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MiWoCI Workshop - 2014

1 Sixth Mittweida Workshop on Computational Intelli-
gence

From 02. Juli to 04 Juli 2014 we had the pleasure to organize and attend the sixth Mit-
tweida Workshop on Computational Intelligence (MiWoCi 2014) as a satellite event of
10th Workshop on Self Organizing Maps (WSOM’14). Multiple scientists from the Uni-
versity of Bielefeld, HTW Dresden, the University of Groningen (NL), the SOM Japan
Inc (Japan), the University of Birmingham (UK) and the University of Applied Sciences
Mittweida met in Mittweida, Germany, to continue the tradition of the Mittweida Work-
shops on Computational Intelligence - MiWoCi’2014.

The aim was to present their current research, discuss scientific questions, and
exchange their ideas. The seminar centered around topics in machine learning, signal
processing and data analysis, covering fundamental theoretical aspects as well as
recent applications, partially in the frame of innovative industrial cooperations. This
volume contains a collection of extended abstracts and short papers which accompany
some of the discussions and presented posters of the MiWoCi Workshop.

Apart from the scientific merrits, this year’s seminar came up with the great chance
to attend the 10th Workshop on Self Organizing Maps (WSOM’14). WSOM is the
major anchor conference focusing on Self Organizing Maps and is not only a perfect
chance to met high renowned researchers in the field but also to attend the three invited
plenaray talks given during WSOM 2014:

• Prof. Dr. Michael Biehl, University Groningen (NL), Johann-Bernoulli-Institute of
Mathematics and Computer Sciences

• Prof. Dr. Erzsebet Merenyi, Rice University Houston (USA), Department of
Statistics and Department of Electrical and Computer Engineering

• Prof. Dr. Fabrice Rossi, Universite Paris1- Pantheon-Sorbonne, Department
Statistique, Analyse, Modelisation Multidisciplinaire (SAMM)

This year the MiWoCi Workshop was also accompanied by a poster spotlight at the
WSOM 2014 for each poster contribution and a best poster award was announced.

Our particular thanks for a perfect local organization of the workshop go to Thomas
Villmann as spiritus movens of the seminar and his PhD and Master students.

Mittweida, July, 2014
Frank-M. Schleif

1E-mail: fschleif@techfak.uni-bielefeld.de
2University of Bielefeld, CITEC, Theoretical Computer Science, Leipzig, Germany
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Interpretation of linear mappings employing l1 regularization

Alexander Schulz1, Daniela Hofmann1,
Michael Biehl2 and Barbara Hammer1

(1) Bielefeld University, CITEC - Center of Excellence, Germany
(2) University of Groningen, Johann Bernoulli Institute for Mathematics

and Computer Science, The Netherlands

Abstract

In this contribution we propose a new technique to judge the relevance of features for
a given linear mapping, thereby taking redundancy and interdependence of features into
account.

We employ a two step optimization strategy: In the first step, we linearly minimize the
l1-norm of the linear mapping

∑
i |wi|, while taking redundancies in the data distribution

into account. Since the first step does not necessarily yield a unique solution, we search
in this solution space by minimizing/maximizing the absolute value of each single feature,
respectively.

Thus, we obtain a lower and upper bound of relevance for each feature, indicating how
important it minimally and maximally is (similar to strong and weak relevance in the litera-
ture).
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Hellinger divergence in information theoretic

novelty detection

Paul Stürmer∗ and Thomas Villmann
Computational Intelligence Group

University of Applied Sciences Mittweida

Abstract

A novelty detection framework proposed in 2009 by M. Filippone and G. Sanguinetti
[6] is considered, which is suitable for small training sample sizes and allows control
over the false positive rate. It is based on estimating the information content a test
sample yields via the Kullback-Leibler divergence. In case of a Gaussian density esti-
mation this approach is analytically tractable and for Gaussian mixtures appropriate
approximations are provided. Here the framework is expanded by allowing the use of
the Hellinger divergence [10] instead, summarizing the work done in [16].

1 Introduction

Outlier detection is an important task in machine learning where outliers – observations
which deviate markedly from a given sample of training data [9] – are to be identified.
There are many applications such as fault detection [2, 5] or monitoring medical conditions
[14, 17], where such problems arise. Novelty detection concerns the case that no anomalous
data is available in the training phase of the system. This is the case when outliers are
costly or difficult to obtain, or when anomalous data can not to be modeled in advance. For
instance, it would be unreasonable to sabotage an aircraft engine just to obtain anomalous
observation data [13] and a new method of fraud is unlikely to be modeled in advance [4, 11].

Since outliers (true positives) are rare by definition, the accuracy alone is not sufficient
for evaluating a novelty detection system. The framework presented here allows control over
the false positive rate (fpr), which is the rate at which normal data samples (true negatives)
give rise to an outlier alarm.

The key idea of the information theoretic approach is to first model the training data
alone, and to train a second model which also takes a test point into account. The two
models are then compared using a divergence. This is in [6] the Kullback-Leibler divergence.
Here we consider the Hellinger divergence instead, which is symmetric and therefore easier
to be interpreted as a distance-like measure. If the test point is a true negative, the two
models are expected to be similar, resulting in a low divergence; and if it is a true positive the
second model is expected to be strongly adapted, hence inducing a high divergence. Since
the divergences considered here are defined for probability density functions, it is necessary
to model the data via a probabilistic approach.

The goal is then to find a divergence threshold of acceptance for a test sample, which is
found via Monte Carlo simulation. In this simulation phase a statistical test – in this work
referred to as the F -test – is implemented, which significantly improves the performance of
the framework. The framework is restricted to Gaussian mixture models (GMM s), hence
assuming the data to be distributed normally. In case of single-component Gaussian densities
it is analytically tractable.

∗corresponding author, stuermer@hs-mittweida.de
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The paper is structured as follows: In Section 2 the process of modeling data via GMM s is
considered. In Section 3 the F -test is reviewed in order to incorporate it into the framework.
In Section 4 the Hellinger divergence is approximated to allow an implementation. The
performance of the framework is illustrated on an artificial dataset and validated on the
well-known Iris dataset in Section 5, before a conclusion is given in Section 6.

2 Data model

Let X = {x1, . . . ,xn} ⊂ Rd be the training set of samples, where each xi is drawn from
a normal distribution. Let f be the GMM with c components fitted to the training data
(training model)

f(x) =

c∑

k=1

π̂kN (x|m̂k, Ŝk);

N (x|m̂k, Ŝk) =
1√
|2πŜk|

exp
(

(x∗ − m̂k)
T
Ŝ−1
k (x∗ − m̂k)

)
,

where the parameters π̂i denote the estimated mixing coefficients, m̂i the estimated means
and Ŝi the sample covariances for each component i ∈ [c] := {1, . . . , c}. The distinction be-
tween parameter estimations π̂i, m̂i, Ŝi and the true parameters πi,mi, Si of the generating
density will become important in the next section. Such a GMM with maximal likelihood

n∑

i=1

f(xi)→ max

can be obtained via the Expectation/Maximization (E/M ) algorithm [3], where the user has
to know the number of components c in advance. For a test sample x∗ the training model
f is adjusted to the adapted model f∗

f∗(x) =

c∑

k=1

π̂∗
kN (x|m̂∗

k, Ŝ
∗
k),

which is obtained by performing only a single E/M -step on X ∪ {x∗}, starting from the
parameters of f . Under the assumption that adding a single point to the fitted dataset leads
to small changes in the parameter estimations of the GMM, it is reasonable that a single
E/M step might already give a good estimate of the new parameters. The reason for doing
this is that the updated parameters then can be denoted in closed form. It is then eventually
possible to formulate an explicit divergence approximation which only depends on x∗ and
the parameters of f .

The Expectation step does not affect any responsibility uik of component k for the
training sample xi, whereas the responsibilities for x∗ are:

u∗k =
π̂kN (x∗|m̂k, Ŝk)∑c
r=1 π̂rN (x∗|m̂r, Ŝr)

The updated cardinality of component k is n∗k = nk+u∗k =
∑n
i=1 uik+u∗k and the updated

parameter estimates are

π̂∗
k =

nπ̂k + u∗k
n+ 1

; m̂∗
k = m̂k +

u∗k
n∗k

x̃∗k; Ŝ∗
k =

nk
n∗k

(
Ŝk +

u∗k
n∗k

x̃∗kx̃
T
∗k

)
,

where x̃∗k := (x∗ − m̂k).

MiWoCI Workshop - 2014

Machine Learning Reports 7



3 The F -test

Let X = {x1, . . . ,xn} be the training set, where each xi ∈ Rd is drawn from a multivari-
ate Gaussian distribution N (m, S). The maximum likelihood estimation of the generating
distribution based on X, N (m̂, Ŝ), is unique and known explicitly with parameters

m̂ =
1

n

n∑

i=1

xi, Ŝ =
1

n

n∑

i=1

(xi − m̂) (xi − m̂)
T
.

One could find a decision threshold for a test sample x∗ via generating a user-specified
number of vectors from this estimated density (Monte Carlo simulation). These simulated
vectors yield a distribution of density evaluations, which allows to choose a threshold θ based
on the preferred false positive rate.

The major flaws of this approach are that (a) it is a multivariate test for the intrinsically
one-dimensional decision f(x∗) R θ and (b) the generating function of the simulated samples

depends on the parameter estimations m̂, Ŝ. These are random variables themselves and
their prediction quality is significantly impaired for small values of n = |X|:

m̂ ∼ N (m,
1

n
S), nŜ ∼ W(n−1)(S), (1)

whereW(ν) denotes the Wishart distribution with ν degrees of freedom. In order to improve
the Monte Carlo simulation, the distribution of the squared Mahalanobis distance ẑ2 between
a test point x∗ and the sample mean m̂

ẑ2 = (x∗ − m̂)
T
Ŝ−1 (x∗ − m̂)

is considered. The following result from statistics is used [1]:
Suppose that y ∼ N (0, aS) and A ∼ Wν(S). Then:

yTA−1y ∼ ad

ν − d+ 1
F(d,ν−d+1)

The F -distribution, named after R. A. Fisher [7], is the distribution of the quotient of two
χ2-distributed variables. The degrees of freedom of these χ2-distributed variables are the
parameters of the F -distribution.

Under the null hypothesis that x∗ was generated by the same distribution as the training
set, we have

(x∗ − m̂) ∼ N
(

0,

(
1 +

1

n

)
S

)

and therefore, eventually

ẑ2 ∼ (n+ 1)d

n− d F(d,n−d). (2)

The statistical test based on this result is referred to as the F -test. It takes the uncertainty
caused by the number of training samples n and the number of dimensions d into account. It
is furthermore optimal in the sense that the distribution of ẑ2 is independent of the estimated
parameters m̂ and Ŝ. Furthermore, since this imposes a univariate test, multidimensional
calculations can be circumvented completely in the simulation phase for Gaussian density
estimations.

When GMM s are used, however, certain multidimensional calculations are necessary.
The position of a simulated point x∗ determines all ẑ2k’s

∀k ∈ [c] : ẑ2k = (x∗ − m̂k)
T
Ŝ−1
k (x∗ − m̂k) , (3)

which makes it necessary to compute the corresponding Mahalanobis distances ẑ2i , i ∈
[c]\{k} when ẑ2k is generated. This can be done [6] via

ẑ2j = ẑ2k

∥∥∥Ŝ− 1
2

j Ŝ
1
2

k v̂k

∥∥∥
2

+
∥∥∥Ŝ− 1

2
j (m̂k−m̂j)

∥∥∥
2

+ 2
√
ẑ2k (m̂k−m̂j)

T
Ŝ−1
j Ŝ

1
2

k v̂k, (4)

where v̂k is a randomly generated unit norm vector.
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4 DH approximation

In order to implement the information theoretic approach, it is necessary to compare a
training model to an adapted model. This can be done via divergences. In [6] the well-
known Kullback-Leibler divergence (DKL) [12] is used, which is based on the concept of
self-information introduced by Shannon [15]. We propose the Hellinger divergence

DH(f ||g) = 1−
∫

Rd

√
f · g dx, (5)

to be implemented instead, which is defined for probability densities f, g. In contrast to
DKL, DH is symmetric, which makes it easier to be interpreted as a distance-like measure.
It is not to be mistaken as a metric, however, since it violates the triangle inequality.

Now, the goal is to derive an explicit formula of the divergence between a training model
f fitted to X and an adapted model f∗ fitted to X ∪{x∗}. In case the densities are GMM s,
the integral in Equation (5) is not analytically tractable, making approximations necessary
for efficient computing. For GMM s the above equation translates to:

DH(f ||f∗) = 1−
∫

Rd

√
f · f∗ dx = 1−

∫

Rd

√√√√
c∑

k=1

π̂kNk ·
c∑

r=1

π̂∗
rN ∗

r dx

Ni := N (x|m̂i, Ŝi), N ∗
i := N (x|m̂∗

i , Ŝ
∗
i )

The root of the sum is no further tractable analytically. Jensen’s Inequality is used to obtain
an upper bound:

1−
∫

Rd

√√√√
c∑

k=1

π̂kNk ·
c∑

r=1

π̂∗
rN ∗

r dx ≤ 1−
c∑

k=1

c∑

r=1

π̂kπ̂
∗
r

∫

Rd

√
Nk · N ∗

r dx

The remaining integral is analytically tractable [16]:

∫

Rd

√
Nk · N ∗

r dx =




exp

(
−(m̂k − m̂∗

r)
T
(
Ŝ∗
r + Ŝk

)−1

(m̂k − m̂∗
r)

)

∣∣∣ 14
(
Ŝ∗
r + Ŝk

)(
Ŝ∗−1
r + Ŝ−1

k

)∣∣∣




1
4

(6)

This yields a formula for DH that depends on x∗ (implicitly) and the parameters of the model
f . However, a framework based on this formula imposes questionable rejection regions, as
discussed in [16]. A second approximation is done by neglecting the above term for k 6= r,
leading to another upper bound for the Hellinger divergence:

DH(f ||f∗) ≤ 1−
c∑

k=1

π̂kπ̂
∗
k

∫

Rd

√
Nk · N ∗

k dx (7)

A similar approximation is done for DKL in [6]. The last approximation furthermore allows
the following step: In order to incorporate the F -test it is necessary to reformulate the above
formula in terms of ẑ21 , . . . , ẑ

2
c instead of x∗. The detailed calculation is rather intricate,

applying the Sherman-Morrison formula and using a certain reasoning from [6] to explicitly
evaluate the determinant in the denominator on the right-hand side of (6). It can be found
in [16]. The resulting formula for the integral can then be expressed as:

(∫

Rd

√
Nk · N ∗

k dx

)4

=

exp

(
((nk − n∗

k)u∗kz
2
k − n∗2

k )u2
∗kz

2
k

(nk + n∗
k + u∗kz2k)n

∗3
k

)
· (4nk)

dn
∗(d−1)
k (n∗

k + u∗kz
2
k) (nk + n∗

k)
2(1−d)

[(nk + n∗
k)

2 + (2(nk + n∗
k) + u∗kz2k)u∗kz2k]

(8)

The notation from the end of Section 2 is used.
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5 Framework & Experiments

Algorithm 1 Novelty detection framework for DH

Require: training set X, #GMM components c, #Monte Carlo samples m, false positive
rate r, test sample x∗
Fit GMM f to X with the E/M algorithm

/* Monte Carlo simulation */
for i = 1, . . . , c do

generate mπ̂i values of ẑ2i using (2)
generate mπ̂i unit norm vectors vi
∀j ∈ [c]\{i} : calculate ẑ2j ’s using (4)

end for
evaluate DH with (7) and (8) for each sample
return (1-r)-th quantile θ of these evaluations

evaluate DH(x∗) using (3) and (8)
if DH(x∗) ≥ θ then
x∗ is outlier

else
x∗ is normal

end if

5.1 Artificial dataset

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 1: Artificial dataset with
GMM estimation

In order to illustrate the behavior of the approx-
imation DH of the Hellinger divergence, an arti-
ficial dataset is considered first. In this example
100 data points are drawn from c = 3 bivariate
Gaussians (about 33 each), which resemble the let-
ter ”A” (Figure 1). A GMM is fitted to this data,
and a Monte Carlo simulation according to the F -
distribution from Section 3 is performed. This way,
using the approximations from Section 4 for DH and
those from [6] for DKL, decision thresholds for DH

and DKL are obtained. The statistical test LF from
[16] is also considered. The false positive rate is cho-
sen to be fpr = 0.03. The outlier decision is made
for a 103×103 test grid of points over [−5, 5]2, which
is depicted in Figure 2. The main differences between
the three methods are visible in areas where the de-
cision borders of components overlap or are in close
proximity.

5.2 Iris

The framework is validated on the well-known Iris dataset, which was introduced by R.
A. Fisher in 1936 [8]. The data consists of 150 data samples (Iris plants) in 3 classes –
”Iris setosa”, ”Iris versicolor” and ”Iris virginica”, each consisting of 50 samples. Each
observation is made of d = 4 features – sepal length, sepal width, petal length and petal
width. The classes ”versicolor” and ”virginica” are combined into one pool of 100 normal
datasamples and the 50 ”setosa” class members are considered anomalous. A sample of size

MiWoCI Workshop - 2014
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(c) LF
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(d) DKL excerpt
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(e) DH excerpt
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(f) LF excerpt

Figure 2: Decision maps for the artificial dataset, fpr = 0.03.

n ∈ {30, 35, . . . , 80} is randomly drawn from the normal data and the remaining 150 − n
points serve as the test set of samples. The GMM is chosen to have c = 2 components
and the fpr is chosen to be 0.03; 106 Monte Carlo samples are simulated to obtain the
corresponding decision threshold. For each n, this experiment is repeated 100 times, the
averages of the achieved accuracy and false positive rate are depicted in Figure 3. Three
methods are considered: a purely statistical test LF [16], as well as the above framework
using the approximations of the Hellinger divergenceDH and the Kullback-Leibler divergence
DKL [6].

Other validation examples can be found in [16].
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Figure 3: Evaluation of the Iris experiment
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6 Conclusion

With the formulas presented here it is possible to use the symmetric Hellinger divergence
instead of its Kullback-Leiber counterpart in the framework from [6]. The measures DH and
DKL perform similarly, whereas the former is easier to interpret as a distance-like measure.
However, the performance of both methods is questioned by that of a purely statistical
approach based on (2) – both in robustness and in control of the fpr. This is discussed in
more detail in [16].
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The new proposal of the calculation for the 

significance degree by once SOM learning 
-using iris, gene, and other data- 
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 4)
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Abstract—The significance degree of each component was calculated only by once SOM learning where the Spherical Self-

Organizing-Map (SSOM) was used for the demonstration. In the method, kinds of specimens of the data are inserted in each column as 

each specimen. The method is first demonstrated using the iris data and then gene data. The method can be used for other data with 

successful results. The method can also be processed by the usual planar SOM. 

Keywords—Self organizing map; Significance degree; 

 

I.  INTRODUCTION 

Here, the aim of the new proposal is described. Table 1 is the explanation of the concept of the significance degree. Relation 
between the fatigue and the other components about it is shown in Table 1. There is fatigue in the A group but there is none in the 
B group. 

Table 1 Experimental condition for testing presence or absence of fatigue among other components. 

 

This time, the way of allocating Table 2 is considered for being fatigued or not being fatigued like in the two dimensional space. 

 

Table 2 Fatigue in Table 1 is separated by Yes and No 

 

In the way in Table 2, the fatigue can be equally evaluated from the A group, as well as from the B group. In other words, if 
gathering the one where 1 stands in feeling fatigued, the significance degree of feeling fatigued is found from the each item. Also, if 
gathering the one where 1 stands feeling not fatigued, the significance degree of feeling not fatigued is found from the each item. 
This time, the proposed method is applied to the iris data which were used last time.  

 

II. THE ALGORITHM OF CALCULATING THE SIGNIFICANCE DEGREE  

The contents are first described using iris data [1]. Using Spherical Self-Organizing Maps (SSOM) method [2,3,4] The 
significance degree calculation was previously introduced [5]. This time, the proposed method is as follows that the significance 
degree between each label pairs is computed by the once learning a lot of label data groups. First, the contents are described by the 
iris data. Next, the generality of the concerned method is described by using Gene and Tof-SIMS data [6]. The part of the original 

iris data is shown in tables 3 and 4. The data are composed of 1 (setosa) ，2 (versicolor) ，and 3(virginica) ， (each 50 stocks of 1, 

2, and 3). A learning result is shown in Fig. 1.  
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Table 3 Part of the original iris data with 4 components. The classifications are added as setosa, versicolor and virginica by  

3 columns 

 

 

Table 4 The border between 2 (versicolor) and 3 (virginica) 

 

The raw data are normalized in the column wise direction. As an example, when the comparison between the classification 
1_set and 2_ver is carried out, 3_gnc in Table 3 must be erased. Leave the label, 1 and 2 of each 50 stocks, 100 stocks in amount as 
shown in Table 8. Then, continue the calculation.  

The result is shown in Fig.1. (a) is the U-matrix display which shows the distances between the nodes. (b) is the color display 
where the boundaries among the clusters of 1, 2, and 3 are clearly classified. The red mark in (b) on the spherical surface is the one 
of iris classification 1(setosa) where the minimum value (0.981816) is shown. Also, 2_11 in classification 2 and 3_20, in 
classification 3, shows the minimum value where label code books have minimum value of 0.991068 in 2_11 and 0.987421 in 3_20. 
They are on the other side of the sphere. 

 

Fig.1 (a) The U- matrix display at Griff value (0). (b) The boundary in coloring display of 1_set, 2_ver, and 3_gnc region.   
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Table 5 Descending sort of code book vector regarding to class identifiers 

 

 

Data processing is as follows. (a) Arrange the table in the descending order of a B column of 1_set in the code book vector of 
642 nodes. Then, search the minimum value of 1_16. Above it, compute the average and the result in the 130th line. (b) Next, carry 
the same procedure of a) in C column of 2_ver And search the minimum code book label of 2_11. (c) In the same way, arrange and 
search the minimum value as 3_20 to the D column, in the descending order of 3_gnc. Then, computes the average values at 146th 
line, and 152th line, respectively. 

Table 6 shows the summary of Table 5. Data processing is as follows. Copy the 130th line in (a), 146th line in (b) and 152th 
line in (c), in the previous Table 5 and multiply them by 100 times. 

Table 6 Summary of Table 5 
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Table 7 shows the differences of 2ver-1set, 3gnc-1set and 2ver-3gnc. Those were calculated using the averaged values with 
each line, based on Table 6. The direction of the subtraction is for the comparison between the conventional method and the 
proposed method for the 2 clusters. 

Table 7 The differences of 2ver-1set, 3gnc-1set and 2ver-3gnc 

 

Next, normalization of the iris raw data of Table 3 and 4 was carried out. Those are shown in Table 8. Normalization data of 
only setosa 1 and versicolor 2, with 100 stocks are used. 

Table 8 Normalization of the iris data of 1_set and 2_ver (yellow columns) 

 

Table 9 shows the same data of Table 8. The classification column is different as the class identifier allocated to one column. 

Table 9 Same data of Table 8. 1 dentifier column is different 

 

The results of the proposed method are shown in Fig. 2. In Fig. 2(b), the proposed method is applied only to two cases of Table 9. 

 

Fig. 2 (a) The significance degree among versicolor : setosa calculated using Tables 3 and 4 (b) using Table 9 
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Fig.3 is moreover compared adding with the conventional method in Table 9. Hereinafter, other combinations of the 
significance degree of virginica : versicolor and also of virginica : setosa are included. The comparison among the total 3 methods 
of the proposed 2 methods and a conventional method is shown for these 3 cases in Fig. 3. The significance degree are calculated 
and compared among 2ver-1set of vericolor: setosa, 3gnc-1set of versinica : setosa, and 3gnc-2ver of virginica : versicolor. The 
significance degree among gnc-ver of virginica : versicolor doesn't agree only a little as shown in the figure. 

 

Fig. 3  By 3 methods of (a) using Tables 3 and 4, (b) Table 8, and (c) Table 9 in each figure 

In case of the iris data, in the first, the data of three kinds of the total 150 stocks were normalized in the column direction. In the 
case of the computations for 2 methods, this original normalized data were used and computed. In this case, all 3 methods 
approximately fully agreed as shown in Fig. 3.  

III. THE APPLICATION TO THE GENE DATA 

Here, we have the data where the relation between the breast cancer and the gene are examined, respectively. Breast cancer is 
classified into 4 steps to the breast cancer level 5, 4, 2-3 from 1 of the health. Here, 1 of the health and 5 of the breast cancer are 
compared in the significance degree. 40 cases are classified into 1-5 level of the cancer by the doctor. Each of the gene of 40 cases 
was named in 1-831. Further, the level 2 and 3 are gathered altogether as 2-3 for simplicity. By the method which is described in 
the Tables 3 and 4, the flags of 4 steps of 1, 2-3, 4, and 5 were put up as shown in Table 10. The data of Table 10 was studied by 
the Spherical SOM. Incidentally, the gene data was normalized at the maximum-the minimum of the gene to 1-831 in each sample. 
This is the so-called line normalization. The number of component is large as 831. Therefore, the number of the flags was set as the 
weight. Total 20 columns in amount are the flags of 4 clusters with five lines of each cluster as shown in Table 10. Four kinds of 
the label of 1, 2-3, 4, and 5 are used as classification. Learning data and a learning result are shown in Table 10, and Fig. 4, 
respectively. 

Table 10 The learning data normalized at the line (row) direction 
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Fig. 4 The SOM learning result using the data in Table 10. (a) 1 cluster, (b) 2-3 cluster, (c) 4cluster, and (d) 5 cluster  

Using the learning codebook vector of Fig. 4, the calculation of the same as Tables 5 and 6 was carried out. The average of each 
cluster was calculated. The 5th line was subtracted from the 9th line. The significance degree of 5-1 is tabled on the 12th line. The 
colored flags of the clusters at the 12th line were deleted here. Only the significance degree of the gene was graphed.  The results 
are shown in Table 11. 

Table 11 The significance degree of 5-1 

 

 Only the part of the gene with the 12th line of Table 11 was graphed in Fig. 5. In Fig. 5(a), To the 1-150th gene and skipping a 

little interval, (b) To 301-450th gene. + side is intentional gene with 5, the breast cancer．- side is the healthily intentional gene 

with 1 cluster. 

 

Fig. 5 Graph of significance degree of Table 8. (a) to 1-150th gene, (b) to 301-450th gene 
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 The characteristics of the significance degree between 5-1 can be seen from Figs. 5 and 6. It has begun with Fig. 5(a) already, 
but the bigger the gene number becomes, the smaller significance degree becomes on the healthy 1 side. Specifically, in figure 6(b), 
most peaks are on the 5 sides of the breast cancer. 

 

Fig. 6 Signficance degree. (a) to 601-750th gene, (b) to 751-831th gene. A little interval is skipped. 

Table 12 shows the significance degree on the 5 side of the breast cancer equal to or more than 40 degree was chosen in each 
gene number range. The number of the higher significance degree is especially high in 1-150

th
 gene number range. The green color 

range shows equal to or more than 45. 

Table 12 The significance degree on the 5 side of the breast cancer 

 

Next, the side of 1 health is shown in Table 13. In the range of 1-151, the number of the genes which have the absolute value of 
the significance degree equal to or more than -40 is more than on the side above of 5 breast cancer (cf -65).  Equal to or less than 40 
genes are equally distributed approximately compared with Table 12. On the significance degree for the side of the health, it can be 
seen that the high significance gene is the 47th and 741st gene from the table. 

Table 13 Significance degree of the side of 1 health 
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Tables 12 and 13 are generalized. The genetic code which shows the characteristic of the gene is next to the gene number. For 
the gene of the higher strength of the green color, the highest value for the 1 health side shows -65.  In other words, the healthy 
gene has the clear characteristics. However, there are many, too, numbers of the manifestation in the genes on the 5 side of the 
breast cancer. The strength is uniformly, too. The gene comparison between the breast cancer and the health, was evaluated using 
the method of this significance degree. As for the manifestation gene of the breast cancer, both the manifestation quantity and the 
number of the manifestation are high compared with the side of the health. In this way, it is possible to diagnose breast cancer from 
the genetic code.   

Incidentally, it was examined the breast cancer of which level the strange sample is in. By considering in which area of 4 areas of 
Fig. 4 there is a sample of strange (UK), the cancer level of the sample can be distinguished. 

IV. CONCLUSIONS  

Thus, a new method for calculating the significance degree was proposed using the Spherical Self-Organizing Maps (SSOM). It 
was verified by the iris 3 data. The procedure is of leaving the same flag which is equal to each label of 3 kinds of data. In this way, 
each label (the classification) could be equally compared. When the significance degree which was sought in this method of using 
all 3 data and the significance degree which were sought in two combinations, were compared, the results reasonably agreed as 
shown in Fig. 3. Also, using this method of the significance degree, the gene comparison between the breast cancer (stage 5) and 
the health (stage 1), was evaluated. As for the breast cancer, both the manifestation quantity and the number of the manifestation of 
the gene are high compared with the side of the health. Thus, it is possible to diagnose breast cancer from the gene examination. 
The iris, and the gene data are the examples which the human being classified a cluster by some procedure. However, in case of the 
Tof-SIMS data of the unknown clustering, it was automatically classified using Spherical SOM. However, the results of the 
analysis for the TOF-SIMS data are deleted due to insufficient space. 

As the conclusion, a general procedure is described as follows:  

1. Any data can be learned by the Spherical SOM. 

2. The spherical surface was deformed considering the distance (U-matrix) among the learned nodes. Then, a classification is 
carried out and a dendrogram is constructed. 

3. Here, the optional group to be analyzed can be chosen. 1 or 0 of the classification was assigned to the chosen group for the 
number of the classification like Tables 3, 4, and 8. 

4. This data is once again, learned by the Spherical SOM method. The significance degree among two kinds of classification 
for each is evaluated by the procedure which is shown in Tables 5, 6, and 7.  

Incidentally, a little, the precision falls however, it is possible to compute the significance degree by the plane SOM. When the 
classification becomes three kinds for example, in multiple regression [7], it cannot avoid allocating the classification with -1, 0, 1 
(or 0, 1, 2). To the group which doesn't have an order, it is improper to allocate an order having to do with a number. It is possible 

to be solved if making the classification of three-dimensional as (1,0,0･･･) as having proposed this time.  
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1. INTRODUCTION

Machine learning is a key element in data analysis systems and often used to analyze

OLD standard vectorial data with the Euclidean distance.

With the advent of web and social-media data this has rapidly changed. Many data are
now given as

NEW non-standard or structured data with indefinite proximities

by means of dedicated, often non-metric proximity measures. Due to the mathemati-
cal power and efficiency of the Euclidean space only few methods were proposed for
non-Euclidean data and even less for non-metric data analysis. In this contribution we
provide a short review of the few available algorithms and concepts for non-metric data
analysis as available today.

Non-metric data representation is daily life

So what?: most classical learning algorithms like the Support Vector Machine expect
metric inputs (mercer kernels). If non-mercer or non-psd kernels are used the employed
mathematical theory is not any longer valid and your preferred kernel method can easily
fail , all guarantees (convergences) and bounds become invalid .

NON-METRIC SPACES

OLD In metric spaces similarities between two objects x,w ∈ XD calculated as a
mapping φ : x ∈ X ⊆ R �→ φ(x) ∈ F using the kernel trick [21], k: X × X → F
with k(x,x�) = �φ(x), φ(x�)�, ∀x,x� ∈ X. Thereby it is assumed that the kernel function
k(x,x�) is positive semi definite (psd).

NEW For non-psd k(·, ·) a Krein space has to be used which for finite dimensions is a
pseudo-Euclidean space (PE). We can always embedK into PE for symmetric dissimilar-
itieswith constant zero diagonal [9].

Definition 1 (Pseudo-Euclidean space [16]) A pseudo-Euclidean space (PE) ξ = R(p,q) is a
real vector space equipped with a non-degenerate, indefinite inner product �., .�ξ. ξ admits a direct
orthogonal decomposition ξ = ξ+ ⊕ ξ− where ξ+ = Rp and ξ− = Rq and the inner product is
positive definite on ξ+ and negative definite on ξ−.

A symmetric bilinear form in this space is given by

�x,y�p,q =

p�

i=1

xiyi −

p+q�

i=p+1

xiyi = x�Ip,qy

where Ip,q is a diagonal matrix with p entries 1 and q entries−1. The eigendecomposition
of S = UΛU� provides a vectorial representationV in PE :

V = Up+q |Λp+q|
1/2

(1)

For symmetric (non-)psd similarities with low intrinsic dimension this can be calculated
exact and in linear time [20].

USAGE:

• use the decomposition to learn the model inK+ andK− by late recombination [14],

• incredients of the model (e.g. scatter matrix) can be calculated on the decomposi-
tion [18, 24]

• just learn e.g. a generic regression function f(x) =
�N

i=1 wiφi,θ(x) + b which can
related to the indefinite k(x, ·) [11, 3]

• local metric adaptations [2, 5] to correct violated triangle inequalities.

LEARNING MODELS IN NON-METRIC SPACES
2. COMMON (NON-METRIC) SIMILARITY MEASURES

Non-metric proximities (similarities and dissimilarities) are frequent if domain specific
measures are used. There is often not even an explicit vector space available.

• alignment (Bioinformatics)

• Levenstein (Textprocessing)

• Hamming (Information theory)

• Geodesic distance (Geometry)

• Jaccard index (Statistics)

• Compression distance

• dynamic time warping (time-
series)

Other examples for indefinite proximities:

• Manhattan kernel: K(x,x�) = −||x− x�||1

• indefinite sigmoid kernelK(x,x�) = tanh(a�x,x��+ r) (for some parameters a, r)

• Many divergence measures popular in the field of spectroscopy

Outcome: (non-)metric proximities with negative eigenvalues in the eigenspectrum.

4. SUMMARY

1. Learning in non-metric spaces is relevant [7, 16, 19, 13]

2. Only few approaches around - still often limited (theory, runtime, scalability, . . .

3. Specific effects of transformations not really understood [8, 12, 15]

4. First steps on establishing a theory on learning in non-metric spaces [1, 23]

5. Most approaches focus on supervised learning or retrieval

3. CURRENT APPROACHES - MAKE IT GLOBAL PSD

Consider negative eigenvalues as noise - correct the eigenspectrum to psd.

(1) Eigenspectrum correction

(flip, clip, square, shift) [20, 6]

(2) Proxy alignment (find
a similar psd matrix)

[4, 10]

(3) Similarity space approach

Construct a vector space from the prox-
imity matrix [17]

(4) Do nothing
(can easily fail)

[19]
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Abstract

This paper deals with the integration of statistical measures into the frame-

work of prototype-based learning vector quantization for learning of binary classi-

�cation problems. In particular, the evaluation and optimization of the confusion

matrix by means of a learning vector quantizer is considered keeping the Heb-

bian learning paradigm for prototype adaptation. In a further step, receiver

operating characteristic curves are investigated. The area under the respective

curves, which can be equivalently interpreted by a rank-statistics model, serves

as an alternative quality measure for parametrized classi�ers. As we show, this

statistical approach can also be integrated into the learning vector quantization

scheme whereas the precision-recall-curve counterpart is not suitable for such a

model approach.

1 Introduction - Classi�cation by Learning Vector

Quantization

Learning vector quantization (LVQ) models are prototype-based adaptive classi�ers

for processing vectorial data [15]. Training samples are assumed to be of the form

v ∈ V ⊆ Rn with class labels xv = x (v) ∈ C = {1, . . . , C}. The set of prototypes

W = {wj ∈ Rn, j = 1 . . .M} contains representatives of the classes carrying prototype
∗supported by the European Social Foundation Saxony (ESF)
†corresponding author - email: thomas.villmann@hs-mittweida.de
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labels yj ∈ C. Classi�cation decisions for unknown data samples ṽ are usually made

according to a winner take all rule, i.e.

xṽ := ys(ṽ) with s (ṽ) = argminj (d (ṽ,wj))

where d (ṽ,wj) is a dissimilarity measure in the data space, frequently chosen as the

Euclidean distance. LVQ training amounts to distributing the prototypes in the data

space such that the classi�cation error is minimized. Stochastic gradient descent learn-

ing have been introduced which is based on objective function

E (W, f) =
1

2

∑

v∈V
f (µ (v)) (1)

approximating the classi�cation error [22]. Here, the function

µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(2)

is the so-called classi�er function. This approach is known as Generalized LVQ (GLVQ)

[22]. Here d+ (v) = d (v,w+) denotes the dissimilarity between the data vector v and

the closest prototype w+ = ws+ with the same class label ys+ = xv, while d
− (v) =

d (v,w−) is the distance from the best matching prototype w− with a class label ys−

di�erent from xv. The modulation function f in (1) is a monotonically increasing

function usually chosen as a sigmoid or the identity function. A typical choice is the

Fermi function

fθ (x) =
1

1 + a · exp
(
− (x−x0)

2θ2

) (3)

with x0 = 0 and a = 1 as standard parameter values. The parameter θ determines the

slope of fθ but is frequently �xed as θ = 1.

Stochastic gradient learning performs update steps of the form

4w± ∝ −∂fθ (µ (v))

∂µ (v)
· ∂µ (v)

∂d± (v)
· ∂d

± (v)

∂w±
(4)

for a randomly chosen data sample v.

2 Classi�cation Accuracy and Statistical Measures in

GLVQ

In the following we demonstrate how to realize a classi�er optimizing a statistical

measure based on the confusion matrix by means of GLVQ. GLVQ is the preferred

choice to keep the intuitive approach of prototype based classi�cation.
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labels true

C+ C−
predicted C+ TP FP N̂+

C− FN TN N̂−
N+ N− N

Table 1: Contingency / Confusion matrix: TP - true positives, FP - false positives,

TN - true negatives, FN - false negatives, N±- number of positive/negative data, N̂+

- number of predicted positive/negative samples.

In this view, �rst we observe that the classi�er function µ (v) from (2) becomes

negative if the data point v is correctly classi�ed, i.e. if xv = ys(v) is valid. Further, in

the limit θ ↘ 0 the sigmoid fθ (3) becomes the Heaviside function

H (x) =

{
0 if x ≤ 0

1 else
, (5)

such that border sensitive classi�cation learning takes place [13]. Thus, in this limit,

E (W,H) counts the misclassi�cations. Considering a two-class problem with a positive

class C+ labeled by '⊕' and a negative class C− with class label '	', these misclassi�ca-

tions are distinguished as the false positives (FP ) and false negatives (FN) according

to the contingency table Tab. 1.

Yet, counting of misclassi�cations is not always an appropriate evaluation of clas-

si�er, in particular, if the data are imbalanced [21]. In statistical analysis contingency

table evaluations are well-known to deal with this problem more properly. Several mea-

sures were developed to judge the classi�cation quality based on the confusion matrix

emphasizing di�erent aspects. For example, precision π and recall ρ, de�ned as

π =
TP

TP + FP
=
TP

N̂+

(6)

and

ρ =
TP

TP + FN
=
TP

N+

(7)

respectively, are used in the widely applied Fβ-measure

Fβ =
(1 + β2) · π · ρ
β2 · π + ρ

(8)

developed by C.J. van Rijsbergen [20].

To integrate these contingency quantities into a GLVQ-like cost function, we have

to approximate them properly while ensuring their dependence on the prototypes is

di�erentiable. For this purpose we introduce the quantity µ̂ (v) = fθ (−µ (v)) with
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µ̂ (v) ≈ 1 i� the data point v is correctly classi�ed and µ̂ (v) ≈ 0 otherwise for small

values θ, with the derivative

∂µ̂ (v)

∂w±
= −∂µ̂ (v)

∂fθ
· ∂fθ
∂µ
· ∂µ

∂d± (v)
· ∂d

± (v)

∂w±
.

Thus we can express all quantities of the confusion matrix in terms of the new classi�er

function µ̂ (v):

TP =
∑

v

δ⊕,xv · µ̂ (v) ,

FP =
∑

v

δ	,xv · (1− µ̂ (v)) ,

FN =
∑

v

δ⊕,xv · (1− µ̂ (v))

and

TN =
∑

v

δ	,xv · µ̂ (v)

with δ⊕,xv is the Kronecker symbol and δ	,xv = 1 − δ⊕,xv . Obviously, all these quan-

tities are also di�erentiable with respect to µ̂ (v) and, hence, also with respect to the

prototypes wk. In consequence, an arbitrary general statistical measure can be opti-

mized by a GLVQ-like stochastic gradient learning of the prototypes, if it is continuous

and di�erentiable with respect to TP, FP, FN , and TN . Clearly, the above mentioned

quantities precision π and recall ρ as well as the Fβ-measure belong to this function

class and, therefore, can be plugged into the GLVQ learning scheme.

3 Receiver Operation Characteristic Optimization

and GLVQ

The Receiver Operation Characteristic (ROC) is an important tool for performance

comparison of binary classi�ers. A classi�er is considered superior if it delivers a

higher value of the area under the ROC-curve (AUC). Following [4], the AUC refers

to the true distribution of positive and negative instances, but it can be estimated

using a sample. The normalized Wilcoxon-Mann-Whitney statistic [25, 18] reveals

the maximum likelihood of the true AUC for a given classi�er [26]. Several method

were developed to maximize AUC directly including gradient descent learning [11],

approximated AUC optimization [5], reject option optimization [17], AUC optimization

by linear programming [1] or ranking based optimization [8], to name just a few of the

recently proposed approaches. Yet, for prototype based classi�cation based on LVQ,

which can be seen as a robust variant of the nearest-neighbor classi�er [12], a direct

optimization scheme for AUC is not known so far. As we will show in this chapter, the

GLVQ variant of the basic LVQ scheme can be easily adapted for AUC optimization.
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3.1 Probability Interpretation of AUC

Suppose the binary classi�cation problem for classes A and B and related datasets VA
and VB with cardinalities #VA, #VB, respectively. Further assume that a classi�er

delivers a continuous output (discriminant function) ϑ used for the classi�cation de-

cision. Then the AUC can be interpreted as the probability PAB that a classi�er will

rank a randomly chosen A-instance vA ∈ VA higher than a randomly chosen B-instance

vB ∈ VB [7]. In this view we can formulate an equivalent cost function introducing the

(local) ordering function

Oθ (vA,vB) = fθ (ϑ (vA)− ϑ (vB)) (9)

for an ordered pair (vA,vB) of vectors. We approximate PAB by

PAB (θ) =
1

#VAB

∑

(vA,vB)

Oθ (vA,vB) (10)

depending on the slope parameter θ of the sigmoid function fθ (x) from (3). If θ ↘ 0

holds, PAB (θ) converges to PAB for #VAB → ∞ according to the underlying rank

statistics [18, 25] and paying attention to the functional limit fθ → H for θ ↘ 0 with

the Heaviside function H from (5).

3.2 A cost function for AUC based on GLVQ

The probabilistic interpretation of the AUC introduced in the previous subsection can

be facilitated in the GLVQ-framework. To this end, the discriminant function ϑ in

(9) is replaced by a discriminat function µAB speci�cally designed for the GLVQ and,

hence based on the prototypes used in GLVQ. In particular, we de�ne

µAB (v, γ) =
dB (v)− dA (v)

dA (v) + dB (v)
− γ (11)

with dA (v) = dA (v,w∗A (v)) where w∗A (v) is the closest prototype to v responsible for

class A. Analogously, w∗B and dB (v) are de�ned in the same manner. The parameter

γ ∈ [−1, 1] de�nes a threshold shifting the decision boundary between w∗A and w∗B,

which plays the role of the varying parameter for the ROC-curve. The unbiased case

is obtained for the choice γ = 0. With these settings the ROC cost function for a

respective GLVQ-scheme reads as

EROC (θ, VA, VB,W ) =
1

#VAB

∑

(vA,vB)

fθ (µAB (vA, γ)− µAB (vB, γ)) (12)

again depending on the slope parameter θ of the sigmoid function fθ (x) from (3).

Hence, border sensitive learning in this ROC-GLVQ, i.e. forcing θ ↘ 0 in (9), leads to

the limit

EROC (θ, VA, VB,W )
θ↘0−→ PAB . (13)
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Further, using the derivatives

∂µAB (v, γ)

∂w∗A (v)
=

dB (v)

(dA (v) + dB (v))2
· ∂d

A (v)

∂w∗A (v)

and
∂µAB (v, γ)

∂w∗B (v)
= − dA (v)

(dA (v) + dB (v))2
· ∂d

B (v)

∂w∗B (v)

we can calculate the gradients of the GLVQ-adapted ordering function

OµAB
θ (vA,vB) = fθ (µAB (vA, γ)− µAB (vB) , γ) (14)

regarding to both vA and vB, respectively:

∂OµAB
θ (vA,vB)

∂w∗A (vA)
=
∂fθ
∂z

∣∣∣∣
z

·
(
∂µAB (vA, γ)

∂w∗A (vA)
− ∂µAB (vB, , γ)

∂w∗A (vA)

)
(15)

∂OµAB
θ (vA,vB)

∂w∗A (vB)
=
∂fθ
∂z

∣∣∣∣
z

·
(
∂µAB (vA, γ)

∂w∗A (vB)
− ∂µAB (vB, γ)

∂w∗A (vB)

)
(16)

∂OµAB
θ (vA,vB)

∂w∗B (vA)
=
∂fθ
∂z

∣∣∣∣
z

·
(
∂µAB (vA, γ)

∂w∗B (vA)
− ∂µAB (vB, γ)

∂w∗B (vA)

)
(17)

∂OµAB
θ (vA,vB)

∂w∗B (vB)
=
∂fθ
∂z

∣∣∣∣
z

·
(
∂µAB (vA, γ)

∂w∗B (vB)
− ∂µAB (vB, γ)

∂w∗B (vB)

)
(18)

with z = µAB (vA, γ)− µAB (vB, γ).

In consequence, GLVQ-like stochastic gradient learning is possible also for the ROC

cost function EROC from (12). However, for this purpose a structured input

vAB = (vA,vB)

is required in GLVQ learning. Thus, stochastic gradient descent learning on

EROC−GLV Q takes place with respect to w∗A (vA), w∗A (vB), w∗B (vA), and w∗B (vB) us-

ing the gradients (15)�(18) of the GLVQ-adapted ordering function OµAB
θ from (14)

depending on the randomly selected structured input vAB. We emphasize at this point

that the ROC-GLVQ delivers an AUC-optimizing scheme only in the limit θ ↘ 0 of

border sensitive learning.

3.3 The ROC-LVQ model

In the previous section we introduced a cost function for AUC based on the GLVQ-

paradigm. Although frequently assumed, the standard GLVQ does not guarantees the

prototypes to being class representative after learning [19, 9]. To enhance this property

a generative cost function amount
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EGEN (θ, VA, VB,W ) =
∑

(vA,vB)

dA (vA) + dB (vB) (19)

has to be added to EROC from (12) such that the overall ROC-GLVQ cost function

becomes

EROC−GLV Q (θ, VA, VB,W, α) = (1− α) · EGEN + γ · EROC (20)

with the balancing parameter α ∈ [0, 1] weighting both aspects classi�cation-separation

versus description of class distribution [12].

4 Precision-Recall-Curves and GLVQ

Precision-Recall-Curves (PR-curves) are closely related to ROC but do not provide

the identical information [2, 6, 16]. Therefore, they can provide additional insides.

Precision and recall as introduced in (6) and (7), respectively, are intensively used for

test statistics and classi�cation problems in medical applications. In this area, the

recall ρ is often denoted as sensitivity describing the ability of the classi�er to detect

positive samples accurately. The counterpart of the sensitivity is the speci�city value

ς =
TN

TN + FP
=
TN

N−
(21)

judging the ability for detecting negative samples. Precision-recall-relations are fre-

quently investigated taking the Fβ-measure from (8) with β = 1 [16]. This is just the

ratio of the arithmetic and the geometric mean of precision and recall, i.e.

F1 =
2 · π · ρ
π + ρ

(22)

However, for evaluation of PR-curves, only a few approaches were proposed [3, 2, 16].

In the following we will identify the di�culties arising, if one would like to adapt the

ideas of AUC-maximization learning in GLVQ to PR-curve optimization by GLVQ.

4.1 Basic De�nitions and Notations

We follow the explanations in [3]: We denote the class A as positive class and B is

the negative. The real-valued model output for the positive samples vA is yA and,

analogously, negative samples vB generate yB. The class skew S is de�ned as the

probability S = P (A) and also known as prevalence or a prior class distribution. The

recall can be written as a probability

ρ (c) = P
(
yA > c

)
(23)

whereas the precision π is a conditional probability

π (c) = P (v ∈ A|z > c) . (24)
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In this formula, z = z (v) is the overall real-valued output of the classi�er model for a

given unclassi�ed sample v being a mixture of yA and yB. With this de�nitions, the

precision-recall-curve PR is the set

PR = {(ρ (c) , π (c)) ,−∞ < c <∞} .
We assume larger outputs to be associated with positive samples. In consequence, as

c decreases, the recall ρ (c) increases to one and the precision π (c) approaches to S.

The area Θ under the precision-recall-curve (AUCPR) is an average of the precision

weighted by the probability of a given theshold c:

Θ =

ˆ ∞

−∞
π (c) dP

(
yA ≤ c

)
(25)

Since, π (c) and P
(
yA ≤ c

)
are both bounded on the unit square, the inequality 0 ≤

Θ ≤ 1 holds. Therefore, Θ can be interpreted as a probability. According to [3],

the integral (25) can be interpreted as the fraction of positive examples among those

examples whose output values exceed a randomly selected threshold c. Eq.(25) can be

written equivalently as

Θ =

ˆ 1

0

π (ρ (c)) dρ (c) (26)

paying attention to the fact that for −∞ ≤ c ≤ ∞ the range ρ (c) ∈ [0, 1] is valid

[16, 14].

There exist several estimators for Θ in case of real datasets V = VA ∪ VB [3]. One

powerful estimator avoiding the explicit determination of the empirical curve PR is

the the averaged precision

Θ̂ =
1

#VA

#VA∑

i=1

π̂
(
yAi
)

(27)

and

π̂ (x) =
S · ρ̂ (x)

S · ρ̂ (x) + (1−S)
#VB

∑#VB
j=1 I

(
yBj > x

) (28)

is the empirical precision estimate with

ρ̂ (x) =
1

#VA

#VA∑

i=1

I
(
yAi > x

)
(29)

being the empirical estimate of the recall ρ (x) and I (E) is the indicator function of

the event E.

4.2 PRC-LVQ

According to the previous ROC-GLVQ model assumptions we have to de�ne a GLVQ-

output in the sense of a discriminat function. For this purpose we make use of the

already declared and de�ne

µ̂AB (v) = −µAB (v) (30)
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as PR-LVQ discrimant function, which is in agreement with the assumption that larger

outputs should be associated with positive samples. Further, we replace the indicator

function I (y > x) by the Heaviside-function H (y − x) from (5) and approximate the

latter one by the sigmoid function fθ from (3). Doing so and estimating the skew S as

S = #VA
#VB

, the estimator Θ̂ from (27) for the AUCPR can be written as a cost function

EPRC (θ, VA, VB,W ) =
1

#VA

#VA∑

i=1

1

1 +
(1−S)·∑#VB

j=1 fθ(µ̂AB(vBj )−µ̂AB(vAi ))
∑#VA
k=1 fθ(µ̂AB(vAk )−µ̂AB(vAi ))

(31)

to be minimized in dependence on the prototype set W . In analogy to the above

ROC-LVQ cost function we �nally obtain the formal PRC-LVQ cost function as

EPRC−LV Q (θ, VA, VB,W, γ) = (1− γ) · EGEN + γ · EPRC (32)

with EGEN being the generative part (19).

However, this cost function EPRC contains nested sums over the single events vAk
and vBj in contrast to the pairwise events (vA,vB) considered in the cost function (12)

of AUCs for GLVQ. Thus stochastic gradient descent learning would become complicate

for this model, because of the nested sums. Therefore, other optimization strategies

like Expectation-Maximization should be investigated instead. However, this is behind

the scope of this introdution article and will be studied in the future.

5 Conclusion

We present in this article the mathematical framework for learning of prototype-based

LVQ-classi�ers to optimize statistical quality measures based on the confusion matrix

or receiver operating characteristic. We further obtained a GLVQ modi�cation for

maximizing explicitly the area under the ROC-curve, whereas a derivation of a similar

method for precision-recall-curve optimization failed.

Obviously, the obtained approaches can be easily combined with other advanced

GLVQ-techniques like relevance and matrix learning or kernelized variants [10, 23, 24].
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About the Generalization of the Eigen-Problem for

Semi-Inner Products in Minkowski-`p-Spaces

S. Saralajew, M. Lange, and T. Villmann

University of Applied SciencesMittweida

Computational Intelligence Group

Abstract

Semi-inner products as generalization of inner products are recently discussed

in several machine learning approaches for classi�cation and vector quantization.

This technical paper considers the eigen-problem from the perspective of semi-

inner products and discusses related numerical and algebraic problems for its

solution.

1 Introduction - the Usual Eigen-Problem

We start introducing the usual eigen-problem (EP) based on the usual inner product.

This is done to clarify notations and to relate the later eigen-problem in case of semi-

inner products to the usual ones.

For this purpose let V be a vector space over the �eld K assumed to be R or C.
The linear map f : V −→ V is supposed to be an endomorphism. The EP consists

in determination of a pair (λ,v) such that f(v) = λv is valid with λ ∈ K, v ∈ V

and v 6= 0. Then v is denoted as eigenvector of f and λ the respective eigenvalue. If

we further assume that dim(V ) = n < ∞ is �nite then f uniquely corresponds to a

n× n-matrix A over the �eld K, i.e. A ∈ Kn×n and the EP becomes

Av = λv (1.1)

also denoted more precisely as the right-side EP (REP) with v being a column vector.

Analogously, we can de�ne the left-side EP (LEP) as

vTA = λvT
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where vT denotes the transposed vector.

In this paper we will use the following notations for a given matrix B ∈ Km×n

� Bi→: row i ∈ {1, 2, ...,m} of the matrix B

� Bj↓ ; column j ∈ {1, 2, ..., n} of the matrix B

� Bi,j = (B)i,j matrix element at the position i, j of the matrix B

� I is the n-dimensional unity matrix

The vector space as V := Cn together with the Euclidean inner product 〈•, •〉E is a

Hilbert space. Thus the REP (1.1) writes as

Av = λv⇐⇒




〈
AT

1→,v
〉
E〈

AT
2→,v

〉
E

...〈
AT

n→,v
〉
E


 = λv (1.2)

with the induced norm ‖x‖2 =
√
〈x,x〉E.

Several numerical methods were developed to solve the REP, like

� v.-Mises-iteration with de�ation

� inverse v.-Mises-iteration

� the QR-algorithm

� Krylow-subspace-method

to name just a few. They make intensively use of the Hermitian symmetry of the inner

product 〈•, •〉E, which implies the sesqui-linearity, i.e.

〈v, λ ·w〉E = λ · 〈v,w〉E
and linearity in the �rst argument. We refer to [3, 8], for further reading.

2 The Eigen Problem in the Minkowski-p-Space

Now we turn to consider normed complete vector spaces, i.e. Banach spaces. A promi-

nent example is the n-dimensional Minkowski-p-space `np over the complex numbers C
equipped with the Minkowski-p-norm

‖x‖p = p

√√√√
n∑

k=1

|xk|p

for 1 ≤ p ≤ ∞.

For Banach spaces does not necessarily exist an inner product. However, a weaker

concept can be identi�ed - semi-inner products (SIPs) as introduced by G. Lumer [5]:
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De�nition 1 A semi-inner product [•, •] of a vector spaces V over the �eld K is a

map

[•, •] : V × V −→ K

with the following properties

1. [•, •] is semi-de�nite

∀x ∈ V : [x,x] ≥ 0 und [x,x] = 0⇐⇒ x = 0

2. [•, •] is linear with respect to the �rst argument, i.e.

∀x,y, z ∈ V, ∀ξ ∈ K : ξ · [x, z] + [y, z] = [ξ · x + y, z]

3. [•, •] ful�lls the Cauchy-Schwarz inequality

∀x,y ∈ V : |[x,y]|2 ≤ [x,x] [y,y]

Note that the Hermitian symmetry, as it is valid for inner products according to (1), is

not required for SIPs and the triangle inequality for inner products is replaced by the

Cauchy-Schwarz inequality. Lumer has shown that each Banach space B with norm

‖•‖B can be equipped with a SIP [•, •]B such that the norm is generated, i.e.

‖x‖B =
√

[x,x]B .

Generally, several SIPs may deliver the same norm. Uniqueness can be obtained by

additional requirements, like di�erentiability in the second argument and other. We

refer to [2] for details.

The previously mentioned Banach space `np obeys the unique SIP

[x,y]p =
1

(‖y‖p)p−2
n∑

k = 1

yk 6= 0

xk · ȳk · |yk|p−2 (2.1)

as shown in [2]. In the next step we introduce for this space an analog procedure to

the Euclidean matrix multiplication from (1.2). For matrices A ∈ Km×l and B ∈ Kl×n

we de�ne the operation � with respect to the SIP (2.1) for the `np -space as

A �B :=




[
AT

1→, B1↓
]
p

[
AT

1→, B2↓
]
p
· · ·

[
AT

1→, Bn↓
]
p[

AT
2→, B1↓

]
p

[
AT

2→, B2↓
]
p
· · ·

[
AT

2→, Bn↓
]
p

...
...

...[
AT

m→, B1↓
]
p

[
AT

m→, B2↓
]
p
· · ·

[
AT

m→, Bn↓
]
p




(2.2)

denoted as SIP-matrix-multiplication (SIP-MM). The following lemma can be stated:
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Lemma 2 Let A ∈ Km×k, B ∈ Kk×l and C ∈ Kl×n be matrices. Then

A · (B�C) = (A ·B)�C

is valid, whereby A ·B denotes the Euclidean matrix multiplication (EMM) with respect

to the Euclidean inner product in agreement with (1.2).

Proof. We consider an arbitrary matrix element (A · (B�C))i,j and show that

(A · (B�C))i,j = ((A ·B)�C)i,j ∀i = 1, ...,m and ∀j = 1, ..., n

is valid: Using the linearity of the SIP with respect to the �rst argument we derive

(A · (B�C))i,j = Ai→ ·




[
BT

1→, Cj↓
]
p[

BT
2→, Cj↓

]
p

...[
BT

k→, Cj↓
]
p




=
k∑

h=1

Ai,h ·
[
BT

h→, Cj↓
]
p

=
k∑

h=1

[
Ai,h ·BT

h→, Cj↓
]
p

=
[ k∑

h=1

Ai,h ·BT
h→, Cj↓

]
p

=
[
(

k∑

h=1

Ai,h ·Bh→

)T

, Cj↓
]
p

=
[
(Ai→ ·B)T , Cj↓

]
p

= ((A ·B)�C)i,j

showing the stated property.

Now we are able to de�ne the REP and the LEP in Banach spaces with respect to

a given SIP:

De�nition 3 Let B be a n-dimensional Banach space over the �eld K with the norm

‖•‖B. Let [•, •]B be a SIP with ‖x‖B =
√

[x,x]B. The REP for a matrix A ∈ Kn×n

with respect to the SIP [•, •]B is de�ned as the determination of the pair (λ,v) with

λ ∈ K and v ∈ B such that

A � v = λv⇐⇒




[
AT

1→,v
]
B[

AT
2→,v

]
B

...[
AT

n→,v
]
B


 = λv (2.3)
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is valid. The related LEP reads as

vT �A = λvT ⇐⇒
(

[v, A1↓]B , [v, A2↓]B , · · · , [v, An↓]B
)

= λvT (2.4)

and we refer to these as sREP and sLEP, respectively. (λ,v) is denoted as an eigen-

pair.

3 Numerical Approaches for the sREP and the sLEP

The sREP introduced in (2.3) o�ers a serious di�culty for its numerical solution. As

it was explained above, most of the known numerical methods for the REP in Hilbert

spaces utilize the Hermitian linearity (1) of the inner product in the second argument,

which is not valid in case of SIPs. To our best knowledge, there is no general way to

solve this problem so far by means of classical numerical approaches. An alternative

was proposed in [1, 4] based on Hebbian learning for the special case of covariance

matrices for a givenset S ⊂ Rn of data vectors s ∈ S: For randomly presented s and

randomly initialized vector w ∈ Rn the adaptation

w = w +4w

with

4w = ε · [s,w]p

(
s− [s,w]p ·w

)
(3.1)

is applied. The positive learning rate ε has to be small and decreasing during time,

i.e. 1 � ε > 0 and limt→∞ ε (t) = 0 with
∑

t (ε (t))2 = ∞. The update scheme (3.1)

is known as Oja's rule in the literature originally introduced for the REP [6, 7]. It

delivers the eigenvector belonging to the maximum eigenvalue and can be extended

also to calculate more than one eigenvector [9, 1, 4].

For the sLEP the situation is easier, because we can use the linearity of the SIP with

respect to the �rst argument. As the main result of this paper we state the following

theorem:

Theorem 4 (Saralajew&Villmann) Let Q ∈ Kn×n be a regular matrix over the �eld

K and (λ,v) be an eigen-pair of the matrix A ∈ Kn×n with respect to the sLEP de�ned

in (2.4). Then (λ,w) is an eigen-pair of LEP for the matrix B = (Q−1 �A)Q with

respect to the Euclidean inner product and w = QTv holds.

Proof. Using Lemma 2 we calculate

wTB =
(
QTv

)T
B

= vTQ
(
Q−1 �A

)
Q

= vT (I �A)Q

=
(
vT �A

)
Q

= λvTQ

= λwT ,
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which is the desired result.

This theorem allows to transfer the sLEP to the usual Euclidean REP:

Corollary 5 (Saralajew&Villmann) We consider the matrix C = (I �A)T for A ∈
Kn×n being a matrix over the �eld K. Then the sLEP vT �A = λvT can be translated

equivalently into the Euclidean REP Cv = λv, i.e.

vT �A = λvT ⇐⇒ Cv = λv

holds.

Proof. The corollary immediately follows according to

Cv = λv ⇐⇒ (I �A)Tv = λv

⇐⇒ vT (I �A) = λvT

⇐⇒ vT �A = λvT

applying the previous theorem with Q := I.

Thus it is possible to solve the sLEP using an arbitrary numerical approach for the

Euclidean REP.

4 Conclusion

In this paper we brie�y investigate the numerical solution of eigen-problems in Banach

spaces, where no inner product is available as they are known from Hilbert spaces.

Instead, semi-inner products with weaker requirements are the counterparts there.

Whereas the right eigen-problem is di�cult to handle, we present a solution for the

left-side problem translating it to a right-side problem in an Euclidean space equipped

with the Euclidean inner product.
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