xv ∈ C = {1, 2, . . . C}, the prototypes w ∈ W ⊂ RD with class
labels yj (j = 1, . . . , N) should be distributed in such a way that they represent
the data classes as accurate as possible. In particular, the following cost function

is minimized

E (W ) =
1

2

X
v∈V

f (μ (v)) with μ (v) =
d+ (v)− d− (v)
d+ (v) + d− (v)

(1)

where f is a monotonically increasing function usually chosen as sigmoidal or
the identity function. The function μ (v) is the classifier function where d+ (v) =
d (v,w+) denotes the distance between the data vector v and the closest prototype
w+ with the same class label yw+ = xv, and d

− (v) = d (v,w−) is the distance
to the best matching prototype w− with a class label yw− different from xv. The
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similarity measure d (v,w) is supposed differentiable with respect to the second
argument but not necessarily to be a mathematical distance. More general sim-

ilarity measure could be in consideration. One possible choices are the standard

Euclidean distance or their weighted counterpart

dλ (v,w) =
DX
i=1

λi (vi − wi)2 (2)

with relevance weights λi ≥ 0 and
P

i λi = 1. The vector λ is called relevance
profile.

Learning in GLVQ of w+ and w− is done by stochastic gradient descent learn-
ing with respect to the cost function E (W ) according to

∂SE (W )

∂w+
= ξ+ · ∂d

+

∂w+
and

∂SE (W )

∂w−
= ξ− · ∂d

−

∂w−

with ξ+ = f 0 · 2·d−(v)
(d+(v)+d−(v))2 and ξ− = −f 0 · 2·d+(v)

(d+(v)+d−(v))2 . Relevance learning in this

model can be performed by adaptation of the relevance weights again by gradient

descent learning:
∂ES (W )

∂λj
= ξ+ · ∂d

+
λ

∂λj
+ ξ− · ∂d

−
λ

∂λj
. (3)

The respective algorithm is named Generalized Relevance LVQ — GRLVQ [4],

which still is a decision margin optimizer [3]. Yet, in this model the relevance

weights as well as the vector components are treated independently as it is the

natural way in the Euclidean distance or their weighted variant.

Matrix learning generalizes the idea of relevance learning [13, 12]. Instead of

the weighted Euclidean distance (2), a positive definite bilinear form is used:

dΛ (v,w) = (v−w)T Λ (v−w) (4)

with a quadratic positive definite matrix Λ. If the matrix Λ is decomposed into
Λ = ΩTΩ, where Ω ∈ RD×m and m > 0 an arbitrary positive integer [1], then (4)
can be rewritten as

dΛ (v,w) =
³
ΩT (v−w)T

´2
(5)

Accordingly to the relevance learning, we get

∂ES (W )

∂Ωij
= ξ+ · ∂d

+
Λ

∂Ωij
+ ξ− · ∂d

−
Λ

∂Ωij
(6)

for the matrix learning vector quantization algorithm (GMLVQ).
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3 Functional Relevance and Matrix Learning for

GLVQ

As we have seen, the data dimensions are handled independently in both, GRLVQ

and GMLVQ. This leads to a huge number of relevance weights to be adjusted, if

the data vector are really high-dimensional as it is the case in many applications.

For example, processing of hyperspectral data frequently requires the consideration

of hundreds or thousands of spectral bands; time series may consist of a huge

number of time steps. This huge dimensionality may lead to instable behavior

of relevance learning in GRLVQ. For GMLVQ the problem is similar although a

self-regularizing mechanism leads to the fact that the number of free parameters

are in principle the same as in GRLVQ [11].

Yet, if the data vector are discrete representations of functions, both relevance

and matrix learning can make use of this functional property to reduce the number

of parameters in relevance learning. More precisely, we assume in the following

that data vectors v = (v1, . . . , vD)
T
are representations of functions vi = v (ti).

3.1 Functional Relevance Learning

For functional relevance learning the relevance profile can be interpreted as a

function λ (t) with λj = λ (tj), too. In the recently proposed generalized functional
relevance LVQ (GFRLVQ) [5], the relevance function λ (t) is supposed to be a
superposition

λ (t) =
KX
l=1

βlKl (t) (7)

of simple basis functions Kl depending on only a few parameters with the restric-
tion

PK
l=1 βl = 1. Famous examples are standard Gaussians or Lorentzians:

Kl (t) = 1

σl
√
2π
exp

Ã
−(t−Θl)

2

2σ2l

!
(8)

and

Kl (t) = 1

ηlπ

η2l
η2l + (t−Θl)2

, (9)

respectively. Now, relevance learning takes place by adaptation of the parameters

βl, Θl,σl and ηl, respectively. For this purpose, again a stochastic gradient scheme
is applied. For an arbitrary parameter ϑl of the dissimilarity measure d we have

∂SE

∂ϑl
= ξ+ · ∂d

+

∂ϑl
+ ξ− · ∂d

−

∂ϑl
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Using the convention tj = j we get in the case of Gaussians for the weighting
coefficient βl, the center Θl and the width σl for

∂d (v,w)

∂βl
=

1

σl
√
2π

DX
j=1

exp

Ã
−(j −Θl)

2

2σ2l

!
(vj − wj)2 (10)

∂d (v,w)

∂Θl
=

βl
σ3l
√
2π

DX
j=1

(j −Θl) exp
Ã
−(j −Θl)

2

2σ2l

!
(vj − wj)2 (11)

∂d (v,w)

∂σl
=

βl
σ2l
√
2π

DX
j=1

Ã
(j −Θl)2

σ2l
− 1
!
exp

Ã
−(j −Θl)

2

2σ2l

!
(vj − wj)2(12)

whereas for the Lorentzian we obtain

∂d (v,w)

∂βl
=

1

π

DX
j=1

ηl
η2l + (j −Θl)2

(vj − wj)2 (13)

∂d (v,w)

∂Θl
=

βl
π

DX
j=1

2ηl (j −Θl)¡
η2l + (j −Θl)2

¢2 (vj − wj)2 (14)

∂d (v,w)

∂ηl
=

βl
π

DX
j=1

(j −Θl)2 − η2l¡
η2l + (j −Θl)2

¢2 (vj − wj)2 (15)

Instabilities may occur if the center locations Θl, Θk become very similar for l 6= k.
To avoid this phenomenon a weighted penalty term

PR =
KX
l=1

KX
m=1

exp

Ã
−(Θm −Θl)

2

2ξlξm

!
(16)

is added to the cost function (1) according to the used basis functions. The

resulting new cost function is

EGFRLVQ = E (W ) + εRPR (17)

with a properly chosen penalty weight εR > 0. For Gaussian basis functions we set
ξk = σk, and for the Lorentzians we take ξk = ηk. The penalty can be interpreted
as a repulsion with an influence range determined by the local correlations ξlξm.
The resulting additional update term for Θl-learning is

∂PR
∂Θl

=
1

2

KX
m=1

(Θl −Θm)
ξlξm

exp

Ã
−(Θm −Θl)

2

2ξlξm

!
leading to a minimum spreading of the basis function centers Θl. Analogously, an
additional term occurs for the adjustemts of the ξl according to

∂PR
∂ξl
, which has to

be taken into account for the update of σk and ηk for Gaussians and Lorentzians,
respectively.
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3.2 Functional Matrix Learning

For functional matrix learning vector quantization (GFMLVQ) we assume in com-

plete analogy to the functional relevance learning approach that the matrix Ω in
(5) is described in terms of a superposition

Ω (t1, t2) =
KX
l=1

βlKl (t1, t2) (18)

of now two-dimensional basis functions Kl (t1, t2). For the Gaussian example we
have

Kl (t1, t2) =
1

σ1,l · σ2,l · 2π exp
Ã
−
Ã
(t1 −Θ1,l)2
2σ21,l

+
(t2 −Θ2,l)2
2σ22,l

!!
(19)

whereas for the Lorentzian we get

Kl (t1, t2) =
1

η1,l · η2,l · π2
Ã

η21,l

η21,l + (t1 −Θ1,l)2
· η22,l

η22,l + (t2 −Θ2,l)2
!

(20)

and the derivatives have to be performed accordingly.

The penalty term (16) known from GFRLVQ avoiding there the total overlap

of different basis functions Kl and Kk for k 6= l has also to be adapted and reads
now as

PM =
KX
l=1

KX
m=1

exp

Ã
−
Ã
(Θ1,m −Θ1,l)2
2ξ1,mξ1,l

+
(Θ2,m −Θ2,l)2
2ξ2,mξ2,l

!!
(21)

again with the settings ξi,k = σi,k and ξi,k = ηi,k for Gaussians and Lorentzians,
respectively. Thus the full cost function

EGFMLV Q = E (W ) + εMPM (22)

is finally obtained for GFMLVQ with the penalty weight εM > 0.

4 Sparse GFRLVQ and GFMLVQ

In the GFRLVQ model the numberK of basis functions to be used is free of choice

so far. Obviously, if the K-value is too small, an appropriate relevance weighting
is impossible. Otherwise, a K-value too large complicates the problem more than
necessarily. Hence, a good adjustment is demanded. This problem can be seen

as sparseness in functional relevance learning. A common methodology to judge
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sparsity is the information theory. In particular, the Shannon entropy H of the

weighting coefficients β = (β1, . . . ,βK) can be applied. Maximum sparseness, i.e.

minimum entropy, is obtained, iff βl = 1 for exactly one certain l whereas the
other βm are equal to zero. However, maximum sparseness may be accompanied

by a decrease of accuracy in classification and/or increased cost function value

EGFRLV Q.
To achieve an optimal balancing, we propose the following strategy: The cost

function EGFRLV Q is extended to

ES−GFRLVQ = EGFRLV Q + γ (τ) ·H (β) (23)

with τ counting the adaptation steps. Let τ 0 be the final time step of the usual
GFRLVQ-learning. Then γ (τ) = 0 for τ < τ 0 holds. Thereafter, γ (τ) is slowly
increased in an adiabatic manner [6], such that all parameters can immediately

follow the drift of the system. An additional term for βl-adaptation occurs for
non-vanishing γ (τ)-values according to this new cost function (23):

∂ES−GFRLVQ
∂βl

=
∂EGFRLV Q

∂βl
+ γ (τ)

∂H

∂βl
(24)

with ∂H
∂βl

= − (log (βl) + 1). This term triggers the β-vector to become sparse.
The adaptation process is stopped if the EGFRLV Q-value or the classification error
shows a significant increase compared to the time τ 0.
Obviously, this optimization scheme can also be applied to GFMLVQ yielding

Sparse GFMLVQ (S-GFMLVQ) with

ES−GFMLVQ = EGFMLVQ + γ (τ) ·H (β) (25)

as cost function.

5 Conclusion

In this paper we propose the functional relevance and matrix learning for general-

ized learning vector quantization. This functional learning supposes that the data

vectors are representations of functions such that the relevance profile or the para-

meter matrix can be assumed as a superposition of one- or two-dimensional basis

functions, respectively. These basis functions depend on only a few parameters to

be adapted during learning compared to the huge number of free parameters to

be adjusted in usual relevance or matrix learning. To obtain an optimal number

of basis function for the superposition a sparsity constraint is suggested. Thereby,

sparsity is judged in terms of the entropy of the respective weighting coefficients

in the superposition. The approach is introduced exemplarily for the weighted
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Euclidean distance and a bilinear form also based on the Euclidean norm, for sim-

plicity. Obviously, the Euclidean distance is not based on a functional norm. Yet,

the transfer to real functional norms and distances like Sobolev norms [16], the

Lee-norm [8, 9], kernel based LVQ-approaches [15] or divergence based similarity

measures [14], which carry the functional aspect inherently, is straight forward

and topic of future investigations.
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