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1 Sixth Mittweida Workshop on Computational Intelli-
gence

From 02. Juli to 04 Juli 2014 we had the pleasure to organize and attend the sixth Mit-
tweida Workshop on Computational Intelligence (MiWoCi 2014) as a satellite event of
10th Workshop on Self Organizing Maps (WSOM’14). Multiple scientists from the Uni-
versity of Bielefeld, HTW Dresden, the University of Groningen (NL), the SOM Japan
Inc (Japan), the University of Birmingham (UK) and the University of Applied Sciences
Mittweida met in Mittweida, Germany, to continue the tradition of the Mittweida Work-
shops on Computational Intelligence - MiWoCi’2014.

The aim was to present their current research, discuss scientific questions, and
exchange their ideas. The seminar centered around topics in machine learning, signal
processing and data analysis, covering fundamental theoretical aspects as well as
recent applications, partially in the frame of innovative industrial cooperations. This
volume contains a collection of extended abstracts and short papers which accompany
some of the discussions and presented posters of the MiWoCi Workshop.

Apart from the scientific merrits, this year’s seminar came up with the great chance
to attend the 10th Workshop on Self Organizing Maps (WSOM’14). WSOM is the
major anchor conference focusing on Self Organizing Maps and is not only a perfect
chance to met high renowned researchers in the field but also to attend the three invited
plenaray talks given during WSOM 2014:

e Prof. Dr. Michael Biehl, University Groningen (NL), Johann-Bernoulli-Institute of
Mathematics and Computer Sciences

e Prof. Dr. Erzsebet Merenyi, Rice University Houston (USA), Department of
Statistics and Department of Electrical and Computer Engineering

e Prof. Dr. Fabrice Rossi, Universite Paris1- Pantheon-Sorbonne, Department
Statistique, Analyse, Modelisation Multidisciplinaire (SAMM)

This year the MiWoCi Workshop was also accompanied by a poster spotlight at the

WSOM 2014 for each poster contribution and a best poster award was announced.
Our particular thanks for a perfect local organization of the workshop go to Thomas

Villmann as spiritus movens of the seminar and his PhD and Master students.

Mittweida, July, 2014
Frank-M. Schleif

"E-mail: fschleif@techfak.uni-bielefeld.de
2University of Bielefeld, CITEC, Theoretical Computer Science, Leipzig, Germany
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Interpretation of linear mappings employing [1 regularization

Alexander Schulz!, Daniela Hofmann!,
Michael Biehl* and Barbara Hammer?
(1) Bielefeld University, CITEC - Center of Excellence, Germany
(2) University of Groningen, Johann Bernoulli Institute for Mathematics
and Computer Science, The Netherlands

Abstract

In this contribution we propose a new technique to judge the relevance of features for
a given linear mapping, thereby taking redundancy and interdependence of features into
account.

We employ a two step optimization strategy: In the first step, we linearly minimize the
{1-norm of the linear mapping . |w;|, while taking redundancies in the data distribution
into account. Since the first step does not necessarily yield a unique solution, we search
in this solution space by minimizing/maximizing the absolute value of each single feature,
respectively.

Thus, we obtain a lower and upper bound of relevance for each feature, indicating how
important it minimally and maximally is (similar to strong and weak relevance in the litera-
ture).
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Hellinger divergence in information theoretic
novelty detection

Paul Stiirmer* and Thomas Villmann
Computational Intelligence Group
Unwversity of Applied Sciences Mittweida

Abstract

A novelty detection framework proposed in 2009 by M. Filippone and G. Sanguinetti
[6] is considered, which is suitable for small training sample sizes and allows control
over the false positive rate. It is based on estimating the information content a test
sample yields via the Kullback-Leibler divergence. In case of a Gaussian density esti-
mation this approach is analytically tractable and for Gaussian mixtures appropriate
approximations are provided. Here the framework is expanded by allowing the use of
the Hellinger divergence [10] instead, summarizing the work done in [16].

1 Introduction

Outlier detection is an important task in machine learning where outliers — observations
which deviate markedly from a given sample of training data [9] — are to be identified.
There are many applications such as fault detection [2, 5] or monitoring medical conditions
[14, 17], where such problems arise. Novelty detection concerns the case that no anomalous
data is available in the training phase of the system. This is the case when outliers are
costly or difficult to obtain, or when anomalous data can not to be modeled in advance. For
instance, it would be unreasonable to sabotage an aircraft engine just to obtain anomalous
observation data [13] and a new method of fraud is unlikely to be modeled in advance [4, 11].

Since outliers (true positives) are rare by definition, the accuracy alone is not sufficient
for evaluating a novelty detection system. The framework presented here allows control over
the false positive rate (fpr), which is the rate at which normal data samples (true negatives)
give rise to an outlier alarm.

The key idea of the information theoretic approach is to first model the training data
alone, and to train a second model which also takes a test point into account. The two
models are then compared using a divergence. This is in [6] the Kullback-Leibler divergence.
Here we consider the Hellinger divergence instead, which is symmetric and therefore easier
to be interpreted as a distance-like measure. If the test point is a true negative, the two
models are expected to be similar, resulting in a low divergence; and if it is a true positive the
second model is expected to be strongly adapted, hence inducing a high divergence. Since
the divergences considered here are defined for probability density functions, it is necessary
to model the data via a probabilistic approach.

The goal is then to find a divergence threshold of acceptance for a test sample, which is
found via Monte Carlo simulation. In this simulation phase a statistical test — in this work
referred to as the F-test — is implemented, which significantly improves the performance of
the framework. The framework is restricted to Gaussian mizture models (GMMs), hence
assuming the data to be distributed normally. In case of single-component Gaussian densities
it is analytically tractable.

*corresponding author, stuermer@hs-mittweida.de
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The paper is structured as follows: In Section 2 the process of modeling data via GMMs is
considered. In Section 3 the F-test is reviewed in order to incorporate it into the framework.
In Section 4 the Hellinger divergence is approximated to allow an implementation. The
performance of the framework is illustrated on an artificial dataset and validated on the
well-known Iris dataset in Section 5, before a conclusion is given in Section 6.

2 Data model

Let X = {x;,...,z,} C R? be the training set of samples, where each x; is drawn from
a normal distribution. Let f be the GMM with ¢ components fitted to the training data
(training model)

fla@) =" weN(zlriu, Si);

k=1

N(:I)‘T;’Lk, S’k) =

¢21T| exp ((@. — ) S (. — 1))

where the parameters 7; denote the estimated mixing coefficients, m; the estimated means
and S; the sample covariances for each component i € [¢] := {1,...,¢}. The distinction be-
tween parameter estimations m;, m;, S; and the true parameters 7;, m;, S; of the generating
density will become important in the next section. Such a GMM with maximal likelihood

i f(x;) — max
i=1

can be obtained via the Ezpectation/Mazimization (E/M) algorithm [3], where the user has
to know the number of components ¢ in advance. For a test sample x, the training model
f is adjusted to the adapted model f*

fr(@) =) N (i, Sp),
k=1

which is obtained by performing only a single E/M-step on X U {x,}, starting from the
parameters of f. Under the assumption that adding a single point to the fitted dataset leads
to small changes in the parameter estimations of the GMM, it is reasonable that a single
E/M step might already give a good estimate of the new parameters. The reason for doing
this is that the updated parameters then can be denoted in closed form. It is then eventually
possible to formulate an explicit divergence approximation which only depends on x, and
the parameters of f.

The Expectation step does not affect any responsibility u;, of component k for the
training sample x;, whereas the responsibilities for x, are:

kN (2 |10, Sk)
Zi:l 7ATT-/\/(:B*|’ﬁ7fr7 Sr)

Uxk =

The updated cardinality of component k is nj = ng+u., = Z?:l Uik + U, and the updated
parameter estimates are

N7 + Uk . . Usk Ge Mk (& Uk - T
— my =1y + — @ Sp= o (St — Ty, )
n+1 ny ny ny

ir =

where &, := (x. —1y).
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3 The F-test

Let X = {x1,...,x,} be the training set, where each x; € R? is drawn from a multivari-
ate Gaussian distribution A (m, :S') The maximum likelihood estimation of the generating
distribution based on X, N (i, S), is unique and known explicitly with parameters

m:%iw S:EZ(mfm)(mrm)T
1=1 3

One could find a decision threshold for a test sample x, via generating a user-specified
number of vectors from this estimated density (Monte Carlo simulation). These simulated
vectors yield a distribution of density evaluations, which allows to choose a threshold 6 based
on the preferred false positive rate.

The major flaws of this approach are that (a) it is a multivariate test for the intrinsically
one-dimensional decision f(x.) E 0 and (b) the generating function of the simulated samples
depends on the parameter estimations m, S. These are random variables themselves and
their prediction quality is significantly impaired for small values of n = |X|:

v~ N(m, - 8), nS ~ W) (), M

where W,y denotes the Wishart distribution with v degrees of freedom. In order to improve
the Monte Carlo simulation, the distribution of the squared Mahalanobis distance % between
a test point x, and the sample mean m
22 = (z, —m)" 5 (z, — )

is considered. The following result from statistics is used [1]:
Suppose that y ~ N(0,aS) and A ~W,(S). Then:

ad
v—d+1
The F-distribution, named after R. A. Fisher [7], is the distribution of the quotient of two
x2-distributed variables. The degrees of freedom of these y2-distributed variables are the
parameters of the F-distribution.

Under the null hypothesis that x.. was generated by the same distribution as the training

set, we have
(x. —m) ~J\/<O, (1+71L) S)

R n+1)d
52 %F(dmfdy (2)

y ATy ~ Flay—dv1)

and therefore, eventually

The statistical test based on this result is referred to as the F-test. It takes the uncertainty
caused by the number of training samples n and the number of dimensions d into account. It
is furthermore optimal in the sense that the distribution of 22 is independent of the estimated
parameters m and S. Furthermore, since this imposes a univariate test, multidimensional
calculations can be circumvented completely in the simulation phase for Gaussian density
estimations.

When GMMs are used, however, certain multidimensional calculations are necessary.
The position of a simulated point x, determines all £7’s

Vk € [d] : 52 = (@ —1g)" S;t (@ — 1) (3)

which makes it necessary to compute the corresponding Mahalanobis distances 22, i €
[c]\{k} when 2} is generated. This can be done [6] via

2 ~ AL
+24/22 (rg—1iy)" 857182 oy, (4)

where vy, is a randomly generated unit norm vector.

S; % (my—my)
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4 Dy approximation

In order to implement the information theoretic approach, it is necessary to compare a
training model to an adapted model. This can be done via divergences. In [6] the well-
known Kullback-Leibler divergence (Dgr) [12] is used, which is based on the concept of
self-information introduced by Shannon [15]. We propose the Hellinger divergence

Da(fle) =1~ [ Vg da. )

to be implemented instead, which is defined for probability densities f,g. In contrast to
Dy, Dy is symmetric, which makes it easier to be interpreted as a distance-like measure.
It is not to be mistaken as a metric, however, since it violates the triangle inequality.

Now, the goal is to derive an explicit formula of the divergence between a training model
f fitted to X and an adapted model f* fitted to X U{@.}. In case the densities are GMMs,
the integral in Equation (5) is not analytically tractable, making approximations necessary
for efficient computing. For GMMs the above equation translates to:

Duflf) =1- [ VITFdw=1- [ S auhe 3wy da
R4 R\ =1 —1
N; = Nz, §;), N7 = N(z|m?, 55

K3

The root of the sum is no further tractable analytically. Jensen’s Inequality is used to obtain
an upper bound:

1—/ zc:ﬁkf\fki:ﬁ:./\/f de < l—zc:i:ﬁ'kﬁ':/ VN - NP doe
RE\ k=1 r=1 Re

k=1r=1

The remaining integral is analytically tractable [16]:

|

exp (—(mk )T (s n Sk)fl (v — m:)) )

(i (S + S*k) (S*:f‘l + S*,;l)‘

o \/Nk'./\/;i“ de = (6)

This yields a formula for Dy that depends on @, (implicitly) and the parameters of the model
f. However, a framework based on this formula imposes questionable rejection regions, as
discussed in [16]. A second approximation is done by neglecting the above term for k # r,
leading to another upper bound for the Hellinger divergence:

Du(fIlf) < 1= 3w /R NN de ™)
k=1

A similar approximation is done for D, in [6]. The last approximation furthermore allows
the following step: In order to incorporate the F-test it is necessary to reformulate the above
formula in terms of 22,...,22 instead of x,. The detailed calculation is rather intricate,
applying the Sherman-Morrison formula and using a certain reasoning from [6] to explicitly
evaluate the determinant in the denominator on the right-hand side of (6). It can be found
in [16]. The resulting formula for the integral can then be expressed as:

4
( R4 NkNI: dm) -

exp ({0~ st =ik ) L) i 0t veneh) (e 4 )

(nk + nj + warzi)ng? (1) + 200k + 1) + wenZ}) w2

2(1—d)

(8)

The notation from the end of Section 2 is used.
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5 Framework & Experiments

Algorithm 1 Novelty detection framework for Dy

Require: training set X, # GMM components ¢, #Monte Carlo samples m, false positive

rate r, test sample x,
Fit GMM f to X with the E/M algorithm

/* Monte Carlo simulation */
fori=1,...,cdo

generate m; values of 22 using (2)

generate m7; unit norm vectors v;

Vj € [c]\{i} : calculate 23’s using (4)
end for
evaluate Dy with (7) and (8) for each sample
return (1-r)-th quantile 6 of these evaluations

evaluate Dy (x,) using (3) and (8)
if Dy(x.) > 6 then
x, is outlier
else
x, is normal
end if

5.1 Artificial dataset

In order to illustrate the behavior of the approx-
imation Dpg of the Hellinger divergence, an arti-
ficial dataset is considered first. In this example
100 data points are drawn from ¢ = 3 bivariate
Gaussians (about 33 each), which resemble the let-
ter "A” (Figure 1). A GMM is fitted to this data,
and a Monte Carlo simulation according to the F-
distribution from Section 3 is performed. This way,
using the approximations from Section 4 for Dy and
those from [6] for Dy, decision thresholds for Dy
and D are obtained. The statistical test Lp from
[16] is also considered. The false positive rate is cho-
sen to be fpr = 0.03. The outlier decision is made
for a 10 x 102 test grid of points over [—5, 5]2, which
is depicted in Figure 2. The main differences between
the three methods are visible in areas where the de-
cision borders of components overlap or are in close
proximity.

5.2 Iris

At

-5k ‘ )
5 0 5

Figure 1: Artificial dataset with
GMM estimation

The framework is validated on the well-known Iris dataset, which was introduced by R.
A. Fisher in 1936 [8]. The data consists of 150 data samples (Iris plants) in 3 classes —
"Iris setosa”, "Iris versicolor” and ”Iris virginica”, each consisting of 50 samples. Each
observation is made of d = 4 features — sepal length, sepal width, petal length and petal
width. The classes ”versicolor” and ”virginica” are combined into one pool of 100 normal
datasamples and the 50 ”setosa” class members are considered anomalous. A sample of size

10
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(a) D1

05 0 05 :
(d) D1 excerpt (e) Dy excerpt (f) Lr excerpt

-0.5 0 0.5 - -0.5 0 05

Figure 2: Decision maps for the artificial dataset, fpr = 0.03.

n € {30,35,...,80} is randomly drawn from the normal data and the remaining 150 — n
points serve as the test set of samples. The GMM is chosen to have ¢ = 2 components
and the fpr is chosen to be 0.03; 105 Monte Carlo samples are simulated to obtain the
corresponding decision threshold. For each n, this experiment is repeated 100 times, the
averages of the achieved accuracy and false positive rate are depicted in Figure 3. Three
methods are considered: a purely statistical test Ly [16], as well as the above framework
using the approximations of the Hellinger divergence Dy and the Kullback-Leibler divergence
Dgky, [6].
Other validation examples can be found in [16].

1 - oL oL
y —.—.-.-s-;;—g—.;z-.x:;-.,—i—:z—i:’f@f"‘* 0.1 ° o 0.05 ° o
0.98 a.—;.;-;gr;ﬁ'f:"“i” 0.09) "'DKL 0045 ""DKL
O 8 @
0.9 0.08 = s
0.94 . 0.0t
0o 007 0.035} 9.
;)9 00815 0.03
' o.05 0.025
0.88
0.04 0.02
0.86
0.03 0.015
0.84 oL, 002 001
~x-D,
0.82 DKL 0.01] 0.005
0.8 ~h 0 0
30 40 50 60 70 80 30 40 50 60 70 80 30 40 50 60 70 80
(a) average accuracy (b) average false positive rate (c¢) fpr standard deviation

Figure 3: Evaluation of the Iris experiment
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6 Conclusion

With the formulas presented here it is possible to use the symmetric Hellinger divergence
instead of its Kullback-Leiber counterpart in the framework from [6]. The measures Dy and
Dy, perform similarly, whereas the former is easier to interpret as a distance-like measure.
However, the performance of both methods is questioned by that of a purely statistical
approach based on (2) — both in robustness and in control of the fpr. This is discussed in
more detail in [16].
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The new proposal of the calculation for the
significance degree by once SOM learning

-using iris, gene, and other data-

H. TOKUTAKA Y, M. OHKITAY, M. OYABU 2, M. SENO ¥, M. OHKI?,
1) SOM Japan Inc., 2) Kanazawa Inst. of Tech., 3) Okayama Univ. 4) Tottori Univ.

Abstract—The significance degree of each component was calculated only by once SOM learning where the Spherical Self-
Organizing-Map (SSOM) was used for the demonstration. In the method, kinds of specimens of the data are inserted in each column as
each specimen. The method is first demonstrated using the iris data and then gene data. The method can be used for other data with
successful results. The method can also be processed by the usual planar SOM.

Keywords—Self organizing map; Significance degree;

I. INTRODUCTION

Here, the aim of the new proposal is described. Table 1 is the explanation of the concept of the significance degree. Relation
between the fatigue and the other components about it is shown in Table 1. There is fatigue in the A group but there is none in the
B group.

Table 1 Experimental condition for testing presence or absence of fatigue among other components.

Fatizue “ividness “Wigor Tired Exhaustion

A group 1 0 0] 1 1
B group 1 0
A-B 1 -1 -1 1 1

This time, the way of allocating Table 2 is considered for being fatigued or not being fatigued like in the two dimensional space.

Table 2 Fatigue in Table 1 is separated by Yes and No

Fatigue Yes |Fatigue No| Viidness | Vigor | Tired  |Exhaustion
A group 1 0 0 0 ] ]
B group 0 1 1 1 0 0

In the way in Table 2, the fatigue can be equally evaluated from the A group, as well as from the B group. In other words, if
gathering the one where 1 stands in feeling fatigued, the significance degree of feeling fatigued is found from the each item. Also, if
gathering the one where 1 stands feeling not fatigued, the significance degree of feeling not fatigued is found from the each item.
This time, the proposed method is applied to the iris data which were used last time.

Il. THE ALGORITHM OF CALCULATING THE SIGNIFICANCE DEGREE

The contents are first described using iris data [1]. Using Spherical Self-Organizing Maps (SSOM) method [2,3,4] The
significance degree calculation was previously introduced [5]. This time, the proposed method is as follows that the significance
degree between each label pairs is computed by the once learning a lot of label data groups. First, the contents are described by the
iris data. Next, the generality of the concerned method is described by using Gene and Tof-SIMS data [6]. The part of the original
iris data is shown in tables 3 and 4. The data are composed of 1 (setosa) , 2 (versicolor), and 3(virginica), (each 50 stocks of 1,
2, and 3). A learning result is shown in Fig. 1.

14 Machine Learning Reports
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Table 3 Part of the original iris data with 4 components. The classifications are added as setosa, versicolor and virginica by

3 columns
3 1set 2 ver 3 gnc Sepal length Sepal width Petal length Petal width
49 | 1 46 1 0 0 43 3 14 03
EO | 147 1 0 0 51 38 1.6 0.2
1 1 48 1 0 0 46 32 14 02
52| 148 1 0 0 53 37 13 0.2
Ea | 150 1 0 0 5 33 14 02
54| 21 0 1 0 7 32 47 14
R 22 0 1 0 6.4 32 4.5 1.5
5| 23 0 1 0 6.9 3l 4G 15
57| 2 0 1 0 5.5 23 4 1.3
58 2.5 0 1 0 6.5 28 4.6 1.5

Table 4 The border between 2 (versicolor) and 3 (virginica)

3 1 st 2wver 3_onc Sepal length Sepal width Petal length Petal width
Gy | 2 46 0 1 0 3.7 3 4.2 12
o0 247 ] 1 0 37 29 4.2 13
e 248 0 1 0 6.2 25 43 13
1 249 0 1 0 51 23 3 11
103 230 1] 1 0 57 28 41 13
o4 31 0 0 1 6.3 i3 ] 23
105 322 0 0 ! 38 27 51 19
106 3.3 0 0 1 7.1 3 5.9 21
107 3.4 0 0 ! 6.3 29 56 13
10m| 33 0 0 ! 6.5 3 58 22

The raw data are normalized in the column wise direction. As an example, when the comparison between the classification
1 setand 2_ver is carried out, 3_gnc in Table 3 must be erased. Leave the label, 1 and 2 of each 50 stocks, 100 stocks in amount as
shown in Table 8. Then, continue the calculation.

The result is shown in Fig.1. (a) is the U-matrix display which shows the distances between the nodes. (b) is the color display
where the boundaries among the clusters of 1, 2, and 3 are clearly classified. The red mark in (b) on the spherical surface is the one
of iris classification 1(setosa) where the minimum value (0.981816) is shown. Also, 2_11 in classification 2 and 3_20, in
classification 3, shows the minimum value where label code books have minimum value of 0.991068 in 2_11 and 0.987421 in 3_20.

They are on the other side of the sphere.
iy e
Vo149

Fy | 14

s 145
Fov |

¢ ‘¢!

- g

Coordinate: (xy.2)
(-082,/%008-0%) |,

o

Fig.1 (a) The U- matrix display at Griff value (0). (b) The boundary in coloring display of 1_set, 2_ver, and 3_gnc region.
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Table 5 Descending sort of code book vector regarding to class identifiers

‘ E130 v fe| =AVERAGE(E2:E1 29)
A B (0] D E F G H
1 1 set 2 ver 3 gnc  Sepal length Sepal width Petal length Petal width
125 0989655 0 0010345 0307673 0601161 0100432 (0.086918
126 0985919 0 004081 0255231 0398071 0104638 0.154433
127 0985079 00010290 0013893 0106263 0293685 0.070905  0.072007
; 128 0982867 0.000021 0017113 0387020 0816386 0089945 0077434
(d) 120 116 LOSBISIE 000305 0015134 0377043 0951444 0092371 0105405
130 116.set 0998368 00006 0.001032[ 0.1983538] 0.5922444 0.0791109 0.0599161
131 0981794 0016965 0001241 0048798 0292220 0063834 0059809
132 0.980686 0019313 0 0042011 046632 0039497 0043792
[ C146 bl Jx | =AVERAGE(C2C145)
A B Ca.__ O E F G H
1 1 set 2ver | 3 gnc  Sepal length Sepal width Petal length Petal width
140 0] 099367 000633 03534315 0118252 0577534 0513189
141 0.006185 0993649 0000166 0.560306 052463 0617491 061647
142 0/0993427 0006573 0625749 0320804 0634532 0561087
(b) 143 0008550091449 0.000001 0478263 0553227 0604203 0635011
144 0/0991243 0008757 0658684 0371547 0618634 0532966

145/ 211  0.000673/ 0991068 0.008259 0206301 0.058873 0417711  0.38236
146 2_11 ver 0.000415] 0.999074] 0.000511 04561121 03225519 0.5533486 0.5087397

147 0 0988511 0.011489 03534157 0138284  0.603998  0.550848

148 0 0988193 0011806 0408372 0120169 0511396 0441576

T e fe| =AVERAGE(G2.G151)

A B il D Ll F F G H

1 1_set 2 ver | 3. gnc  Sepal length Sepal_width Petal length Petal width

147 0 0008985 0991014 0920992 0327374 0955986 0821611

148 0.009343 0.000002/ 0990655 0674353  0.551159 0.798288  0.869521
(C) 149 0.0102 0/ 009898 0450002 0402646 0667319 0.720793

150 0.011911 0.000234/ 0987855 0831673 0658346 0.867768  0.900687

151 320 0.000022 0.012557/0987421 0476619 0.130115 0685706  0.395042

152320 gmc 0000536 0000644 099882 06301421 0.399339[ 0767211] 08043553
153 0 0014286 0985714 0603016 0263125 076933 065232
154 0.014888 0 0985112 0597823 0560262 078336  0.926407

Data processing is as follows. (a) Arrange the table in the descending order of a B column of 1_set in the code book vector of
642 nodes. Then, search the minimum value of 1_16. Above it, compute the average and the result in the 130th line. (b) Next, carry
the same procedure of a) in C column of 2_ver And search the minimum code book label of 2_11. (c) In the same way, arrange and
search the minimum value as 3_20 to the D column, in the descending order of 3_gnc. Then, computes the average values at 146th
line, and 152th line, respectively.

Table 6 shows the summary of Table 5. Data processing is as follows. Copy the 130th line in (a), 146th line in (b) and 152th
line in (c), in the previous Table 5 and multiply them by 100 times.

Table6 Summary of Table 5

1 set 2 wver 3 anc Sepal length Sepal width Petal length Petal width
1 16_set 9983685 0059979 0.103174 1985338 359224439 79110891 59916141
1 set 2 wver 3 anc Sepal length Sepal width Petal length Petal width
2 11 ver  0.0415 9990744 0.051059 45611207 32.255187 55334859 50.873967
1 set 2 wver 3 anc Sepal length Sepal width Petal length Petal width
320 gnc 0053565 0.064413 99.88202 63.014209 399339 76.721097 80435529
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Table 7 shows the differences of 2ver-1set, 3gnc-1set and 2ver-3gnc. Those were calculated using the averaged values with
each line, based on Table 6. The direction of the subtraction is for the comparison between the conventional method and the
proposed method for the 2 clusters.

Table 7 The differences of 2ver-1set, 3gnc-1set and 2ver-3gnc
lset  2wer 3 e Sepal length Sepal width Petal length Petal width
Jver-lset  -99.7933 99.84746 -0.05212 257538273 -26.969252 4741377 44.8823533
lset  2lwer 3 e Sepal length Sepal width Petal length Petal width
Jgnc-lset  -99.7833 0.004434 9977884 431388296 -19.29033% 68.8100076 744439146
lset  Jwer  3gnc Sepal length Sepal width Petal length Petal width
Jge-2ver 0012065 -99.843 99.83096 174030024 7.67871319 213862376 29.3613613

Next, normalization of the iris raw data of Table 3 and 4 was carried out. Those are shown in Table 8. Normalization data of
only setosa 1 and versicolor 2, with 100 stocks are used.

Table 8 Normalization of the iris data of 1_set and 2_ver (yellow columns)

2 1 set 2 wer Sepal_length Sepal_width Peral_length Peral width

48 1 ] 0.13888888 0.416666667 0.06779661 0.083333333
49 1 (] 0.75 0101694915 0041666667
50 1 ] 0.5 0.06779661 0.04160066067
51 1 o 0.708333333 0084745763 0041666667
52 1 ] 0.5416666067 0.06779661 0.041600667
=] o 1 0.5 0627118644 0.541666667
54 ] 1 0.5 0.593220339 0.583333333
[=15) o 1 0458333333 0.661016548 0.583333333
56 o] 1 0.125 0.508474576 0.5
57 o 1 0611111111 0333333333 0.610169452 0.583333333

Table 9 shows the same data of Table 8. The classification column is different as the class identifier allocated to one column.

Table 9 Same data of Table 8. 1 dentifier column is different

2 2 ver—] _set Sepal length Sepal width Petal length Petal width

48 1_46 0 0.13838888% 0.416666067 0.06779661 0.083333333
49 1 47 D 0.222222222 0.75 0.101684%915 0.041666667
50 1_48 o 0.5 0.0677%661 0.041666667
E1 1_4% 0 0.708333333 0.084745763 0.041666667
52 1_30 0 0541660667 0.06779061 0.041666607
53 21 1 0.5 0.627118644 0.541666667
54 22 1 0.5 0.593220339 0.583333333
EER 23 1 0.661016945% 0.583333333
56 2.4 1 0.508474576 0.5
57 25 1 0.610165492 0.583333333

The results of the proposed method are shown in Fig. 2. In Fig. 2(b), the proposed method is applied only to two cases of Table 9.

100

2ver-1set

3gnc  Sepal length Sq.llth Petal_length Petal_width

| (a) newly proposed method |

-100

120.0

‘[ iris_2(versicolor)

| (b) already proposed method |

100.0

80.0
60.0
40.0
20,0

0.0

2(versicolor)-1( a) I I

Specimen

setos:
Sepal_length ~ Se th  Petal_length  Petal_width
(20.0)
iris_I(setosa)

Fig. 2 (a) The significance degree among versicolor : setosa calculated using Tables 3 and 4 (b) using Table 9
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Fig.3 is moreover compared adding with the conventional method in Table 9. Hereinafter, other combinations of the
significance degree of virginica : versicolor and also of virginica : setosa are included. The comparison among the total 3 methods
of the proposed 2 methods and a conventional method is shown for these 3 cases in Fig. 3. The significance degree are calculated
and compared among 2ver-1set of vericolor: setosa, 3gnc-1set of versinica : setosa, and 3gnc-2ver of virginica : versicolor. The
significance degree among gnc-ver of virginica : versicolor doesn't agree only a little as shown in the figure.

() method using nermalized Tables 3 and 4 .
Shsd wing hesmalined X e 80 (3) method using nermakeed Tables 3 and 4

(b) mmethad wrkng Tabde §

) methed using Table ¢ (V) method oving Table -

o (€)method wving Table 6
2ver-1set » 3gne-1set
:n
Sepal_length Sepal_widey Petal_length Petal_width
o
Sepal_length Sepal_whith Petal_length Petal_widih

-20

3 (2) method wiing sermalized Tables 3 and &

(b) method wing Table $
2%

() method wiing Table 6

by SSOM

Sepal_length Sepal_width Petal_length Petal_width

Fig. 3 By 3 methods of (a) using Tables 3 and 4, (b) Table 8, and (c) Table 9 in each figure

In case of the iris data, in the first, the data of three kinds of the total 150 stocks were normalized in the column direction. In the
case of the computations for 2 methods, this original normalized data were used and computed. In this case, all 3 methods
approximately fully agreed as shown in Fig. 3.

I1l. THE APPLICATION TO THE GENE DATA

Here, we have the data where the relation between the breast cancer and the gene are examined, respectively. Breast cancer is
classified into 4 steps to the breast cancer level 5, 4, 2-3 from 1 of the health. Here, 1 of the health and 5 of the breast cancer are
compared in the significance degree. 40 cases are classified into 1-5 level of the cancer by the doctor. Each of the gene of 40 cases
was named in 1-831. Further, the level 2 and 3 are gathered altogether as 2-3 for simplicity. By the method which is described in
the Tables 3 and 4, the flags of 4 steps of 1, 2-3, 4, and 5 were put up as shown in Table 10. The data of Table 10 was studied by
the Spherical SOM. Incidentally, the gene data was normalized at the maximum-the minimum of the gene to 1-831 in each sample.
This is the so-called line normalization. The number of component is large as 831. Therefore, the number of the flags was set as the
weight. Total 20 columns in amount are the flags of 4 clusters with five lines of each cluster as shown in Table 10. Four kinds of
the label of 1, 2-3, 4, and 5 are used as classification. Learning data and a learning result are shown in Table 10, and Fig. 4,
respectively.

Table 10 The learning data normalized at the line (row) direction

A HOL U E R e CH L TR L M N YR W R s Y v e A -]
1 T3 P35 B3 B3 o3 T T T T T + + + + + 5 5 5 5 5 T 3 3
2 [ 1 1 1 1 1 o o o o o o o o o o E) E) E) E) 0 0104739508 0719342203 0033837149
2-302 t 1 1 t 1 @ 0o 0 @ O @ 0O ©O 0 O 0O O 0 0 003072177 0165296260 0162267169
A0 2-3.c3 t 1 1 1+ 1 @ ©o © @ © @ 0 0 O @ 0 O 0 0 0 00007015 0056122278 0464050423
51z-304 t 1 1 1+ 1 @ © O @ © @ 0 0 O @ 0 O 0 0 0 014345152 0743516545 0437713088
6 2-300 t 1 1 1+ 1 @ © © @ © @ 0 0 O @ 0 O 0 0 0 01052822 OI161145(5 00864307
7 z-306 t 1 1+ 1 @ o © @ © @ 0 0 O @ 0 O 0 0 0 0209328263 0441048805 052780007
8jz-3.07 1t 1 1 1 1 @ © © © © O 0 © O O 0 O 0 0 0 02FI6IE07 0226135441 0053201200
9 z-3os 1 1 1 1 1 0 0o 0o 0o @ ©0 0O O 0 0 0O O 0O 0 0 0243728895 0675900766 0195646073
10 |2-3.00 1 1 1 1 1 0 0o 0o 0o @ ©0 O O 0 0 0O O 0O 0 0 0645682586 0450647563 0176722928
11 23010 1 1 1 1 1 0 0o 0o 0o @ ©0 0 O 0 0 0O O 0O 0 0 0357994452 025683735 0603536062
12 p-31.016 1 1 ! ! ! o o o o o o o o o o o o o o o 1 0763383662 0432987211
18 [2-31.018 1 1 1 1 1 o o 0 [ [ 0 0 0 o o o o o [ 0 0822147853 0481014108 0479633702
14 p-31019 1 1 1 1 1 0 0 a a a a a a L} o o o o o 0 0106049076 024081473 0146975103
15 [2-3.4.G29 * 1 1 1 1 8 0 © 0 O B © © 0 0 0 0 O 0 0 05ETE447TIE 0583170413 DDG4827807
16 [2-3.5.039 * 1 1 1 1 8 0 © 0 O B O © 0 0 0O 0 0 0 0 0304435257 0486184141 0558433228
17 1o ¢ o o o o 4 f 4 1 41 @ © © @O @ 0 0O © 0 0 0580680522 0 0575376857
18 1 c12 ¢ o o o ©o 4 1 41 1 4 @ 0 © O @ 0 O 0 0 0 0372060043 0027172004 0177945438
1801 c12 ¢ o o o 0o 1 1t 1 1 1 @ 0 © O 0 0 0 0 0 0 0322567535 0247556100 DO6RRF0ILY
20 froa o 6 o o o 1 1 1 1 1 B B © © @ © 8 0 0 0o01s203 003%s19z62 DOSDRFSSST |
21 |15 o o o o o 1 1 1 1 1 0 0 0 0 O 0 0O 0 0 0 0123889291 0077354595 0183338011 |
22 o7 o o o o o 1 1 1 1 1 0 0 0 0 O 0 0O 0 0 0 0043716836 0158132477 0060497935
23 |1 o0 o o o o o 1 1 1 1 1 o 0 0 O O 0 0O O 0 0 026579836 0116173201 0546566171
24 |ace1 o o o o o 0 0 @O 0 0o 1 1 1 1 1 0 0 0 0 0 0212373372 0515368509 0636130377
25 |40ez o o o o o 0 0 @O 0 0o 1 1 1 1 1 0 0 0 0 0 0009108162 062847161 0042577076
26 |4oe3 o o o o o o o o o o 1 1 1 1 1 o o o o o 0 0501782122 0039283867
27 |aoes o o o o o o o o o o 1 1 1 1 1 o o o o 0 0172666425 0431767654 0567952131
28 [4res @ o o 0o 0o @ 0 © @ 0 1 1 4 1 1 O O 0 0 0 0199012639 0592829163 DBIATI 4540
280 4ot @ o o 0o ©o @ 0 O @ 0 1 1 4 1 1 O 0 0 0 0 06049307 0241062921 DS601 78407
300 4.co8 ¢ o o o ©o @ 0 © @ o 1 1 4 1 1 0 0 0 0 0 0783350041 0472632177 0470783400
a1 oo e o o o 0 @ 0 © @ 0 1 1 4 1 1 0 0 @ 0 0 0363457540 0741465701 0935402024
32 54024 o o o o0 0 0 0O @© 0 @9 © 0 ©° 0 o 1 1 1 1 1 0138627503 1 0422322896
35 5.001 @ o o 0o 0 @ 0 O O 0 @ 0 0 0 @ 1 1 1 1 1 029570164 DETRI2424 o
3405 0oz @ o 0o 0o 0 0 0 ©O @ 0O @ 0 0 0 0 1 1 1 1 | 0064761216 0F108TZ7I1 OOG5BFOIES
3505 .cox ¢ o o o0 0o @ ©0 © @ © @ 0 0 O @ 1 1 1 1 | 0086178244 0067367762 0058914005
36 [5.004 @ o o o0 0 @ 0 © @ © @ 0 0 O @ 1 1 1 1 | 029236514 0522037548 0053201200
G705 co5 @ o o o ©o @ ©0 © @ © @ 0 © O @ 1 1 1 1 | 0081326953 0566020007 0017038840
36 5can o o o ©o 0 0 0O © 0 @9 0 0 © 0 0o 1 1 1 1 1 0210262904 0589346035 1
305007 ¢ o o 0 0 O 0 O © © O 0 © O @ 1 1 1 1 | 0422003136 0138123302 0837148639
40 |s.cos o o o 0o ©o 8 ©0 © 8 © @ © © @ @ 1 1 1 1 1 0387813555 0073956312 0868379905 |
4 o0 @ o 0o o © @ 0 © © o @ @ © 0 0 1 1 1 1 | 0502562711 033687902 0443050184
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Fig. 4 The SOM learning result using the data in Table 10. (a) 1 cluster, (b) 2-3 cluster, (c) 4cluster, and (d) 5 cluster

Using the learning codebook vector of Fig. 4, the calculation of the same as Tables 5 and 6 was carried out. The average of each
cluster was calculated. The 5th line was subtracted from the 9th line. The significance degree of 5-1 is tabled on the 12th line. The
colored flags of the clusters at the 12th line were deleted here. Only the significance degree of the gene was graphed. The results
are shown in Table 11.

Table 11 The significance degree of 5-1

A BleclpolelFlalnlrfolklieimInlolprlalrls|Tluly |w]lx hd Z | A AB | AD
1
2 Awerage 23 23 23 23 23 o1t 1 1 4 4 4 4 4 b 5 5 B B 1 2 3 4 5 g 1 g
3 2-3C5 0BB 058 085 088 085 001 001 001 001 OO1 001 OO0 Q01 OOt 00t 0 0 0 0 0 0432 0457 0302 0447 0343 0593 0765 0334
4 23 23 23 23 23 o1t 1 1 4 4 4 4 4 b 5 5 B B 1 2 3 4 5 g 1 g
5 1013 002 002 002 002 002 0893 098 0B8 0BG 098 0O 0O 0 0 0001 001 0O 001 QD1 0335 0081 Q238 0224 Q154 0381 0554 0145
g 23 23 23 23 23 o1t 1 1 4 4 4 4 4 b 5 5 B B 1 2 3 4 5 g 1 g
7 4030 001 001 00t 001 00t 0 0 0 0 0 086 086 086 056 096 002 002 002 002 002 0275 05 053 027 0548 0756 0605 0358
8 23 23 23 23 23 o1t 1 1 4 4 4 4 4 b 5 5 B B 1 2 3 4 5 g 1 g
5 503 001 00t 00t OOt OOt 0 0 0 0 0000 001 001 001 001 088 098 098 058 0BG 0241 0595 0342 0304 0278 072 0362 0214
10
1 23 23 23 23 23 1t 1t 4 4 4 4 4 5 5 5 5 5 1 2 3 4 5 g 7 &
12 5G1G  -08 -08 -08 -08 -08 -7 -97 -B7 -07 -B7 11 11 11 11 11 971 871 §71 971 071 D48 171 104 8015 1246 33893 192 6872

Only the part of the gene with the 12th line of Table 11 was graphed in Fig. 5. In Fig. 5(a), To the 1-150th gene and skipping a
little interval, (b) To 301-450th gene. + side is intentional gene with 5, the breast cancer. - side is the healthily intentional gene
with 1 cluster.
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Fig. 5 Graph of significance degree of Table 8. (a) to 1-150th gene, (b) to 301-450th gene
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The characteristics of the significance degree between 5-1 can be seen from Figs. 5 and 6. It has begun with Fig. 5(a) already,
but the bigger the gene number becomes, the smaller significance degree becomes on the healthy 1 side. Specifically, in figure 6(b),
most peaks are on the 5 sides of the breast cancer.
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Fig. 6 Signficance degree. (a) to 601-750th gene, (b) to 751-831th gene. A little interval is skipped.

Table 12 shows the significance degree on the 5 side of the breast cancer equal to or more than 40 degree was chosen in each
gene number range. The number of the higher significance degree is especially high in 1-150™ gene number range. The green color
range shows equal to or more than 45.

Table 12 The significance degree on the 5 side of the breast cancer

A B C D E F G H 1 J K L M N o] P Q

1 1-150 5C-1C 151-300 5C-1C 301-450 5C-1C 601-750 5C-1C
2 139 1042 at 52.224 220 41585l 50.099 391 38414 a1 49438 695 378645 49.185
3 2 34008 f 51711 286 36530.f 49772 301 35566 f 45321 747 35926 5. 47.314
4 125 1405 a1 51582 252 33272 al 46.059 316 34094 .i: 43715 669 2059 s a 4689
5 24 35185a1 50.826 234 41827 1 44041 608 32186 a1 44.843
6 126 38017 a1 50247 250 39581 a1 42809 451-600 5C-1C 633 368041 4422
7 58 41096 a1 49033 165 31315.al 42695 477 38570 a1 49 646 607 36484 a1 41929
8 14 41471 a1 4879 167 411641 42395 469 33273.f 49291 672 39175.a1 40113
9 82 34M105_f 46255 185 32794 g 42255 489 33274.f. 49078

10 94 41165 g 44923 189 572 at 41285 484 33282 a1 48774 751-831 5C-1C
11 13 38061 a1 44.602 288 36837 a1 40649 495 1478 at 4342 802 40738 a1 45173
12 66 33505.a1 44369 174 40671 g 40.396 563 38006 =1 43051 783 381945 45079
13 87 34095 44.201 5940 1347 at 40068 778 330981 41.731
14 9 543 zat 4412 761 36227 at 41211
15 39 31319 a1 43651

16 123 37168.a1 43.061

17 29 3333181 42178

18 53 38578a1 42011

19 32 36067 a1 41.931

20 41 36239 a1 40876

Next, the side of 1 health is shown in Table 13. In the range of 1-151, the number of the genes which have the absolute value of
the significance degree equal to or more than -40 is more than on the side above of 5 breast cancer (cf -65). Equal to or less than 40
genes are equally distributed approximately compared with Table 12. On the significance degree for the side of the health, it can be
seen that the high significance gene is the 47th and 741st gene from the table.

Table 13 Significance degree of the side of 1 health

4 1-150 5C-1C 151-300 5C-1C 301450 5C1C 601750 5C-1C
5 63 37897 s —41.01 265 851 s at —-4152 363 41660 a1 —41.18 648 36859 al —39.07
& 42174 sa —41.01 192 39366 a1 —43.07 372 39597 a1 —4265 723 2020 at 4246
7 115 38827 a1 —41 99 196 41048 a1 -431 306 37621 at —45.01 709 40088 ai —4356
8 25 31798 a1 —42.88 275 40422 a1 -4352 334 40511 at —4851 642 40093 at  —46.7
8 121 1871 s a 4412 152 40161 a1 —4451 364 41271 a1 —51.13 663 36096 al —47.79
0 145 34775 a1 —4508 226 35778 al —4452 431 38254 a1 —53.06 612 40766 at —4851
1 18 37141 a1 —4568 222 35275 al -46.68 318 39369 a1 —5452 639 33466 al —49.37
2 40 32043 a1 —46.37 279 32531 at -4841 T4 35842 at —64.41
il 43 36454 a1 —-47.07 200185 at  -5057 461600 5C-1C

4 16 38187 a1 —48656 228 40673 at -52.03 506 33350 a1 —39.32

5 2338876 r. -H0.36 533 1909 at —39.62

& 38 37273 a1 -B5.37 513 33452 a1 -40.2

7 102 41440 a1 -56 B8 555 1737 s a —46.85

8 47 32627 a1 —65.32 466 1798 at —4768 751-831 5C-1C
] 521 1893 sa —4872 780 33054 a1 —-38.73
0 572 32668 a1 —49.48 821 32664 at -39.91
1 523 36925 a1 5512 758 1681 at  -563
2
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Tables 12 and 13 are generalized. The genetic code which shows the characteristic of the gene is next to the gene number. For
the gene of the higher strength of the green color, the highest value for the 1 health side shows -65. In other words, the healthy
gene has the clear characteristics. However, there are many, too, numbers of the manifestation in the genes on the 5 side of the
breast cancer. The strength is uniformly, too. The gene comparison between the breast cancer and the health, was evaluated using
the method of this significance degree. As for the manifestation gene of the breast cancer, both the manifestation quantity and the
number of the manifestation are high compared with the side of the health. In this way, it is possible to diagnose breast cancer from
the genetic code.

Incidentally, it was examined the breast cancer of which level the strange sample is in. By considering in which area of 4 areas of
Fig. 4 there is a sample of strange (UK), the cancer level of the sample can be distinguished.

IV. CONCLUSIONS

Thus, a new method for calculating the significance degree was proposed using the Spherical Self-Organizing Maps (SSOM). It
was verified by the iris 3 data. The procedure is of leaving the same flag which is equal to each label of 3 kinds of data. In this way,
each label (the classification) could be equally compared. When the significance degree which was sought in this method of using
all 3 data and the significance degree which were sought in two combinations, were compared, the results reasonably agreed as
shown in Fig. 3. Also, using this method of the significance degree, the gene comparison between the breast cancer (stage 5) and
the health (stage 1), was evaluated. As for the breast cancer, both the manifestation quantity and the number of the manifestation of
the gene are high compared with the side of the health. Thus, it is possible to diagnose breast cancer from the gene examination.
The iris, and the gene data are the examples which the human being classified a cluster by some procedure. However, in case of the
Tof-SIMS data of the unknown clustering, it was automatically classified using Spherical SOM. However, the results of the
analysis for the TOF-SIMS data are deleted due to insufficient space.

As the conclusion, a general procedure is described as follows:
1.  Any data can be learned by the Spherical SOM.

2. The spherical surface was deformed considering the distance (U-matrix) among the learned nodes. Then, a classification is
carried out and a dendrogram is constructed.

3. Here, the optional group to be analyzed can be chosen. 1 or 0 of the classification was assigned to the chosen group for the
number of the classification like Tables 3, 4, and 8.

4.  This data is once again, learned by the Spherical SOM method. The significance degree among two kinds of classification
for each is evaluated by the procedure which is shown in Tables 5, 6, and 7.

Incidentally, a little, the precision falls however, it is possible to compute the significance degree by the plane SOM. When the
classification becomes three kinds for example, in multiple regression [7], it cannot avoid allocating the classification with -1, 0, 1
(or 0, 1, 2). To the group which doesn't have an order, it is improper to allocate an order having to do with a number. It is possible
to be solved if making the classification of three-dimensional as (1,0,0- - +) as having proposed this time.
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1. INTRODUCTION \ NON-METRIC SPACES \

Machine learning is a key element in data analysis systems and often used to analyze OLD In metric spaces similarities between two objects x, w € X? calculated as a
mapping ¢ : x € X C R+ ¢(x) € F using the kernel trick [21], k: X x X — F
with k(x,x') = (6(x), ¢(x")), Vx,x" € X. Thereby it is assumed that the kernel function
With the advent of web and social-media data this has rapidly changed. Many data are k(x,x') is positive semi definite (psd).

OLD standard vectorial data with the Euclidean distance.

now given as NEW For non-psd (-, -) a Krein space has to be used which for finite dimensliops .is a
pseudo-Euclidean space (Pp). We can always embed K into Pp for symmetric dissimilar-

NEW non-standard or structured data with indefinite proximities ities with constant zero diagonal [9].
by means of dedi§§ted, often non—mfztric proximity measures. Due to the mathemati- Definition 1 (Pseudo-Euclidean space [16]) A pseudo-Euclidean space (Pg) & = R®9) jsa
cal power and efficiency of the Euclidean space only few methods were proposed for | | yo] pector space equipped with a non-degenerate, indefinite inner product (., .)¢. & admits a direct
non-Euclidean data and even less for non-metric data analysis. In this contribution we orthogonal decomposition & = €, @ &_ where &, = RP and & = RY and the inner product is

provide a short review of the few available algorithms and concepts for non-metric data positive definite on &, and negative definite on &_.
analysis as available today.
A symmetric bilinear form in this space is given by

ptq
x (% ¥)pa = ZT yi— Y wi =% Ty
i=p+1

where I, , is a diagonal matrix with p entries 1 and ¢ entries —1. The eigendecomposition

of S = UAUT provides a vectorial representation V in Pg:

1/2

V =Upig |Apiql ! 1)
4 A For symmetric (non-)psd similarities with low intrinsic dimension this can be calculated

exact and in linear time [20].
USAGE:

o use the decomposition to learn the model in K. and K_ by late recombination [14],

e incredients of the model (e.g. scatter matrix) can be calculated on the decomposi-

Non-metric data representation is daily life tion [18, 24]

e just learn e.g. a generic regression function f(z) = Z?ﬂ wi¢;,6(x) + b which can

” ) . . . .
So what?: most classical learning algorithms like the Support Vector Machine expect related to the indefinite (x, ) [11, 3]

metric inputs (mercer kernels). If non-mercer or non-psd kernels are used the employed
mathematical theory is not any longer valid and your preferred kernel method can easily o local metric adaptations [2, 5] to correct violated triangle inequalities.
gail , all guarantees (convergences) and bounds become invalid .

2. COMMON (NON-METRIC) SIMILARITY MEASURES \

Non-metric proximities (similarities and dissimilarities) are frequent if domain specific

measures are used. There is often not even an explicit vector space available. ,
e alignment (Bioinformatics)

NING MODELS IN NON-METRIC SPACES

. Non Metnc Locality-Sensitive Hashing

« Indefinite Kernel PCA (Pekalska, Zafelnnu
« Indefinite Kernel Fisher Disciminant Analysls
(Haasdonk, Pekalska) L°“I "’md'“

o Levenstein (Textprocessing)
e Hamming (Information theory)

e Geodesic distance (Geometry)

* Non-Metric Trees (Skopal)

e Jaccard index (Statistics) « Local constant embedding (L. Chen)

+ Relevance Vector Machine (Tipping)
« Probabilistic Classification Vector Machine (H. Chen, P. Tino)
« Supervised Learning with Similarity Functions (P. Kar, P. Jain)

o Compression distance

e dynamic time warping (time- \

series)

4. SUMMARY

1. Learning in non-metric spaces is relevant [7, 16, 19, 13]

Other examples for indefinite proximities:

e Manhattan kernel: K(x,x’) = —|[x — x'||s
2. Only few approaches around - still often limited (theory, runtime, scalability, . . .
e indefinite sigmoid kernel K (x,x’) = tanh(a(x,x’) 4 r) (for some parameters a, )
3. Specific effects of transformations not really understood [8, 12, 15]
e Many divergence measures popular in the field of spectroscopy
4. First steps on establishing a theory on learning in non-metric spaces [1, 23]
\Outcame: (non-)metric proximities with negative eigenvalues in the eigenspectrum.

5. Most approaches focus on supervised learning or retrieval

\
3. CURRE PROACHES - MAKE IT GLOBAL PSD |
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Consider negative eigenvalues as noise - correct the eigenspectrum to psd.
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Abstract

This paper deals with the integration of statistical measures into the frame-
work of prototype-based learning vector quantization for learning of binary classi-
fication problems. In particular, the evaluation and optimization of the confusion
matrix by means of a learning vector quantizer is considered keeping the Heb-
bian learning paradigm for prototype adaptation. In a further step, receiver
operating characteristic curves are investigated. The area under the respective
curves, which can be equivalently interpreted by a rank-statistics model, serves
as an alternative quality measure for parametrized classifiers. As we show, this
statistical approach can also be integrated into the learning vector quantization
scheme whereas the precision-recall-curve counterpart is not suitable for such a
model approach.

1 Introduction - Classification by Learning Vector
Quantization

Learning vector quantization (LVQ) models are prototype-based adaptive classifiers
for processing vectorial data [15]. Training samples are assumed to be of the form
v € V C R" with class labels z, = z(v) € C = {1,...,C}. The set of prototypes
W ={w; e R",j =1... M} contains representatives of the classes carrying prototype

*supported by the European Social Foundation Saxony (ESF)
tcorresponding author - email: thomas.villmann@hs-mittweida.de
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labels y; € C. Classification decisions for unknown data samples v are usually made
according to a winner take all rule, i.e.

T = Ys(v) With s (V) = argmin; (d (v, w;))

where d (v, w;) is a dissimilarity measure in the data space, frequently chosen as the
Euclidean distance. LVQ training amounts to distributing the prototypes in the data
space such that the classification error is minimized. Stochastic gradient descent learn-
ing have been introduced which is based on objective function

B =53 f(n(v) (1)

approximating the classification error [22]|. Here, the function

_di(v)—d"(v)
H) = F W T E W) @

is the so-called classifier function. This approach is known as Generalized LVQ (GLVQ)
[22]. Here d* (v) = d(v,w™") denotes the dissimilarity between the data vector v and
the closest prototype w© = w,+ with the same class label y+ = xy, while d~ (v) =
d(v,w~) is the distance from the best matching prototype w~ with a class label y,-
different from wz,. The modulation function f in (1) is a monotonically increasing
function usually chosen as a sigmoid or the identity function. A typical choice is the
Fermi function

1
f0 (l’) - (z—z0)
1 +a - exp (—TQO

®)
)

with g = 0 and a = 1 as standard parameter values. The parameter 6 determines the
slope of fp but is frequently fixed as 6 = 1.
Stochastic gradient learning performs update steps of the form

L () Oty 94 ()
T e ow .

for a randomly chosen data sample v.

2 Classification Accuracy and Statistical Measures in
GLVQ

In the following we demonstrate how to realize a classifier optimizing a statistical
measure based on the confusion matrix by means of GLVQ. GLVQ is the preferred
choice to keep the intuitive approach of prototype based classification.

24
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labels true

predicted | Cy || TP | FP | Ny
C_ | FN |TN || N_
N, | N | N

Table 1: Contingency / Confusion matrix: T'P - true positives, F'P - false positives,
TN - true negatives, F'N - false negatives, N.- number of positive/negative data, N,
- number of predicted positive/negative samples.

In this view, first we observe that the classifier function u(v) from (2) becomes
negative if the data point v is correctly classified, i.e. if x, = y4() is valid. Further, in
the limit 6 N\, 0 the sigmoid fy (3) becomes the Heaviside function

H (x) = ) (5)

1 else

{o if <0

such that border sensitive classification learning takes place [13]. Thus, in this limit,
E (W, H) counts the misclassifications. Considering a two-class problem with a positive
class C'; labeled by ’&’ and a negative class C_ with class label &’ these misclassifica-
tions are distinguished as the false positives (F'P) and false negatives (F'N) according
to the contingency table Tab. 1.

Yet, counting of misclassifications is not always an appropriate evaluation of clas-
sifier, in particular, if the data are imbalanced [21]. In statistical analysis contingency
table evaluations are well-known to deal with this problem more properly. Several mea-
sures were developed to judge the classification quality based on the confusion matrix
emphasizing different aspects. For example, precision m and recall p, defined as

TP TP
MT=—"—""—""—=— —<— (6)

TP+ FP X,

and TP TP
p (7)

" TP+FN N,
respectively, are used in the widely applied Fjz-measure

(1+6%)-7-p
By = —p—r— (8)

pr-m+tp
developed by C.J. VAN RIJSBERGEN [20].

To integrate these contingency quantities into a GLVQ-like cost function, we have
to approximate them properly while ensuring their dependence on the prototypes is
differentiable. For this purpose we introduce the quantity fi(v) = fo (—p(v)) with
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i (v) = 1 iff the data point v is correctly classified and i (v) ~ 0 otherwise for small
values 6, with the derivative

Op(v) _ _Oi(v) 0fy _Op  0d(v)
ow* 0fy  Op 0d=(v) owE

Thus we can express all quantities of the confusion matrix in terms of the new classifier
function i (v):
TP=) doa i(v),

FP=Y dea - (1-i(v)),

FN =Y 6540, (1= (V)

and
TN =) bow, (V)

with dg ,, is the Kronecker symbol and g ,, = 1 — dg,,. Obviously, all these quan-
tities are also differentiable with respect to i (v) and, hence, also with respect to the
prototypes wi. In consequence, an arbitrary general statistical measure can be opti-
mized by a GLVQ-like stochastic gradient learning of the prototypes, if it is continuous
and differentiable with respect to T'P, FFP, FN, and T'N. Clearly, the above mentioned
quantities precision 7 and recall p as well as the Fjs-measure belong to this function
class and, therefore, can be plugged into the GLV(Q learning scheme.

3 Receiver Operation Characteristic Optimization
and GLVQ

The Receiver Operation Characteristic (ROC) is an important tool for performance
comparison of binary classifiers. A classifier is considered superior if it delivers a
higher value of the area under the ROC-curve (AUC). Following [4], the AUC refers
to the true distribution of positive and negative instances, but it can be estimated
using a sample. The normalized Wilcoxon-Mann-Whitney statistic |25, 18| reveals
the maximum likelihood of the true AUC for a given classifier [26]. Several method
were developed to maximize AUC directly including gradient descent learning [11],
approximated AUC optimization [5], reject option optimization [17], AUC optimization
by linear programming [1]| or ranking based optimization [8], to name just a few of the
recently proposed approaches. Yet, for prototype based classification based on LVQ),
which can be seen as a robust variant of the nearest-neighbor classifier [12], a direct
optimization scheme for AUC is not known so far. As we will show in this chapter, the
GLVQ variant of the basic LVQ scheme can be easily adapted for AUC optimization.

26
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3.1 Probability Interpretation of AUC

Suppose the binary classification problem for classes A and B and related datasets V4
and Vp with cardinalities #V,, #Vp, respectively. Further assume that a classifier
delivers a continuous output (discriminant function) ¥ used for the classification de-
cision. Then the AUC can be interpreted as the probability P,p that a classifier will
rank a randomly chosen A-instance v4 € V4 higher than a randomly chosen B-instance
v € Vg |7]. In this view we can formulate an equivalent cost function introducing the
(local) ordering function

Og (va,vp) = fo (U (va) — 0 (vB)) (9)

for an ordered pair (va,vpg) of vectors. We approximate P4p by

1
- > 0p(va,vp) (10)
(va,vB)

Pup (0)

depending on the slope parameter 6 of the sigmoid function fy (x) from (3). If 6 \, 0
holds, Psp (0) converges to Pap for #V4p — oo according to the underlying rank
statistics [18, 25| and paying attention to the functional limit f, — H for 6 \, 0 with
the Heaviside function H from (5).

3.2 A cost function for AUC based on GLVQ

The probabilistic interpretation of the AUC introduced in the previous subsection can
be facilitated in the GLVQ-framework. To this end, the discriminant function ¢ in
(9) is replaced by a discriminat function puap specifically designed for the GLVQ and,
hence based on the prototypes used in GLVQ. In particular, we define

dP (v) — d* (v)

Has (V) = G T aE ) ) (1)

with d* (v) = d* (v, w’ (v)) where w? (v) is the closest prototype to v responsible for
class A. Analogously, wj and d” (v) are defined in the same manner. The parameter
v € [—1,1] defines a threshold shifting the decision boundary between w* and wij,
which plays the role of the varying parameter for the ROC-curve. The unbiased case
is obtained for the choice v = 0. With these settings the ROC cost function for a
respective GLVQ-scheme reads as

1

Eroc (0,Va, Ve, W) = v,
B

Z fo(tas (Va,v) — pas (vs,7)) (12)

(va,vB)

again depending on the slope parameter 6 of the sigmoid function fy(z) from (3).
Hence, border sensitive learning in this ROC-GLVQ), i.e. forcing 6 N\, 0 in (9), leads to
the limit

0
Eroc (0,Va, Vg, W) A Pap . (13)
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Further, using the derivatives

Opap (v,7) _ d” (v) 0d* (v)
oWy (V) (dA(v)+dB(v))? oW (V)
and
Opap (Vi) _ d* (v) - 0d” (v)
ow’, (v) (dA (v) 4+ dB (v))? Owp (V)

we can calculate the gradients of the GLVQ-adapted ordering function

0*" (va,vi) = fo (Hap (Va, ) — pas (V) ,7) (14)

regarding to both v, and vp, respectively:

004" (va,ve) _ Ofo| (Opan(va,y)  Opas VBW (15)
oW’ (va) Oz|, \ Owil(va)  Owi(va)

004" (va,vi) _ Ofs| (Opas VM _ Opas( VB’” (16)
ow, (V) 9z |, ow* (vp) ow’ (vs)

00y** (va,ve) _ O0fo| (Opas( VAa”Y _ Opan( VB’7 (17)
Owy (va) 0z |, Owy (va) oW (va)

200 (v v5) _ 3% (Btan(a) _ Qs () 1s)
aW*B (VB) az 8WB VB avV*B (VB)

with z = pag (va,7y) — pas (VB,7)-
In consequence, GLVQ-like stochastic gradient learning is possible also for the ROC
cost function Froc from (12). However, for this purpose a structured input

Vag = (Va,VB)

is required in GLVQ learning. Thus, stochastic gradient descent learning on
Eroc—crvg takes place with respect to w¥ (va), wh (vg), wi (va), and wj (vp) us-
ing the gradients (15)—(18) of the GLVQ-adapted ordering function O§*# from (14)
depending on the randomly selected structured input v,5. We emphasize at this point
that the ROC-GLVQ delivers an AUC-optimizing scheme only in the limit 8 ~\, 0 of
border sensitive learning.

3.3 The ROC-LVQ model

In the previous section we introduced a cost function for AUC based on the GLVQ-
paradigm. Although frequently assumed, the standard GLVQ does not guarantees the
prototypes to being class representative after learning |19, 9]. To enhance this property
a generative cost function amount
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Ecpn (0,Va, Ve, W)= Y d*(va) +d” (vp) (19)
(va,ve)
has to be added to Froc from (12) such that the overall ROC-GLV(Q cost function
becomes
Eroc—crvg (0,Va, Ve, W,a) = (1 — ) - Egen + v - Eroc (20)

with the balancing parameter o € [0, 1] weighting both aspects classification-separation
versus description of class distribution [12].

4 Precision-Recall-Curves and GLVQ

Precision-Recall-Curves (PR-curves) are closely related to ROC but do not provide
the identical information [2, 6, 16]. Therefore, they can provide additional insides.
Precision and recall as introduced in (6) and (7), respectively, are intensively used for
test statistics and classification problems in medical applications. In this area, the
recall p is often denoted as sensitivity describing the ability of the classifier to detect
positive samples accurately. The counterpart of the sensitivity is the specificity value

TN TN
TN+ FP N_

S (21)
judging the ability for detecting negative samples. Precision-recall-relations are fre-
quently investigated taking the Fjs-measure from (8) with § = 1 [16]. This is just the
ratio of the arithmetic and the geometric mean of precision and recall, i.e.

2.7
D
T+ p

(22)

However, for evaluation of PR~curves, only a few approaches were proposed [3, 2, 16].
In the following we will identify the difficulties arising, if one would like to adapt the
ideas of AUC-maximization learning in GLV(Q to PR-curve optimization by GLVQ.

4.1 Basic Definitions and Notations

We follow the explanations in [3]: We denote the class A as positive class and B is
the negative. The real-valued model output for the positive samples v4 is y* and,
analogously, negative samples v generate y®. The class skew S is defined as the
probability S = P (A) and also known as prevalence or a prior class distribution. The
recall can be written as a probability

p(e) = P(y" > o) (23)
whereas the precision m is a conditional probability

m(c)=P(veAlz>c) . (24)
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In this formula, z = 2z (v) is the overall real-valued output of the classifier model for a
given unclassified sample v being a mixture of y* and y?. With this definitions, the
precision-recall-curve PR is the set

PR={(p(c),m(c)),—00 <c< oo} .

We assume larger outputs to be associated with positive samples. In consequence, as
¢ decreases, the recall p (c) increases to one and the precision 7 (¢) approaches to S.
The area © under the precision-recall-curve (AUCPR) is an average of the precision
weighted by the probability of a given theshold c:

@:/wﬂ(c)dP (y* <¢) (25)

o

Since, 7 (¢) and P (yA < c) are both bounded on the unit square, the inequality 0 <
© < 1 holds. Therefore, © can be interpreted as a probability. According to [3],
the integral (25) can be interpreted as the fraction of positive examples among those
examples whose output values exceed a randomly selected threshold c. Eq.(25) can be
written equivalently as

@zlw@@wma (26)

paying attention to the fact that for —oo < ¢ < oo the range p(c) € [0,1] is valid
[16, 14].

There exist several estimators for © in case of real datasets V =V, U Vg [3]. One
powerful estimator avoiding the explicit determination of the empirical curve PR is
the the averaged precision

6= > () (27)
Vs &
and S 5()
R p(x
7(r) = —— — (28)
S p(a)+ S22 T (yF > o)
is the empirical precision estimate with
pla) = 1(y > ) (29)
Va3

being the empirical estimate of the recall p (z) and I (F) is the indicator function of
the event .

4.2 PRC-IVQ

According to the previous ROC-GLV(Q model assumptions we have to define a GLVQ-
output in the sense of a discriminat function. For this purpose we make use of the
already declared and define

frap (V) = —pap (V) (30)

30
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as PR-LVQ discrimant function, which is in agreement with the assumption that larger
outputs should be associated with positive samples. Further, we replace the indicator
function I (y > z) by the Heaviside-function H (y — x) from (5) and approximate the
latter one by the sigmoid function fy from (3). Doing so and estimating the skew S as
S = ZVA the estimator © from (27) for the AUCPR can be written as a cost function

= e
1 A 1
FE 0,Va, Vg, W) = 31
prc (6, Va, Ve, W) #VA;1 ST p(aan(F)-ian(+2)) (31
- b3

228 fo(pan(vi)-aan(vi))

to be minimized in dependence on the prototype set W. In analogy to the above
ROC-LVQ cost function we finally obtain the formal PRC-LVQ cost function as

Eprc—rvg (0,Va, Ve, W,7) = (1 =) Egen +7 - Eprc (32)

with Egpn being the generative part (19).

However, this cost function Eprc contains nested sums over the single events Vﬁ
and v in contrast to the pairwise events (v4,vp) considered in the cost function (12)
of AUCs for GLVQ. Thus stochastic gradient descent learning would become complicate
for this model, because of the nested sums. Therefore, other optimization strategies
like Expectation-Maximization should be investigated instead. However, this is behind
the scope of this introdution article and will be studied in the future.

5 Conclusion

We present in this article the mathematical framework for learning of prototype-based
LVQ-classifiers to optimize statistical quality measures based on the confusion matrix
or receiver operating characteristic. We further obtained a GLV(Q modification for
maximizing explicitly the area under the ROC-curve, whereas a derivation of a similar
method for precision-recall-curve optimization failed.

Obviously, the obtained approaches can be easily combined with other advanced
GLVQ-techniques like relevance and matrix learning or kernelized variants [10, 23, 24].
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About the Generalization of the Eigen-Problem for
Semi-Inner Products in Minkowski-£,-Spaces

S. Saralajew, M. Lange, and T. Villmann
University of Applied SciencesMittweida
Computational Intelligence Group

Abstract

Semi-inner products as generalization of inner products are recently discussed
in several machine learning approaches for classification and vector quantization.
This technical paper considers the eigen-problem from the perspective of semi-
inner products and discusses related numerical and algebraic problems for its
solution.

1 Introduction - the Usual Eigen-Problem

We start introducing the usual eigen-problem (EP) based on the usual inner product.
This is done to clarify notations and to relate the later eigen-problem in case of semi-
inner products to the usual ones.

For this purpose let V' be a vector space over the field K assumed to be R or C.
The linear map f : V — V is supposed to be an endomorphism. The EP consists
in determination of a pair (\,v) such that f(v) = Av is valid with A € K, v € V
and v # 0. Then v is denoted as eigenvector of f and A the respective eigenvalue. If
we further assume that dim(V) = n < oo is finite then f uniquely corresponds to a
n X n-matrix A over the field K, i.e. A € K™" and the EP becomes

Av =)v (1.1)

also denoted more precisely as the right-side EP (REP) with v being a column vector.
Analogously, we can define the left-side EP (LEP) as

viA =\l
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where v denotes the transposed vector.
In this paper we will use the following notations for a given matrix B € K™*"

e B, ,: towie€ {1,2,...,m} of the matrix B
e Bj ;column j € {1,2,...,n} of the matrix B
e B, ; = (B);,; matrix element at the position 4, j of the matrix B

e I is the n-dimensional unity matrix

The vector space as V' := C" together with the Euclidean inner product (e, e). is a
Hilbert space. Thus the REP (1.1) writes as

(AL, V)

<A:2r—>7 V>E’

Av = )\v = = \v (1.2)

(A V) g
with the induced norm ||x[|, = \/(x,%) .

Several numerical methods were developed to solve the REP, like

e v.-Mises-iteration with deflation
e inverse v.-Mises-iteration
e the QR-algorithm

e Krylow-subspace-method

to name just a few. They make intensively use of the Hermitian symmetry of the inner
product (e, e) ., which implies the sesqui-linearity, i.e.

<V,)\~W>E:X-<V,W>E

and linearity in the first argument. We refer to |3, 8|, for further reading.

2 The Eigen Problem in the Minkowski-p-Space

Now we turn to consider normed complete vector spaces, i.e. Banach spaces. A promi-
nent example is the n-dimensional Minkowski-p-space £ over the complex numbers C
equipped with the Minkowski-p-norm

for 1 < p < 0.
For Banach spaces does not necessarily exist an inner product. However, a weaker
concept can be identified - semi-inner products (SIPs) as introduced by G. LUMER |5]:

36
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Definition 1 A semi-inner product [e,e]| of a vector spaces V over the field K is a
map
0,0 : V xV — K

with the following properties
1. [e, o] is semi-definite

Vx eV :[x,x] >0 und [x,x] =0<=x=0

2. |e, @] is linear with respect to the first argument, i.e.

VXaYaZGMv£€K:£' [X,Z]—F[y,Z] = [€'X+y,Z]

3. [e, e fulfills the Cauchy-Schwarz inequality

vx,y € Vi |xyl° < [x,x[y,y]

Note that the Hermitian symmetry, as it is valid for inner products according to (1), is
not required for SIPs and the triangle inequality for inner products is replaced by the
Cauchy-Schwarz inequality. LUMER has shown that each Banach space B with norm
||®||z can be equipped with a SIP [e, @], such that the norm is generated, i.e.

1xlls = /B, %]g -

Generally, several SIPs may deliver the same norm. Uniqueness can be obtained by
additional requirements, like differentiability in the second argument and other. We
refer to |2] for details.

The previously mentioned Banach space £} obeys the unique SIP

n

1 _ _
[x, Y]p = W Z zy, - i - |ysl” ’ (2.1)
Y k=1

yr 70

as shown in [2]. In the next step we introduce for this space an analog procedure to
the Euclidean matrix multiplication from (1.2). For matrices A € K™* and B € K"
we define the operation ¢ with respect to the SIP (2.1) for the {,-space as

[AF{H7 Bli]p [Arirﬁa B%}p e [Ag;v Bni}p
AoB:= [AC2F_> ’. Bu]p [Agﬁ ’. BQJP h [AT2F_> ’.BM] ? (2.2)
[Aﬁ—w Bli]p [Aﬁ—w BZL]p T [Agz—w Bm/]p

denoted as SIP-matrix-multiplication (SIP-MM). The following lemma can be stated:
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Lemma 2 Let A € K™* B e K" gnd C € K™ be matrices. Then
A - (BosC) = (A -B)oC

is valid, whereby A -B denotes the Euclidean matriz multiplication (EMM) with respect
to the Euclidean inner product in agreement with (1.2).

Proof. We consider an arbitrary matrix element (A - (BoC)), ; and show that
(A (BoC)), ;= ((A-B)oC),; Vi=1,..,mandVj=1,.,n

is valid: Using the linearity of the SIP with respect to the first argument we derive

(B Cal,
(B3, C; ]
(A-(BoQ));; = Ais- .
(570,
k
= ZAUL' [leycﬂ,]p

h=1

[Al h* Blzj—w Cji]

showing the stated property. m
Now we are able to define the REP and the LEP in Banach spaces with respect to
a given SIP:

Definition 3 Let B be a n-dimensional Banach space over the field K with the norm
||®||z- Let [o, 0]y be a SIP with ||x||; = \/[x,Xx]g. The REP for a matriz A € K™*"
with respect to the SIP [e, o]y is defined as the determination of the pair (\,v) with
A€ K and v € B such that

[ﬁiﬁ? vl
Aov=)\v <= [ o iE =\v (2.3)
ATV,
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18 valid. The related LEP reads as
Vie A=A = ([v,Alg, [v,Alz, -, [V,Aulg ) =Av" (2.4)

and we refer to these as sSREP and sLEP, respectively. (\,v) is denoted as an eigen-
Pair.

3 Numerical Approaches for the sSREP and the sLEP

The sREP introduced in (2.3) offers a serious difficulty for its numerical solution. As
it was explained above, most of the known numerical methods for the REP in Hilbert
spaces utilize the Hermitian linearity (1) of the inner product in the second argument,
which is not valid in case of SIPs. To our best knowledge, there is no general way to
solve this problem so far by means of classical numerical approaches. An alternative
was proposed in |1, 4| based on Hebbian learning for the special case of covariance
matrices for a givenset S C R" of data vectors s € S: For randomly presented s and
randomly initialized vector w € R"™ the adaptation

w=w+ Aw
with
Aw =c-[s,w], (s — [s, W], - w) (3.1)
is applied. The positive learning rate £ has to be small and decreasing during time,
ie. 1> ¢>0and limy e (t) = 0 with 37, (¢ (t))* = co. The update scheme (3.1)
is known as Oja’s rule in the literature originally introduced for the REP [6, 7]. It
delivers the eigenvector belonging to the maximum eigenvalue and can be extended
also to calculate more than one eigenvector [9, 1, 4.
For the sLEP the situation is easier, because we can use the linearity of the SIP with

respect to the first argument. As the main result of this paper we state the following
theorem:

Theorem 4 (Saralajew&Villmann) Let Q € K™ be a reqular matriz over the field
K and (\,v) be an eigen-pair of the matriz A € K"*™ with respect to the sSLEP defined
in (2.4). Then (\,w) is an eigen-pair of LEP for the matriz B = (Q~'o A) Q with
respect to the Euclidean inner product and w = QTv holds.

Proof. Using Lemma 2 we calculate
w'B = (Q'v)'B
V'Q(Q 0 A)Q
vi(IoA)Q
(VT o A) Q
AwliQ

= wl,
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which is the desired result. m
This theorem allows to transfer the sLEP to the usual Euclidean REP:

Corollary 5 (Saralajew& Villmann) We consider the matriz C = (1o A)T for A €
K™ " being a matriz over the field K. Then the sLEP vT o A = A\v’ can be translated
equivalently into the Euclidean REP Cv = A\v, i.e.

vie A =)\ < Cv=)\v
holds.

Proof. The corollary immediately follows according to

Cv=Xv <= (IcA)v=)v
— vI(IoA)= )"
— vieA =)\

applying the previous theorem with Q :=1. m
Thus it is possible to solve the sLEP using an arbitrary numerical approach for the
Euclidean REP.

4 Conclusion

In this paper we briefly investigate the numerical solution of eigen-problems in Banach
spaces, where no inner product is available as they are known from Hilbert spaces.
Instead, semi-inner products with weaker requirements are the counterparts there.
Whereas the right eigen-problem is difficult to handle, we present a solution for the
left-side problem translating it to a right-side problem in an Euclidean space equipped
with the Euclidean inner product.
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