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tization (GMLVQ) model for a calibration system of automobile-headlights. It describes
the integration of GMLVQ into the Porsche Automatic Headlamp Setting (PAHS) system
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1 Introduction and motivation
Trends in automobile-headlights show an increasing interest in intelligent
lighting-systems. The high-performance LED-headlamps and the growing
number of information, delivered by the specific sensors of the car, establish
the base of these lighting-systems. The matrix-beam-system for example,
which realizes a glare-free high-beam, is one of the first intelligent lighting-
systems, which are available in current cars [Berlitz et al., 2014].

The performance of those systems depends especially on the interac-
tion between the headlamp and the driver-assistance-camera. A correctly
adjusted headlamp is as important as the calibration of the used camera.
An online-calibration-system like PAHS1 [Söhner et al., 2013] can provide
both demands. This system combines a movement of the headlamp’s light-
distribution with a detection of the headlamp’s cut-off-line, see Fig.1, by the
driver-assistance-camera. As a result of this calibration the horizontal and
the vertical mis-aiming of the headlamp can be calculated. Thus, a continu-
ous control of the headlamp setting is possible.

Due to this fact, a detailed consideration of the cut-off-line detection is
demanded. Looking at [Flannagan et al., 1997] and [Manz, 2000] a change
of the cut-off-line orientation can be observed. Several investigations have
shown that the chromatic aberration of the lens generates a certain number
n of cut-off-lines, with a known fixed angle-offset in vertical and horizontal
direction. Further, the final number n depends on the headlamp and is fixed

1Porsche Automatic Headlamp Setting
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Figure 1: Cut-off-line of a headlamp.
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Figure 2: Logarithmic gray-scaled luminance-measurement of a headlamp
and detectable cut-off-lines.

for each system. A detectable cut-off-line is marked by a sharp edge in a
logarithmic gray-scaled luminance-measurement, see Fig.2. The angle-offsets
between these cut-off-lines are fixed and do not depend on the environment
conditions. For detailed information about the definition of the angle-offsets,
the calculation procedure in PAHS, the modeling of a headlamp and the
driver-assistance-camera see [Saralajew, 2014].

To expand the performance of PAHS it is important to have a mapping
of the detected cut-off-line to the correct angle-offset.

2 Classification task
A detected cut-off-line in the PAHS system is considered as a data-vector x
of six observable features xk of the cut-off-lines related to the canny-edge-
detection and other environment conditions forming the data space X ⊂ Rm

with m = 6. In particular, the components of data vector x are specified as
follows:

• x1 – threshold parameter of the canny-edge-detection;

• x2 – minimal contrast-value of the scene during the detection of the
cut-off-line;

• x3 – maximal contrast-value of the scene during the detection of the
cut-off-line;

• x4 – cutting angle of the horizontal and vertical part of the cut-off-line.
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• x5 – length of the horizontal part of the cut-off-line;

• x6 – length of the vertical part of the cut-off-line.

According to the scenario depicted in Fig.2, at least three different cut-off-
lines types can be surely detected for the considered headlamp system:

• the upper cut-off-line labeled as i = 3;

• the lower cut-off-line assigned to the label i = 2;

• the so-called hotspot cut-off-line corresponding to the label i = 1.

Each of these cut-off-line types corresponds to a certain well-known fixed
angle-offset. Because the calibration of PAHS is based on the initial detection
of the lower cut-off-line, it is defined as zero-level whereas the other angle-
offsets are in relation to this zero-level. In Fig.3 we depict an edge image
obtained by the cut-off-line detection procedure identifying the upper and
lower cut-off-line at the same time.

For the description as a mathematical classification system, the samples x
of cut-off-line vectors form a data-space X ⊂ R6, which should be classified.
For a predefined number n of identified cut-off-line types we define the set of
labels by L := {1, . . ., n}, whereby each label i of L corresponds to a certain
angle-offset as described above, i.e here we have n = 3.

Based on these conventions the classification task is to determine a clas-
sifier function

c : X −→ L : c(x) 7−→ i , (1)

such that a cut-off-line x is mapped onto a label i and, hence, is assigned
in this way to a certain angle-offset. According to the underlying physical
measuring system generating the data vectors x, this mapping depends on
the luminance of the scene, the reflectance of the projection-surface as well
as the distance between headlamp and surface.
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Figure 3: Detection of the upper and lower cut-off-line at the same time

3 Classification using the Generalized Matrix
Learning Vector Quantization approach

The classification task (1) has to be determined by a machine learning tool.
The tool used here is the Generalized Matrix Learning Vector Quantization
(GMLVQ, see [Schneider et al., 2009, Kaden et al., 2014b]). The GMLVQ
belongs to prototype based learning algorithms for classification, i.e. the
algorithm adapt prototype vectors wk ∈ Rn to training data according to the
class distribution within the training samples. Mathematically, it is based
on a dissimilarity evaluation

dΩ (x,w) = (x−w)T ΩT Ω (x−w) (2)

between data and prototype vectors with a matrix Ω ∈ Rp×n. This matrix
Ω is denoted as scaling matrix or classification mapping matrix. The latter
notation is due to the fact that the dissimilarity (2) can be rewritten as

dΩ (x,w) = (Ω (x−w))2 (3)

being the quadratic Euclidean distance of the linearly mapped vector dif-
ference (x−w). When adapted for classification by GMLVQ training and
p ≤ 3, the mapping matrix offers an optimal classification visualization pro-
jection Bunte et al. [2012].
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In summery, to determine a classification system based on GMLVQ we
have first to generate a set of training data and subsequently to train the
GMLVQ model.

3.1 Generating of the training data
The PAHS system offers the additional possibility to use a reference
measuring-system [Söhner and Stork, 2014]. Based on the known distance
between rear axle and projection surface it is possible to map the detected
cut-off-line x to the correct angle-offset. Using this angle-offset we can iden-
tify a desired class label c (x) for each cut-off-line according to the pre-defined
classes (cut-off-line types). In this way we are able to generate training data
needed for GLMVQ training when generating data in a pre-determined set-
ting.

To generate a valuable training data set the cut-off-line is detected in dif-
ferent well-defined characteristic scenes. During this process the data vector
x is recorded and the corresponding class c(x) is defined by the reference
measuring-system.

The generated set of training data consists of 1 422 training vectors and
presents the headlamp of Fig.1, i.e. L is {1, 2, 3}. In the set of training-data
there are approximately 13 % of training vectors hot-spot cut-off-lines, 27 %
of upper cut-off-lines and 60 % of lower cut-off-lines. A PCA-projection of
the training-data is shown in Fig.4. The projecting eigenvectors are:

v1 ≈ (−0.4,−0.2,−0.9, 0,−0.1, 0)T

v2 ≈ (0, 0, 0.1,−0.1,−1, 0)T

Hence, the axes with highest data variance is a linear combination of
„contrast-values“ and the second significant axes is approximately the unit-
vector of the length of the horizontal part. It is recognizable that the classes
are not obviously separable in this two-dimensional projecting space. How-
ever, the different characteristic scenes during the recording process are re-
flected in the projection. For example, the right cluster of lower cut-off-lines
is recorded using a black surface. Therefore the reflectance of the projection-
surface is low and likewise the contrast-values. Additionally, the favorable
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Figure 4: PCA-projection of the training-data

j = 1 2 3 4 5 6
x̄j 38.7665 13.2954 88.1301 19.2522 24.0850 19.0157

std(xj) 14.4787 10.1845 31.4416 4.9952 11.7099 4.3202

Table 1: Standardization values for the training data.

scene has a low luminance for the detection of the upper cut-off-line. Thus
the upper cut-off-lines are placed near the lower cut-off-lines recorded on a
black surface.

For the computing of the prototypes using GMLVQ the training-data is
standardized with mean x̄j and standard deviation std(xj). These values are
given in Tab.1.
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3.2 Training of the GLMVQ model
The GMLVQ is an extension of Generalized Relevance Learning Vector Quan-
tization (GRLVQ, [Bojer et al., 2001, Hammer and Villmann, 2002]) with ori-
gins in Learning Vector Quantization models proposed by Kohonen in [Ko-
honen, 1988, 1995]. Training of the GMLVQ is a stochastic process triggered
by random presentation of training data. Assuming data vectors x ∈ Rm with
class labels c (x) ∈ L, GMLVQ requires the setW = {wk ∈ Rm, k = 1 . . .M}
of prototype vectors with class label ywk

∈ L, at least one per class. The
cost function minimized by GMLVQ is

EGMLV Q (W ) = 1
2
∑

v∈V

f (µ (v)) (4)

approximating the classification error [Kaden et al., 2015], where

µ (x) = d+
Ω (x)− d−Ω (x)
d+

Ω (x) + d−Ω (x) (5)

is the classifier function. We remark that µ (x) ∈ [−1, 1]. Further d+
Ω (x) =

dΩ (x,w+) denotes the dissimilarity between the data vector x and the closest
prototype w+ with the same class label yw+ = c (x), and d−Ω (x) = dΩ (x,w−)
is the dissimilarity degree for the best matching prototype w− with a class
label yw− different from c (x). The transfer or squashing function f is a
monotonically increasing function usually chosen as sigmoid or the identity
function [Sato and Yamada, 1996].

Learning in GLVQ is performed by the stochastic gradient descent learn-
ing for the cost function EGLV Q with respect to the winning prototypes w+

and w− for a randomly chosen training sample x ∈ X and randomly initial-
ized prototypes. The updates can be written as

∆w± ∝ − ∂f

∂µ (x) ·
∂µ (x)
∂d±Ω (x) ·

∂d±Ω (x)
∂w± . (6)

The prototype update is accompanied by the adaptation of the scaling
matrix Ω of the dissimilarity measure dΩ from (2) to achieve a better classi-
fication performance. Starting with the unit matrix Ω = E it is subsequently
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adapted according to

∆Ωij ∝ −
∂f

∂µ (x) ·
(
∂µ (x)
∂d+

Ω (x) ·
∂d+

Ω (x)
∂Ωij

+ ∂µ (x)
∂d−Ω (x) ·

∂d−Ω (x)
∂Ωij

)
(7)

at the same time as the prototype update takes place Schneider et al. [2010].
In the classification problem to be considered here, we used M = 9 pro-

totypes, three for each class in ascending order. The achieved prototypes
are

w1 = (1.1975, 1.4491, 0.9626,−0.0095, 0.3155,−0.1545)T ,

w2 = (0.6836,−0.0660, 0.9007,−0.1051,−0.0360,−0.0402)T ,

w3 = (−1.1815,−0.6942,−1.4685,−0.1642,−0.6036,−0.1494)T ,

w4 = (−1.0377,−1.0158,−0.7847,−0.5099,−0.4270,−0.7007)T ,

w5 = (0.4686,−0.9196, 1.1873, 0.6263, 0.3441,−0.5295)T ,

w6 = (−0.9950,−1.0253,−0.7424, 0.3656,−0.1556, 0.9506)T ,

w7 = (1.3887, 0.9023, 1.3267, 0.5165, 0.0003,−0.7472)T ,

w8 = (1.2769, 0.8930, 1.3262,−0.1375,−0.0756, 1.1646)T ,

w9 = (1.3878, 0.8330, 1.7093,−1.1449, 0.9115, 0.4148)T .

The mapping Ω-matrix considered in (3) was obtained as

Ω =




0.8220 −0.0875 −0.0550 −0.0758 0.0147 −0.1545
−0.0641 1.7095 −0.4775 −0.0556 0.0382 −0.0402
−0.0916 −0.5636 1.3072 −0.0574 0.0413 −0.1494
−0.0616 −0.1495 0.0344 0.1427 −0.0332 −0.7007

0.0096 −0.0428 0.0851 −0.0211 0.0668 −0.5295
−0.0509 −0.0739 −0.0241 0.0743 0.0046 0.9506




(8)

realizing the linear mapping to achieve best classification performance. Fi-
nally, the GMLVQ-classifier achieved an overall accuracy performance of
97.82%, which indicates an approximately perfect class separability. Without
metric adaptation the accuracy was only in the range of about 80% reflecting
the importance of metric adaptation.
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3.3 Application in a real system for online calibration
After training of the GMLVQ-classification model it can be used in the PAHS
system for cut-off-line classification in real situations. If a new cut-off-line x
is detected by the PAHS system, the classification procedure requires three
calculation steps based on the obtained GMLVQ-prototypes, see (3.2), the
GMLVQ-computed mapping matrix Ω, see (8), and the standardization val-
ues from Tab.1:

1. standardization of x:

xj := xj − x̄j

std(xj)
, for j = 1, 2, ..., 6

2. transformation of x using the scaling matrix Ω:

x := Ω · x

3. calculation of the best-matching prototype wi using the distance dΩ

and assign the label ywi
to the class label c(x), i.e.

c(x) := ywi∗ , with i∗ = argmin
i=1,...,M

(dΩ(wi,x))

If the class label c(x) is calculated, then there are two possibilities. The
first is that a detected cut-off-line x with a class unequal to the desired class
is ignored. This means that the detected cut-off-line x is not considered
in PAHS. The disadvantage of this method is that the number of possible
cut-off-lines for PAHS is decreased. But the advantage is that angle-offsets
are not needed. The second method is to correct the detected cut-off-line by
using the corresponding angle-offset. Thus, the benefit is that all detected
cut-off-lines are usable in the online-calibration. However, the angle-offsets
are needed and an error in the angle-offsets has a direct influence to PAHS.

In a real application of the online-calibration the probability that x cor-
responds to c(x) is like the probability in section 3.1. Therefore the ignoring
of detected cut-off-lines unequal c(x) = 2 is not acceptable. The application
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of the correction step using the GMLVQ and the angle-offsets show a huge
benefit in the application.

Clearly, the efficiency of the classification depends in a highly manner on
the quality of the training data. The used training data consist of measure-
ments on

• a black surface under dark environment conditions.

• a white surface under dark and light environment conditions.

• a gray surface under light environment conditions.

• a red surface under light environment conditions.

In preliminary experimental studies performed so far, the GMLVQ model is
also able to classify those cut-off-line of scenes correctly, which are not in-
cluded in the training data. However, not all scenes were classified correctly.
For this purpose, rejection strategies as proposed in [Fischer et al., 2014]
should be included in GMLVQ model in the future.

4 Outlook
The application of the GMLVQ for classifying the cut-off-line shows a high
potential. However, before an application can be operate in a production
vehicle, further investigations need to be done. Due to the fact that for
each headlamp-system the determination of the GMLVQ prototypes and the
scaling/mapping matrix Ω have to be done just one time, it is necessary
to define uniform measurement conditions for the generation of the train-
ing data. Moreover it is necessary to perform further studies regarding the
difficulty of scene selection important to built up a classifier with high gener-
alization ability for the classification. The goal is that both the set of training
data and the classification error in the real world application is as small as
possible. Further, as previously mentioned, appropriate rejection strategies
have to be implemented.
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Figure 5: Visualization of the (scaled) classification correlation matrix Λ for
the cut-off-line classification system.

A huge advantage of the GMLVQ (and also of other related LVQmethods)
is that the learning (adaptation) of the prototypes is done in off-line mode.
Hence, the time processing costs are not important in the application mode.
The calculation costs for the classification with pre-determined prototypes
are negligible in comparison to the general calculation costs of the PAHS
calibration. Therefore, the described system is principally applicable in a
production vehicle, from this point of view.

The presented procedure is based on all six chosen features of the cut-
off-line so far, see Sec.2. Yet, GMLVQ provides further information. The
matrix

Λ = ΩT Ω

is the so-called classification correlation matrix. This matrix offers the ad-
ditional information, which data dimensions and combinations thereof con-
tribute to a good classification performance. For the considered cut-off-line
classification system it is displayed in Fig.5. The appraisal of this matrix
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could be used to decrease the dimension n of the cut-off-line vectors for fur-
ther decrease of computation time. Otherwise, this the information contained
in the classification correlation matrix could be used to define the position
of the contrast-values for the cut-off-line, such that they are at the most
significant positions for a successful classification.

Further studies could include also GMLVQ-variants optimizing other sta-
tistical measure than classification error [Kaden et al., 2014a] or optimize
the receiver operating characteristics (ROC), when only two types (classes)
of cut-off-lines are to be classified [Biehl et al., 2014].
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