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Chapter 1

From neurons to networks

Reality is overrated anyway.

– Unknown

To understand and explain the brain’s fascinating capabilities1 remains one of
the greatest scientific challenges of all times. This is particularly true for its plas-
ticity, i.e. the ability to learn from experience and to adapt to (and survive in)
ever-changing environments.

Ultimately, the performance of the brain must rely on its hardware (or wetware,
rather). Apparently, all of its functionality emerges from the cooperative behavior of
the many, relatively simple yet highly interconnected building blocks: the neurons.
The human cortex, for instance, comprises an estimated number of 1012 neurons
and each individual cell can be connected to thousands of others.

In this introduction to Neural Networks and Computational Intelligence we will
study artificial neural networks and related systems, designed for the purpose of
adaptive information processing. The degree to which these systems relate to their
biological counterparts is, generally speaking, quite limited. However, their devel-
opment was greatly inspired by key aspects of biological neurons and networks.
Therefore, it is useful to be aware of the conceptual connections between artificial
and biological systems, at least on a basic level.

Quite often, technical systems are inspired by natural systems without copying
all their properties in detail. Due to biological constraints, nature (i.e. evolution)
might have produced highly complex solutions to certain problems that can be dealt
with in a simpler fashion in a technical realization. A somewhat over-used analogy
in this context is the construction of efficient aircraft, which by no means required
the use of moving wings in order to imitate bird flight.

Of course, it is unclear a priori which of the details are essential and which ones
can be left out in artificial systems. Obviously, this also depends on the specific task
and context. Consequently, the interaction between the neurosciences and machine
learning research continues to play an important role for the further development
of both.

In this introductory text we will consider learning systems, which draw on
only the most basic mechanisms. Therefore, this chapter is meant as a very brief
overview, only, which should allow to relate some of the concepts in artificial neural
computation to their biological background. The reader should be aware that the
presentation is certainly (over-) simplifying and probably not quite up-to-date in

1including the capability of being fascinated
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8 CHAPTER 1. FROM NEURONS TO NETWORKS

all aspects.
Detailed citations concerning specific topics are not provided in this chapter. In-

stead, the following list points to some sources which range from brief and superficial
to very comprehensive and detailed reviews. The same is true for the discussion of
the different conceptual levels on which biological systems can be modelled.

[3] K. Guerney (Neural Networks) gives a very basic overview and provides a
glossary of biological or biologically inspired terms.

[4] The first sections of S. Haykin’s Neural Networks and Learning Machines
cover the relevant topics in slightly greater depth.

[5] The classical textbook Neural Networks: An Introduction to the Theory of
Neural Computation by J.A. Hertz, A. Krogh and R.G. Palmer discusses
the inspiration from biological neurons and networks in the first chapters.
It also provides the most thorough analysis of the Hopfield model from a
statistical physics perspective.

[6] H. Horner and R. Kühn give a brief general overview of Neural Networks,
including a basic discussion of their biological background.

[7] Models of biological neurons, their bio-chemistry and bio-physics are in the
focus of C. Koch’s comprehensive monograph on the Biophysics of compu-
tation. It discusses the different modelling approaches and relates them to
experimental data obtained from real world neurons.

[8] T. Kohonen has introduced important prototype-based learning schemes.
An entire chapter of his seminal work Self-Organizing Maps is devoted to the
Justification of Neural Modeling.

[9] H. Ritter, T. Martinetz and K. Schulten give an overview and also
discuss some aspects of the organization of the brain in terms of maps in their
monograph Neural Computation and Self-Organizing Maps.

[10] M. van Rossum’s lecture notes on Neural Computation provide a overview
of biological information processing and models of neural activity, synaptic
interaction and plasticity. Moreover, modelling approaches are discussed in
some detail.

Here, numbers refer to full citation information in the bibliography. Note that
the selection is certainly incomplete and clearly biased by personal preferences.

1.1 Spiking neurons and synaptic interactions

The physiology and functionality of the biological systems is highly complex, already
on the single neuron level. Sophisticated modelling frameworks have been developed
that take into account the relevant electro-chemical processes in great detail in order
to represent the biology as faithful as possible. This includes the famous Hodgkin-
Huxley model and variants thereof.

They describe the state of cell compartments in terms of an electrostatic poten-
tial, which is due to varying ion concentrations on both sides of the cell membrane.
A number of ion channels and pumps controls the concentrations and, thus, the
membrane potential. The original Hodgkin-Huxley models describes its temporal
evaluation in terms of four coupled ordinary differential equations, the parameters
of which can be fitted to experimental data measured in real world neurons.

Whenever the membrane potential reaches a threshold value, for instance trig-
gered by the injection of an external current, a short, localized electrical pulse is

Supervised Learning - An Introduction
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Figure 1.1: Schematic illustration of neurons (pyramidal cells) and their connec-
tions. Left: Pre-synaptic and post-synaptic neurons with soma, dendritic tree,
axon, and axonic branches. Right: The synaptic cleft with vesicles releasing neuro-
transmitters and corresponding receptors on the post-synaptic side.

generated. The term action potential or the more sloppy spike will be used synony-
mously. The neuron is said to fire when a spike is generated.

The action potential discharges the membrane locally and propagates along the
membrane. As illustrated in Figure 1.1 (left panel), a strongly elongated extension
is attached to the soma, the so-called axon. From a purely technical point of view,
it serves as a cable along which action potentials can travel.

Of course, the actual electro-chemical processes are significantly different from
the flow of electrons in a conventional copper cable, for instance. In fact, action
potentials jump between short gaps in the myelin sheath, an insulating layer around
the axon. By means of this saltatory conduction, action potentials spread along the
axonic branches of the firing neuron and eventually reach the points where the
branches connect to the dendrites of other neurons. Such a connection, termed
synapse, is shown schematically in Fig. 1.1 (right panel). Upon arrival of a spike,
so-called neuro-transmitters are released into the synaptic cleft, i.e. the gap between
pre-synaptic axon branch and the post- synaptic dendrite. The transmitters are
received on the post-synaptic side by substance specific receptors. Thus, in the
synapse, the action potential is not transferred directly through a physical contact
point, but chemically.2 The effect that an arriving spike has on the post-synaptic
neuron depends on the detailed properties of the synapse:

• if the synapse is of the excitatory type, the post-synaptic membrane potential
increases upon arrival of the pre-synaptic spike,

• when a spike arrives at an inhibitory synapse, the post-synaptic membrane
decreases.

Both, excitatory and inhibitory synapses can have varying strengths, as reflected in
the magnitude of the change that a spike imposes on the post-synaptic membrane
potential.

Consequently, the membrane potential of a particular cell will vary over time,
depending on the actual activities of the neurons it receives spikes from through
excitatory and inhibitory synapses. When the threshold for spike generation is
reached, the neuron fires itself and, thus, influences the potential and activity of
all its post-synaptic neighbors. All in all, a set of interconnected neurons forms a

2However, so-called gap junctions can play the role of bi-directional electrical synapses.
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Figure 1.2: Left (upper): Schematic illustration of an action potential, i.e. a short
pulse on mV - and ms-scale. Left (lower): Spikes travel along the axon through
saltatory conduction via gaps in the insulating myelin sheath. Right: Schematic
illustration of how mean firing rates are derived from a temporal spike pattern.

complex dynamical system of threshold units which influence each other’s activity
through generation and synaptic transmission of action potentials.

The origin of a very successful approach to the modelling of neuronal activity
dates back to Louis Lapicque in 1907. In the framework of the so-called Integrate-
and-Fire (IaF) model, electro-chemical details accounted for in the Hodgkin-Huxley
type of models, are omitted (and were probably unknown, at the time). The mem-
brane is simply represented by its conductance and ohmic resistance, all charge
transport phenomena are combined in one effective electric current, which summa-
rizes the individual contributions of the different ion concentrations as well as leak
currents through the membrane. Similarly, the precise form of spikes, details of
their generation and transport are ignored. Instead, the firing is modelled as an all-
or-nothing threshold process, which results in an instantaneous discharge. Spikes
are represented by structureless Dirac delta functions in time. Despite its simplicity
compared to more realistic electro-chemical models, the IaF model can be fitted to
physiological data and yields a fairly realistic description of neuronal activity.

1.2 Firing rate models

In another step of abstraction, the description of neural activity is reduced to taking
into account only the mean firing rate, e.g. obtained as the average number of spikes
per unit time; the concept is illustrated in Fig. 1.2 (right panel). Hence, the pre-
cise timing of individual action potentials is completely disregarded. The implicit
assumption is that most of the information in neural processing is contained in the
mean activity and frequency of spikes of the neurons. While the role of individ-
ual spike timing appears to be the topic of ongoing debate in the neurosciences3,
the simplification clearly facilitates efficient simulations of very large networks of
neurons and can be seen as the basis of virtually all artificial neural networks and
learning systems considered in this text.

1.2.1 Neural activity and synaptic interaction

The firing rate picture allows for a simple mathematical description of neural ac-
tivity and synaptic interaction. Consider the mean activity Si of neuron i, which
receives input from a set J of neurons j 6= i. Taking into account the fact, that the
firing rate of a biological neuron cannot exceed a certain maximum due to physiolog-
ical and bio-chemical constraints, we can limit Si to a range of values 0 ≤ Si where

3See, for instance, http://romainbrette.fr/category/blog/rate-vs-timing/ for further references.
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1.2. FIRING RATE MODELS 11

the upper limit 1 is given in arbitrary units. The resting state Si = 0 obviously
corresponds to the absence of any spike generation.

The activity of i is given as a (non-linear) response of incoming spikes, which
are - however - also represented only by the mean activities Sj :

Si = h(xi) with xi =
∑

j∈J
wij Sj . (1.1)

Here, the quantities wij ∈ IR represent the strength of the synapse connecting
neuron j with neuron i. Positive wij > 0 increase the so-called local potential
xi if neuron j is active (Sj > 0), while wij < 0 contribute negative terms to the
weighted sum. Note that real world chemical synapses are strictly uni-directional:
even if connections wij and wji exist for a given pair of neurons, they would be
physiologically separate, independent entities.

1.2.2 Sigmoidal activation functions

It is plausible to assume the following mathematical properties of the activation
function h(x) of a given neuron (subscript i omitted) with local potential x as in
Eq. (1.1):

lim
x→−∞

h(x) = 0 (resting state, absence of spike generation)

h′(x) ≥ 0 (monotonic increase of the excitation)

lim
x→+∞

h(x) = 1 (maximum possible firing rate).

which takes into account the limitations of individual neural activity, discussed in
the previous section in the account.

Various activation or transfer functions have been suggested and considered in
the literature. In the context of feed-forward neural networks, we will discuss several
options in a later chapter. A very important class of plausible activations is given
by so-called sigmoidal functions. Just one prominent4 example being

h(x) =
1

2

(
1 + tanh

[
γ(x− θ)

])
(1.2)

which clearly satisfies the conditions given above. The two important parameters
are the threshold θ, which localizes the steepest increase of activity and the gain
parameter γ which quantifies the slope. It is important to note that θ does not
directly correspond to the previously discussed threshold of the all-or-nothing gen-
eration of individual spikes. It marks the characteristic value of h at which the
activation function is centered.

1.2.3 Symmetrized representation of activity

We will frequently consider a symmetrized description of neural activity in terms
of modified activation functions:

lim
x→−∞

g(x) = −1 (resting state, absence of spike generation)

g′(x) ≥ 0 (monotonic increase of the excitation)

lim
x→+∞

g(x) = 1 (maximum possible firing rate).

4Its popularity is partly due to the fact that the relation tanh′ = 1 − tanh2 facilitates a very
efficient computation of the derivative.
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Figure 1.3: Schematic illustration of example (symmetrized) activation functions.
Left: A sigmoidal transfer function with gain γ and threshold θ in the symmetrized
representation, cf. Eq. (1.2). Right: The binary McCulloch Pitts activation as
obtained in the limit γ →∞.

An example activation analogous to Eq. (1.2) is

g(x) = tanh
[
γ(x− θ)

)
. (1.3)

At first sight, this appears to be just an alternative assignment of a value S = −1
to the resting state.

Note that in the original description with 0 < Sj < 1, a quiescent neuron does
not influence its postsynaptic neurons explicitly. However, keeping the form of the
activation as

Si = g(xi) with xi =
∑

j∈J
wij Sj . (1.4)

implies that, now, the absence of activity (Sj = −1) in neuron j can increase the
firing rate of neuron i if connected through an inhibitory synapse wij < 0. This and
other mathematical subtleties are clearly biologically implausible which is due to
the somewhat artificial introduction of – in a sense – negative and positive activities
which are treated in a symmetrized fashion.

However, as we will not aim at describing biological reality, the above discussed
symmetrization can be justified. In fact, it simplifies the mathematical and compu-
tational treatment and has contributed, for instance, to the fruitful popularization
of neural networks in the statistical physics community in the 1980’s and 1990’s.

1.2.4 McCulloch Pitts neurons

Quite frequently, an even more drastic modification is considered: For infinite gain
θ →∞ the sigmoidal activations become step functions and, for instance, Eq. (1.3)
yields in this limit

g(x) = sign(x− θ) =

{
+1 if x ≥ θ
−1 if x < θ,

(1.5)

see Fig. 1.3 (right panel) for an illustration. In this symmetrized version of a binary
activation function, only two possible states are considered: Either the model neuron
is totally quiescent (S = −1) or it fires at maximum frequency, which is represented
by S = +1.

The extreme abstraction to binary activation states without the flexibility of
a graded response was first discussed by McCulloch and Pitts in 1943, originally
denoting the quiescent state by S = 0. The persisting popularity of the model is due
to its simplicity and similarity to boolean concepts in conventional computing. In
the following, we will frequently resort to binary model neurons in the symmetrized
version (1.5). In fact, the so-called perceptron as discussed in Chapter 3 can be
interpreted as a single McCulloch Pitts unit which is connected to N input neurons.
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1.2. FIRING RATE MODELS 13

1.2.5 Hebbian learning

Probably the most intriguing property of biological neural networks is their ability
to learn. Instead of realizing pre-wired functionalities, brains adapt to their envi-
ronment or - in higher level terms - they can learn from experience. Many potential
forms of plasticity and memory representation have been discussed in the literature,
including the chemical storage of information or learning through neurogenesis, i.e.
the growth of new neurons.

Arguably the most plausible and most frequent process of learning is synaptic
plasticity. A key mechanism, Hebbian Learning, is named after psychologist Donald
Hebb who published his work The Organization of Behavior in 1949. The original
hypothesis is formulated in terms of a pair of neurons, which are connected through
an excitatory synapse:

”When an axon of cell A is near enough to excite cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased.”

This is known as Hebb’s law and sometimes re-phrased as ”Neurons that fire to-
gether, wire together.” Hebbian Learning results in a memory effect which favors
the simultaneous activity of neurons A and B in the future. Hence it constitutes a
form of learning through synaptic plasticity.

In the mathematical framework of firing rate models presented in the previ-
ous section, we can express Hebbian Learning quite elegantly, assuming that the
synaptic change is simply proportional to the pre- and post-synaptic activity:

∆wAB ∝ SASB . (1.6)

Hence, the change ∆wAB of a particular synapse wAB depends only on locally
available information: the activities of the pre-synaptic (SB) and the post-synaptic
neuron (SA). For SA, SB > 0 this is quite close to the actual Hebbian hypothesis.

The symmetrization with −1 < SA,B < +1 adds some biologically implausible
aspects to the picture: For instance, an excitatory synapse connecting A and B
would also be strengthened according to Eq. (1.6) if both neurons are quiescent
at the same time since SASB > 0 in this case. Similarly, high activity in A and
low activity in B (or vice versa) with SASB < 0 would weaken an excitatory or
strengthen an inhibitory synapse. In Hebb’s original formulation, however, only the
presence of simultaneous activity should trigger changes of the involved synapse.
Moreover, the mathematical formalism in (1.6) facilitates the possibility that an
individual excitatory synapse can become inhibitory or vice versa, which is also
questionable from the biological point of view.

Many learning paradigms in artificial neural networks and other adaptive sys-
tems can be interpreted as Hebbian Learning in the sense of the above discussion.
Examples can be found in a variety of contexts, including supervised and unsuper-
vised learning, see Sec. 2 for working definitions of these terms.

Note that the actual interpretation of the term Hebbian Learning varies a lot
in the literature. Occasionally, it is employed only in the context of unsupervised
learning, since feedback from the environment is quite generally assumed to consti-
tute non-local information.

Here, we follow the wide-spread, rather relaxed use of the term for learning
processes which depend on the states of the pre- and post-synaptic units as in Eq.
(1.6).
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14 CHAPTER 1. FROM NEURONS TO NETWORKS

1.3 Network architectures

In the previous section we have considered types of model neurons which retain
certain aspects of their biological counterparts and allow for a mathematical formu-
lation of neural activity, synaptic interactions and learning.

This enables us to construct networks from, for instance, sigmoidal or McCulloch
Pitts and model or simulate the dynamics of neurons and/or learning processes
concerning the synaptic connections.

In the following, only the most basic and clear-cut types of network architectures
are introduced and discussed: fully connected recurrent networks and feed-forward
layered networks. The possibilities for modifications, hybrid and intermediate types
are nearly endless. Some more specific architectures will be introduced in a later
chapter addressing shallow and deep architectures.

1.3.1 Attractor networks and the Hopfield model

Networks with very high or unstructured connectivity form dynamical systems of
neurons which influence each other through synaptic interaction. In a network as
shown in Figure 1.4 (left panel) the activity of a particular neuron depends on its
synaptic input. Considering discrete timesteps ti on obtains an update of the form

Si(t+ 1) = g


∑

j

wij Sj(t)


 (1.7)

where the sum is over all units that neuron i receives input through a synapse
wij 6= 0. Eq. (1.7) can be interpreted as an update of all neurons in parallel.
Alternatively, units could be visited in a deterministic or randomized sequential
order. We will not discuss the subtle, yet important differences between parallel
and sequential dynamics here and can only refer the reader to the literature.

From an initial configuration which comprises the individual activity S(0) =

(S1(0), S2(0), . . . , SN (0))
>

at time t = 0, the dynamics generates a sequence of
states S(t) which can be considered the system’s response to the initial stimulus.
The term recurrent networks has been coined for this type of dynamical system.

One of the most extreme, clear-cut example of a recurrent architectures is the
fully connected Hopfield or Little-Hopfield model. It is, in a sense, extreme and
very clear-cut: The Hopfield network comprises N neurons of the McCulloch Pitts
type which are fully connected by bi-directional synapses

wij = wji ∈ IR (i, j = 1, 2, . . . N) with wii = 0 for all i. (1.8)

While the exclusion of explicit, non-zero self- interactions wii appears plausible, the
assumption of symmetric, bi-directional interactions clearly constitutes yet another
serious deviation from biological reality.

The dynamics of the binary units is given by

Si(t+ 1) = sign




N∑

j=1
j 6=i

wijSj(t).


 (1.9)

John Hopfield realized that the corresponding random sequential update can be
seen as a zero temperature Metropolis Monte Carlo dynamics which is governed by
an energy function of the form

H(S(t)) = −
N∑

i,j=1
i<j

wij Si(t)Sj(t). (1.10)
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wij Si(t)
Sj(t)

S(0) lim
t!1

S(t) = ⇠µ

Figure 1.4: Recurrent neural networks. Left: A network of N = 5 neurons with
partial connectivity and uni-directional synapses. Right: Illustration of the re-
trieval of a stored activity pattern from a noisy initial configuration in the Hopfield
network.

The mathematical structure is analogous to the so-called Ising model in Statistical
Physics. There, the degrees of freedom Si = ±1 are typically termed spins and they
are interpreted as to represent microscopic magnetic moments, originally. Ising like
systems have been considered in a variety of scientific contexts ranging from the
formation of binary alloys to abstract models of segregation in the social sciences.
Positive weights wij obviously favor pairs of aligned Si = Sj which reduce the total
energy of the system.

For the modelling of magnetic materials one considers specific couplings wij as
motivated by the physical interactions. For instance, constant positive wij = 1 are
assumed in the so-called Ising ferromagnet, while randomly drawn interactions are
employed to model disordered magnetic materials, so-called spin glasses.

In the actual Hopfield model, however, synaptic weights wij are constructed
or learned in order to facilitate a specific form of information processing. From
a given set of uncorrelated, N -dimensional activity patterns IP = {ξµ}Pµ=1 with

ξµi ∈ {−1,+1}, a weight matrix is constructed according to

wij = wji =
1

P

P∑

µ=1

ξµi ξ
µ
j for i 6= j and wii = 0 for all i, (1.11)

where the constant pre-factor 1/P follows the convention in the literature. It allows
to interpret the weights as empirical averages over the data set, but is otherwise
irrelevant. Improved versions of the weight matrix for correlated patterns are also
available. In principle, all perceptron training algorithms discussed later could be
applied (per neuron) in the Hopfield network as well.

The Hopfield network can operate as an auto-associative or content-addressable
memory: If the system is prepared in an initial state S(t = 0) which differs from
one of the patterns ξν ∈ IP only in a limited fraction of neurons with Si(0) = −ξνi ,
the dynamics can retrieve the corrupted or noisy information. Ideally, the temporal
evolution under the updates (1.9) restores the pattern nearly perfectly and S(t)
approaches ξν for large t. The retrieval of a stored pattern from a noisy initial state
is illustrated in Fig. 1.4 (right panel).

Successful retrieval is only possible if the initial deviation of S(0) from ξν is not
too large. Moreover, only a limited number of patterns can be stored and retrieved
successfully. For random patterns with zero mean activities ξµj = ±1, the statistical
physics based theory of the Hopfield model (valid in the limit N →∞) shows that
P ≤ αrN must be satisfied. The value αr ≈ 0.14 marks the so-called capacity limit
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16 CHAPTER 1. FROM NEURONS TO NETWORKS

of the Hopfield model.5

Note that the weight matrix construction (1.11) can also be interpreted as Heb-
bian Learning: Starting from a tabula rasa state of the synaptic strengths with
wij(0) = 0, a single term of the form ξµi ξ

µ
j is added for each activity pattern, rep-

resenting the neurons that are connected by synapse wij (and wji). Hence the
construction of (1.11) could be written as an iteration

wij(µ) = wij(µ− 1) +
1

P
ξµi ξ

µ
j (1.12)

where the incremental change of wij depends only on locally available information
and is of the form ”pre-synaptic × post-synaptic activity.”

The Hopfield model has served as a prototypical example of highly connected
neural networks. Potential applications include pattern recognition and image pro-
cessing tasks. Perhaps more importantly, the model has provided many theoretical
and conceptual insights into neural computation and continues to do so.

More general recurrent neural networks are applied in various domains that
require some sort of temporal or sequence-based information processing. This in-
cludes, among others, robotics, speech or handwriting recognition.

1.3.2 Feed-forward layered neural networks

We will mainly deal with another clear-cut network architecture: layered feed-
forward networks. In these systems, neurons are arranged in layers and information
is processed in a well-defined direction.

The left panel of Fig. 1.5 shows a schematic illustration of a feed-forward archi-
tecture. A specific single layer of units (the top layer in the illustration) represents
external input to the system in terms neural activity. In the biological context, one
might think of the photoreceptors in the retina or other sensory neurons which can
be activated by external stimuli.

The state of the neurons in all other layers of the network is determined via
synaptic interactions and activations of the form

S
(k)
i = g


∑

j

w
(k)
ij S

(k−1)
j


 . (1.13)

Here, the activity S
(k)
i of neuron i in layer k is determined from the weighted sum

of activities in the previous layer (k − 1) only: information contained in the input
is processed layer by layer. Ultimately the last layer in the structure (bottom layer
in the illustration) represents the networks output, i.e. its response to the input or
stimulus in the first layer. The illustration displays a single unit, but the extension
to a layer of several outputs is straightforward.

The essential property of the feed-forward network is the directed information
processing: neurons receive only input from units in the previous layer. As a conse-
quence, the network can be interpreted as to parametrize an input/output relation,
i.e. a mathematical function that maps the vector of input activations to a single
or several output values. This interpretation still holds if nodes receive input from
several previous layers, or in other words: connections may ”skip” layers. For the
sake of clarity and simplicity, we will not consider this option in the following.

The feed-forward property and interpretation as a simple input/output relation
is lost as soon as any form of feed-back is present. Inter-layer synapses or backward

5In the literature this critical value is often denoted as αc, but it should not be confused with
the storage capacity that we discuss later for feed-forward networks.
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Figure 1.5: Feed-forward neural networks.6 Left: A multilayered architecture with
varying layer size and a single output unit. Right: A feed-forward network with a
layer of input neurons, one hidden layer and a single output unit.

connections feeding information into previous (”higher”) layers introduce feed-back
loops, making it necessary to describe the system in terms of its full dynamics.

Neurons that do not communicate directly with the environment, i.e. all units
that are neither input nor output nodes, are termed hidden units (nodes, neurons)
forming hidden layers in the feedforward architecture.

The right panel of Fig. 1.5 displays a more concrete example. The network
comprises one layer of hidden units, here with activity σk ∈ IR, and a single output
S. The response of the system to an input configuration ξ = (ξ1, ξ2, . . . , ξN ) ∈ IRN
is given as

S(ξ) = g

(
K∑

k=1

vk σk

)
= g




K∑

k=1

vk g

( N∑

j=1

wkj ξj

)
 . (1.14)

Here we assume, for simplicity, that all hidden and output nodes employ the same
activation function g(. . .). Obviously, this restriction can be relaxed by defining
layer-specific or even individual activation functions. In Eq. (1.14) the quantities wkj
denote the weights connecting the k-th hidden unit to the input layer (k = 1, 2, . . .K
with K = 3 in the example). They can be combined into vectors wk ∈ IRN , while
the hidden-to-output weights are denoted as vk ∈ IR.

6

Altogether, the architecture and connectivity, the activation function and its
parameters (gain, threshold etc.), and the set of all weights determine the actual
input/output function ξ ∈ IRN → S(ξ) ∈ IR parameterized by the feed-forward net-
work. Again, the extension to several output units, i.e. multi-dimensional function
values is conceptually straightforward.

Without going into details yet, we note that we control the function that is
actually implemented by choice of the weights and other free parameters in the
network. If their determination is guided by a set of example data representing a
target function, the term learning is used for this adaptation or fitting process. To
be more precise, this constitutes an example of supervised learning as discussed in
the next section.

Hence, a feed-forward neural network represents an adaptive parameterization
of a, in general non-linear, functional dependence. Under rather mild conditions,
feed-forward networks with suitable, continuous activation functions are universal
approximators. Loosely speaking, this means that a network can approximate any
”non-malicious”, continuous function to arbitrary precision, provided the network
comprises a sufficiently large (problem dependent) number of hidden units in a

6Following the author’s personal preference, layered networks are drawn from top (input) to
bottom (output), here. Alternative orientations can be achieved by rotating the page.
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18 CHAPTER 1. FROM NEURONS TO NETWORKS

suitable architecture. This clearly motivates the use of feed-forward nets in quite
general regression tasks.

If the response of the network is discretized, for instance due to an output
activation with

S(ξ) ∈ {1, 2, . . . C} , (1.15)

the system performs the assignment of all possible inputs ξ to one of C categories
or classes. Hence the feed-forward network constitutes a classifier which can be
adapted to example data by choice of weights and other free parameters.

The simplest feed-forward classifier, the so-called perceptron, will serve as a
most important example system in the course. The perceptron is defined as a linear
threshold classifier with response

S(ξ) = sign




N∑

j=1

wjξj − θ


 (1.16)

to any possible input ξ ∈ IRN , corresponding to an assignment to one of two classes
S = ±1. Comparison with Eq. (1.5) shows that it can be interpreted as a single
McCulloch Pitts neuron which receives input from N real-valued units.

The perceptron will be discussed in great detail in the next main chapter and
provides valuable insights into the basic concepts of machine learning.

1.3.3 Other architectures

Apart from the clear-cut, fully connected attractor neural networks and the strictly
feed-forward layered nets, a large variety of network types have been considered and
designed with respect to specific application domains.

Many prototype systems like Learning Vector Quantization can also be inter-
preted as layered networks with specific, distance-based activation functions in the
hidden units (the prototypes) and a winner-takes-all or softmax output layer for
classification or regression, respectively. The attractive framework of prototype
based learning will be discussed in Chapter 5 in the context of, both, supervised
and unsupervised learning.

Combinations of feed-forward structures with, for instance, layers of highly in-
terconnected units are employed n the context of Reservoir Computing, see e.g. [11]
for an overview and references. The basic idea is to represent input data as the
initial configuration of a dynamical system. Eventually, the state of the system is
mapped to a regression or classification target by one or several read-out layers.

Recently, the use of feed-forward architectures has re-gained significant popu-
larity in the context of Deep Learning. Specific designs and architectures of Deep
Networks, including e.g. so-called convolutional or pooling layers are discussed in
the designated lectures by Marc Huertas-Company [1].
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Chapter 2

Learning from examples

You live and learn. At any rate, you live.

– Douglas Adams

Different forms of machine learning were briefly discussed in Section 1, already.
Here we focus on the most clear-cut scenarios: supervised learning and unsupervised
learning. The main chapters will deal with supervised learning, with emphasis
on classification and regression. Several of the introduced concepts and methods,
however, can also be transferred in unsupervised settings. This is the case, for
instance, for the prototype-based methods discussed in Chapter 5.

2.1 Unsupervised learning

Unsupervised learning is an umbrella term which comprises the analysis of data
sets which do not contain label information associated with some pre-defined target
as it would be the case in classification or regression. Moreover, there is no direct
feedback available from the environment or a teacher that would facilitate the eval-
uation of the system’s performance, comparing its response with a given ground
truth or approximate representation thereof.

For more about the background of unsupervised learning, specific algorithms
and applications, the reader is referred to the lectures given by Dalya Baron [2].
Here we only briefly discuss the framework of unsupervised data analysis in contrast
to supervised learning.

Potential aims of unsupervised learning are quite diverse, a few examples being

• data reduction:
Frequently it makes sense to represent large amounts of data by fewer exem-
plars or prototypes, which are of the same form and dimension as the original
data and capture the essential properties of the original, larger data set. An
important framework is that of Vector Quantization which will be discussed
in some detail.

• compression:
Another form of unsupervised learning aims at replacing original data by
lower-dimensional representations without reducing the actual number of data
points. The representatives should, obviously preserve information to a large

19
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extent. Compression could be done by explicitly selecting a reduced set of
features, for instance. Alternative techniques provide, for instance, explicit
projections to a lower-dimensional space or representations that are guided
by the preservation of relative distances or neighborhood relations.

• visualization:
Two or three-dimensional representations of a data set can be used for the
purpose of visualizing a given data set. Hence, it can be viewed as a spe-
cial case of compression and many techniques can used in both contexts. In
addition, more specific tools have been devised for visualization tasks only.

• density estimation:
Often, an observed data set is interpreted as being generated in a stochastic
process according to a model density. In a training process, parameters of the
density are optimized, for instance aiming at a high likelihood as a measure
of how well the model explains the observations.

• clustering:
One important goal of unsupervised learning is the grouping of observations
into clusters of similar data points which jointly display properties from the
other groups or clusters in the data set. Most frequently, clustering is formu-
lated in terms of a specific (dis-)similarity or distance measure, which is used
to compare different feature vectors.

• pre-processing:
The above mentioned and other unsupervised techniques can be employed to
identify representations of a data set suitable for further processing. Conse-
quently, unsupervised learning is frequently considered a useful pre-processing
step also for supervised learning tasks.

Note that the above list is by far not complete. Furthermore, the goals mentioned
here can be closely related and, often, the same methods can be applied to several
of them. For instance, density estimation by means of Gaussian Mixture Models
(GMM) could be interpreted as a probabilistic clustering method and the obtained
centers of the GMM can also serve as prototypes in the context of Vector Quanti-
zation.

In a sense, in unsupervised learning there is no ”right” or ”wrong”. This can
be illustrated in the context of a toy clustering problem: If we sort a number of
fruit according to shape and taste, we would most likely group pears and apples
and oranges in three corresponding clusters. Alternatively, we can sort according to
color only and end up with clusters of objects with like colors, e.g. combining green
apples with green pears vs. yellowish and red fruit. Without further information or
requirements defined by the environment, many clustering strategies and outcomes
can be plausible. The example also illustrates the fact that the choice of how the
data is represented and which types of properties/features are considered important
can determine the outcome of an unsupervised learning process to the largest extent.

The important point to keep in mind is that, ultimately, the user defines the goal
of the unsupervised analysis her- or himself. Frequently this is done by formulating
a specific cost function or objective function which reflects the task and guides
the training process. The selection or definition of a cost function can be quite
subjective and, moreover, its optimization can even completely fail to achieve the
implicit goal of the analysis.

As a consequence, the identification of an appropriate optimization criterion and
objective function constitutes a key difficulty in unsupervised learning. Moreover,
a suitable model and mathematical framework has to be chosen that serves the
purpose in mind.
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2.2 Supervised learning

In supervised learning, available data comprises feature vectors1 together with tar-
get values. The data is analysed in order to tune parameters of a model, which can
be used to predict the (hopefully correct) target values for novel data that was not
contained in the training set.

Generally speaking, supervised machine learning is a promising approach if – on
the one hand – the target task is difficult or impossible to define in terms of a set
of simple rules, while – on the other hand – example data is available and can be
analysed.

We will consider the following major tasks in supervised learning:

• regression:
In regression, the task is frequently to assign a real-valued quantity to each
observed data point. An illustrative example could be the estimation of the
weight of a cow, based on some measured features like the animal’s height and
length.

• classification:
The second important example of supervised problems is the assignment of
observations to one of several categories or classes, i.e. to a discrete target
value. An currently somewhat overstrained example is the discrimination of
cats and dogs based on photographic images.

A variety of other problems can be formulated and interpreted as regression or
classification tasks, including time series prediction, risk assessment in medicine, or
the pixel-wise segmentation of an image, to name only a few.

Because target values are taken into account, we can define and evaluate clear
quality criteria, e.g. the number of misclassifications for a given test set of data or
the expected mean square error (MSE) in regression. In this sense, supervised learn-
ing appears well defined in comparison to unsupervised tasks, generally speaking.
The well-defined quality criteria suggest naturally meaningful objective functions
which can be used to guide the learning process with respect to the given training
data.

However, also in supervised learning, a number of issues have to be addressed
carefully, including the selection of a suitable model. Mismatched, too simplistic or
overly complex systems can hinder the success of learning. This will be discussed
from a quite general perspective in Chapter 6. Similarly, details of the training
procedure may influence the performance severely. Furthermore, the actual repre-
sentation of observations and the selection of appropriate features is essential for
the success of supervised training as well.

In the following, we will mostly consider a prototypical work flow of supervised
learning where

a) a model or hypothesis about the target rule is formulated in a training phase
by means of analysing a set of labeled examples. This could be done, for
instance by setting the weights of a feed-forward neural network.

and

b) the learned hypothesis, e.g. the network, can be applied to novel data in the
working phase, after training.

Frequently, an intermediate validation phase is inserted after (a) in order to estimate
the expected performance of the system in phase (b) or in order to tune model
(hyper-) parameters and compare different set-ups. In fact, validation constitutes
a key step in supervised learning.

1The discussion of non-vectorial, relational or other data structures is excluded here.
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It is important to keep in mind that many realistic situations deviate from this
idealized scenario. Very often, the examples available for training and validation
are not truly representative of the data that the system is confronted with in the
working phase. The statistical properties and the actual target may even change
while the system is trained. This very relevant problem is addressed in the context
of so-called continual or life-long learning.

A clear-cut strategy for the supervised training of a classifier is based on selecting
only hypotheses that are consistent with the available training data and perfectly
reproduce the target labels in the training set. As we will discuss at length in the
context of the perceptron classifier, this strategy of learning in version space re-
lies on the assumption that (a) the target can be realized by the trained system
in principle and that (b) the training data is perfectly reliable and noise-free. Al-
though these assumptions are hardly ever realized in practice, the consideration of
the idealized scenario provides insight into how learning occurs by elimination of
hypotheses when more and more data becomes available.

This can be illustrated in terms of a toy example. Assume that integer num-
bers have to be assigned to one of two classes denoted as ”A” or ”B”. Assume
furthermore that the following example assignments are provided

4→ A 13→ B 6→ A 8→ A 11→ B .

as a training set. From these observations we could conclude, for instance, that A
is the class of even integers, while B comprises all odd integers. However, we could
also come to the conclusion that all integers i < 11 belong to class A and all others
to B. Both hypotheses are perfectly consistent with the available data and so are
many others. It is in fact possible to formulate an infinite number of consistent
hypotheses based on the few examples given.

As more data becomes available, we might have to revise or extend our analysis

accordingly. An additional example 2→ B for instance, would rule out the above
mentioned concepts, while the assignment of all prime numbers to class B would
(still) constitute a consistent hypothesis now.

We will discuss learning in version space in greater detail in the context of the
perceptron and other networks with discrete output. Note that the strategy only
makes sense if the example data is reliable and noise-free, the data itself has to be
consistent with the unknown rule that we want to infer, obviously.

The simple toy example also illustrates the fact that the space of allowed hy-
potheses has to be limited in order to facilitate learning at all! If possible hypotheses
may be arbitrarily complex, we can always construct a consistent one by, for in-
stance, simply taking over the given list of examples and claiming that ”all other
integers belong to class A” (or just as well ”...to class B”). Obviously this approach
would not infer any useful information from the data, and such a largely arbitrary
hypothesis cannot be expected to generalize to integers outside the training set.

This is a very simple example for an insight that can be phrased as

Learning begins where storage ends.

Merely storing the example set by training a very powerful system may completely
miss the ultimate goal of learning, which is inference of useful information about
the underlying rule. We will study this effect more formally with respect to neural
networks for classification.

The above arguments are particularly clear in the context of classification. In
regression, the concept of consistent hypotheses has to be softened as agreement
with the data set is measured by a continuous error measure, in general. However,
the main idea of supervised learning remains the same: additional data provides
evidence for some hypotheses while others become less likely.
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2.3 Other learning scenarios

A variety of specific, relevant scenarios can be considered which deviate from the
clear-cut simple cases of supervised learning and unsupervised learning. The follow-
ing examples highlight just some tasks or practical situations that require specific
training strategies to cope with. Citations merely point to just one selected review,
edited volume or monograph for further reference.

• semi-supervised learning [12]
Frequently, only a subset of the available data is labeled. Strategies have been
developed which, in a sense, combine supervised and unsupervised techniques
in such situations.

• reinforcement learning [13]
In various practical contexts, feedback on the performance of a learning sys-
tems becomes only available after a sequence of decisions has been taken, for
instance in the form of a cumulative reward. Examples would be the reward
received only after a number of steps in a game or in a path search problem
in robotics.

• transfer learning [14]
If the training samples are not representative for the data that the system
is confronted with in the working phase, adjustments might be necessary in
order to maintain acceptable performance. Just one example could be the
analysis of medical data which was obtained by using similar yet not identical
technical platforms.

• lifelong learning or continual learning [15]
Drift processes in non-stationary environments can play an important role
in machine learning. The statistics of the observed example data and/or the
target itself can change while the system is being trained. A system that learns
to detect spam e-mail messages, for instance, has to be adapted constantly to
the ever-changing strategies of the senders.

• causal learning [16]
Mostly, regression systems and classifiers reflect correlations they have in-
ferred from the data and which allow to make some form of prediction based
on future observations. In general, this does not take causal relations into ac-
count explicitly. The reliable detection of causalities in a data set is a highly
non-trivial task and requires specifically designed, sophisticated methods of
analysis.

In this material, we will focus almost exclusively on well-defined problems of su-
pervised learning in stationary environments. Mostly, we will assume that training
data is representative of the problem at hand and that it is complete and reliable
to a certain extent.
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2.4 Machine Learning vs. Statistical Modelling

In the sciences it happens quite frequently that the same or very similar concepts
and techniques are developed or rediscovered in different (sub-) disciplines, either
in parallel or with significant delay.

While it is – generally speaking – quite inefficient to re-invent the wheel, a certain
level of redundancy is probably inevitable in the scientific research. The same
questions can occur and re-occur in very different settings and different communities
will come up with specific approaches and answers. Moreover, it can be beneficial to
come across certain problems in different contexts and to view them from different
angles.

It is not at all surprising that this is also true for the area of machine learning,
which has been of inter-disciplinary nature right from the start, with contributions
from biology, psychology, mathematics, physics etc.

2.4.1 Differences and commonalities

An area, which is often viewed as competing, complementary, or even superior to
machine learning is that of inference in statistical modelling. A simple web-search
for, say, ”Statistical Modelling versus Machine Learning” will yield numerous links
to discussions of their differences and commonalities. Some of the statements that
one very likely comes across are (without providing the exact reference or source):

– The short answer is that there is no difference

– Machine learning is just statistics, the rest is marketing

– All machine learning algorithms are black boxes

– Machine learning is the new statistics

– Statistics is only for small data sets – machine learning is for big data

– Statistical modelling has lead to irrelevant theory and questionable conclusions

– Whatever machine learning will look like in ten years, I’m sure statisticians
will be whining that they did it earlier and better

These and similar opinions reflects a certain level of competition, which can be
counterproductive at times, to put it mildly.

In the following we will refrain from choosing sides in this on-going debate.
Instead, the relation between machine learning and statistical modelling will be
highlighted in terms of a couple of illustrative examples.

One of the most comprehensive, yet accessible presentations of statistical mod-
elling based learning is given in the excellent textbook The Elements of Statistical
Learning by T. Hastie, R. Tibshirani, and J. Friedman [17]. A view on many
important methods, including density estimation and Expectation Maximization al-
gorithms is provided in Neural Networks for Pattern Recognition [18] and the more
recent Pattern Recognition and Machine Learning [19] by C. Bishop.

In both, machine learning and statistical modelling, the aim is to extract infor-
mation from observations or data and to formalize it. Most frequently, this is done
by generating a mathematical model of some sort and fitting its parameters to the
available data.

Very often, machine learning and statistical models have very similar or identical
structures and, frequently the same mathematical tools or algorithms are used.

The main differences usually lie in the emphasis that is put on different aspects
of the modelling or learning:

Generally speaking, the main aim of statistical inference is to describe, but
also explain and understand the observed data in terms of models. These take
into account explicit assumptions about statistical properties of the observations,
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usually. This includes the possible goal of confirming or falsifying hypotheses with
a desired significance or confidence.

In Machine Learning, on the contrary, the main motivation is to make pre-
dictions with respect to novel data, based on (patterns) detected in the previous
observations. Frequently, this does not rely on explicit assumptions in terms of
statistical properties of the data but employs heuristic concepts of inference 2 The
goal is not so much the faithful description or interpretation of the data, it is the
application of the derived hypothesis to novel data that is in the center of inter-
est. The corresponding performance, for instance quantified as an expected error
in classification or regression, is the ultimate guideline.

Obviously these goals are far from being really disjoint in a clear-cut way. Gen-
uine statistical methods like Bayesian classification can obviously be used with the
exclusive aim of accurate prediction in mind. Likewise, sophisticated heuristic ma-
chine learning techniques like relevance learning are designed to obtain insight into
mechanisms underlying the data.

Very often, both perspectives suggest very similar or even identical methods
which can be used interchangeably. Frequently, it is only the underlying philosophy
and motivation that distinguishes the two approaches.

In the following section, we will have a look at a very basic, illustrative prob-
lem: Linear regression. It will be re-visited as a prototypical supervised learning
task a couple of times. Here, however, it serves as to illustrate the relation be-
tween machine learning and statistical modelling approaches and their underlying
concepts.

2.4.2 Linear regression as a learning problem

Linear regression constitutes one of the earliest, most important and clearest exam-
ples of inference or learning. As a by now historical application, consider the theory
of an expanding universe according to which the velocity v of far away galaxies
should be directly proportional to their distance d from the observer [20]:

v = Ho d. (2.1)

Here, Ho is the so-called Hubble constant which is named after Edwin Hubble, one of
the key figures in modern astronomy. Hubble fitted an assumed linear dependence
of the form (2.1) to observational data in 1929 and obtained as a rough estimate

Ho ≈ 500km/sMpc , see Figure 2.1. The interested reader is referred to the astronomy

literature for details, see e.g. [21] for a quick start.

Two major lessons can be learnt from this example: (a) simple linear regression
is and continues to be a highly useful tool, even for very fundamental scientific
questions, and (b) the predictive power of a fit depends strongly on the quality of
the available data. The latter statement is evidenced by the fact that more recent
estimates of the Hubble constant, based on more data of better quality, correspond

to much lower values Ho ≈ 73.5km/sMpc [21].

Obviously, a result of the form (2.1) summarizes experimental or observational
data in a descriptive fashion and allows us to formulate conclusions that we have
drawn from available data. At the same time, it makes possible the application of
the underlying hypothesis on novel data. By doing so we can test, confirm or falsify
the model and its assumptions and detect the need for corrections. The topic of
validating a given model will be addressed at greater detail in a forthcoming chapter.

2However, it is very important to realize that implicit assumptions are always made, for instance
when choosing a particular machine learning framework to begin with.
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v

d

Figure 2.1: The velocity v of galaxies as a function of their distance d, from [20].

A heuristic machine learning approach

Equation (2.1) represents a linear dependence of a target function v(d) on a single
variable d ∈ IR. In the more general setting of multiple linear regression, a target
value y(ξ) is assigned to a number of arguments which are concatenated in an
N -dimensional vector ξ ∈ IRN .

In the standard setting of multiple linear regression, a set of examples

ID = {ξµ, yµ}Pµ=1 with ξµ ∈ IRN , yµ ∈ IR (2.2)

is given. A hypothesis of the form

fH(ξ) =

N∑

i=1

wi ξi = w>ξ with w ∈ IRN (2.3)

is assumed to represent or approximate the dependence y(ξ) underlying the observed
data set ID. In analogy to other machine learning scenarios considered later, we will
refer to the coefficients wj also as weights and combine them in a vector w ∈ IRN .

Note that a constant term can be incorporated formally without explicit mod-
ification of Eq. (2.3). This is achieved by decorating every input vector with an
additional clamped dimension ξN+1 = −1 and introducing an auxiliary weight
wN+1 = θ:

ξ̃ = (ξ1, ξ2, ξ3, . . . , ξN ,−1)> , w̃ = (w1, w2, w3, . . . wN , θ)
> ∈ IRN+1

⇒ w̃>ξ̃ = w>ξ − θ. (2.4)

Any inhomogeneous hypothesis fH(ξ) = w>ξ − θ including a constant term can
be written as a homogeneous function in N + 1 dimensions for an appropriately
extended input space, formally. Hence, we will not consider constant contributions
to the the hypothesis fH explicitly in the following. A similar argument will be
used later in the context of linearly separable classifiers.

A quite intuitive approach to the selection of the model parameters, i.e. the
weights w, is to consider the available data and to aim at a small deviation of fH(ξµ)
from the observed values yµ. Of the many possibilities to define and quantify this
goal, the quadratic deviation or Sum of Squared Error (SSE) is probably the most
frequently used one:

ESSE =
1

2

P∑

µ=1

(
fH(ξµ)− yµ

)2

, (2.5)
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where the sum is over all examples in ID. The quadratic deviation disregards
whether fH(ξµ) is greater or lower than yµ. The pre-factor 1/2 conveniently cancels
when taking derivatives, for instance in the gradient with respect to the weight
vector. The necessary first order condition for w∗ to minimize ESSE reads

∇wESSE
∣∣
w=w∗

!
= 0 with ∇wESSE =

P∑

µ=1

[
w>ξµ − yµ

]
ξµ. (2.6)

Note that the SSE is a very popular objective function in the context of non-
linear regression in multi-layered networks, see e.g. [5, 17–19, 22]. With the conve-
nient matrix and vector notation

Y =
(
y1, y2, . . . , yP

)> ∈ IRP , X =
[
ξ1, ξ2, . . . , ξP

]
∈ IRP×N (2.7)

we can re-write Eq. (2.6) and solve it formally:

X> (Xw∗ − Y )
!
= 0 ⇒ w∗ =

[
X>X

]−1
X>︸ ︷︷ ︸

X+

Y (2.8)

where X+ is the (Moore-Penrose) Pseudoinverse of the rectangular matrix X [23].
Note that the solution can be written in precisely this form only if the (N × N)
matrix [X>X] is non-singular and, thus, [X>X]−1 exists. This can only be the case
for P > N , i.e. when the system of P equations

{
w>ξµ = yµ

}
in N unknowns is

over-determined and cannot be solved exactly.
For the precise definition of the Moore-Penrose and other generalized inverses

(also in the case P ≤ N) see [23], which is a highly recommended source of infor-
mation in the context of matrix manipulations.

We will re-visit the problem of linear regression in the context of perceptron
training later. There, we will also discuss the case of underdetermined systems of

solvable equations
{
w>ξµ = yµ

}P
µ=1

.

Heuristically, in the case of singular matrices [X>X], one can enforce the ex-
istence of an inverse by adding a small contribution of the N -dimensional identity
matrix IN :

w∗γ =
[
X>X + γ IN

]−1
X> Y. (2.9)

Since the symmetric [X>X] has only non-negative eigenvalues, [X>X + γ IN ] is
guaranteed to be non-singular for any γ > 0.

In analogy to the above, it is straightforward to show that the resulting weights
w∗λ correspond to the minimum of the modified objective function

ESSEλ =
1

2

P∑

µ=1

(
fH(ξµ)− yµ

)2

+
1

2
γw2. (2.10)

Hence, we have effectively introduced a penalty term, which favors weight vectors
with smaller norm | w |2. Note that nearly singular matrices [X>X] would lead to
large magnitude weights according to Eq. (2.8).

This is our first encounter of regularization, i.e. the restriction of the solution
space in a learning problem with the goal of improving the outcome of the training
process. In fact, the concept of weight decay is applied in a variety of problems and
is by no means restricted to linear regression. Other methods of regularization will
be discussed in the context of overfitting in neural networks [1].

We will also see in a later chapter that the special case of linear regression
can also be re-formulated as the minimization of w2 under suitable constraints.
This approach solves the problem of having to chose an appropriate weight decay
parameter γ in Eqs. (2.9, 2.10).
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The statistical modelling perspective

In a statistical modelling approach, we aim at explaining the observed data ID in
terms of an explicit model. To this end, we have to make and formalize certain
assumptions. For instance, we can assume that the labels yµ are generated inde-
pendently according to a conditional density of the form

p(yµ | ξµ,w) = N (yµ | w>ξ, σ2) ∝ exp

[
− 1

2σ2

(
yµ −w>ξµ

)2]
. (2.11)

Hence, we assume that the observed targets essentially reflect a linear dependence
but are subject to Gaussian noise:

yµ = w>ξµ + σ ηµ

with independent, random quantities ηµ with 〈ηµ〉 = 0 and 〈ηµην〉 = δµν . In contrast
to the previous, heuristic treatment, we start from an explicit assumption for how
and why the observed values deviate from the linear dependence.

In the following we consider only w as parameters of our model while σ is fixed.
Extensions that include σ as adaptive degrees of freedom are well possible but not
essential for the sake of the illustration.

In the simplest case we assume that example data have been generated indepen-
dently, implying that

p(ID | w) =
P∏

µ=1

p(yµ | ξµ,w) (2.12)

is the likelihood of observing the concrete set of target values in ID for a given set
of input vectors. The corresponding log-likelihood reads

log p(ID |w) =

P∑

µ=1

log p(yµ |ξµ,w) = −P
2

log(2πσ2)− 1

σ2

1

2

P∑

µ=1

(
yµ −w>ξµ

)2

(2.13)
where we inserted the Gaussian model (2.11) already. Now we note that the first
term on the r.h.s. is constant with respect to w. Furthermore, the second term is
proportional to −ESSE as given in Eq. (2.5).

We conclude that the weights w∗ that explain the data with Maximum Likelihood
under the assumption of model (2.11) are exactly those that minimize the SSE.
Hence, we arrive at the same formal solution as given in (2.8).

This correspondence of the Maximum Likelihood solution in the Gaussian model
with a quadratic error measure is of course due to the specific mathematical form
of the normal distribution and can be rediscovered in various other contexts. The
assumption of Gaussian noise is rarely strictly justified, but it is very popular and
appears natural in absence of more concrete knowledge. Frequently it yields prac-
tical methods and can be seen as the basis of, for instance, popular techniques like
Principal Component Analysis, mixture models for clustering or Linear Discrimi-
nant Analysis.

Note, however, that the statistical approach is more flexible in the sense that we
could, for instance, replace the conditional model density in (2.11) by an alternative
assumption and proceed along the same lines to obtain a suitable objective function
in terms of the associated likelihood.

Moreover, it is possible to incorporate prior knowledge, or prior beliefs, into the
formalism. If we had reason to assume that weights with low magnitude are more
likely to occur, even before knowing any data, we could express this in terms of an
appropriate prior density, for instance

po(w) ∝ exp

[
− 1

2τ2
o

w2

]
. (2.14)
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Exploiting Bayes Theorem, P (A|B)P (B) = P (B|A)P (A), we obtain from the data
likelihood P (ID|w):

p(w|ID) ∝ p(ID|w) po(w). (2.15)

With the proper normalization this represents the posterior probability of weights
p(w|ID) after having seen a data set ID, taking into account the data independent
prior po(w).

Inserting the particularly convenient Gaussian prior (2.14) we can write the
logarithm of the posterior as

log [p(w|ID)] ∝ −ESSE − 1

2
γw2 + const. (2.16)

with a suitable parameter γ that depends on τo and is obtained easily by working
out the logarithm of p(w|ID) from Eq. (2.15).

The important observation is that maximizing the posterior probability with re-
spect to the set of weights w is equivalent to minimizing the objective function given
in Eq. (2.10). Hence, the Maximum A Posteriori (MAP) estimate of the parame-
ters w is formally identical with the Maximum Likelihood and SSE estimates when
amended by an appropriate weight decay term. Not surprisingly, many different
names have been coined for this form of regularization and its variants, including
L2-regularization, Tikhonov-regularization, and ridge-regression [17–19,24].

The above discussed Maximum Likelihood and MAP results are examples of so-
called point estimates: one particular set of model parameters (here: w) is selected
according to the specific criterion in use. The statistical modelling idea allows to go
even further: In the framework of Bayesian Inference we can consider all possible
model settings at a time, yielding the posterior predictive distribution

p(y|ξ, ID) ∝
∫

p(y|ξ,w) p(w|ID)︸ ︷︷ ︸
∝ p(ID|w) po(w)

dNw. (2.17)

Properly normalized, this defines the probability of response y(ξ) to an input ξ after
having seen the data set ID. It is obtained as an integral over the specific model
responses p(y|ξ,w) given a particular w, but integrated over all possible models
with the posterior p(w|ID) as a weighting factor.

The formalism yields a probabilistic assignment of the target y, which also makes
it possible to quantify the associated uncertainty due to the data dependent vari-
ability of the model parameters. On the one hand, this constitutes an appealing
advantage over the simpler point estimates. On the other hand, the full formalism
can be quite involved in practice. Frequently, one resorts to convenient parametric
forms of the model and prior densities and/or derives easy to handle (e.g. Gaussian)
approximations of the posterior predictive distribution (2.17).
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Chapter 3

The Perceptron

The perceptron has shown itself worthy despite (and even because of!) its severe
limitations. It has many features to attract attention: its linearity; its intriguing
learning theorem; its clear paradigmatic simplicity as a kind of parallel computa-
tion.

– Marvin Minsky and Seymour Papert in [25]

3.1 History and literature

The term perceptron is used in a variety of meanings. Throughout these lecture
notes, however, it will exclusively refer to a system representing inputs ξ ∈ IRN in a
layer of units, which are connected to a single binary output unit of the McCulloch
Pitts type with S(ξ) ∈ {−1,+1} representing two categories of input data1.

Hence, the term perceptron corresponds to a linear threshold classifier or – in
feed-forward network jargon – to an N–1 architecture with a single binary output,
that does not comprise hidden units or layers.

In the literature, more general architectures with several layers and/or contin-
uous output are often referred to as (multilayer, soft, . . .) perceptrons, as well.
We will later consider layered networks which are constructed from perceptron-like
units, but the term perceptron itself refers to the single layer, binary classifier in
the following.

Even the very simple, limited perceptron architecture is of interest for a multi-
tude of reasons:

• Pioneered by Frank Rosenblatt [26, 27], the perceptron has been one of the
earliest, very successful machine learning concepts and devices, and it was
even realized in hardware, see Figure 3.1.

• Rosenblatt also provided an algorithm for perceptron training, which is guar-
anteed to converge, provided a suitable solution exists. The corresponding
Perceptron Convergence Theorem is one of the most fundamental results in
machine learning and has contributed largely to the popularity and success of
the field, initially. It will be presented and proven in Sec. 3.3.3.

1Of course, any binary output, e.g. S ∈ {0, 1}, could serve the same purpose
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Figure 3.1: The Mark I Perceptron. Left: Hardware realization, foto c/o Cornell
Library, url: https://digital.library.cornell.edu/catalog/ss:550351. The
input of the Mark I was realized via a retina of 400 photosensors, adaptive weights
were realized by potentiometers that could be tuned by electric motors.
Right: Schematic outline of the Mark I architecture, based on a figure taken from
[34]. The shaded region marks a subset of units that is commonly referred to as the
perceptron in this text.

• It serves as a prototypical model system that provides theoretical, mathemat-
ical and intuitive insights into the basic mechanisms of machine learning. At
the same time it is a building block from which to construct more powerful
systems. As Manfred Opper [28] put it: ”The perceptron is the hydrogen
atom of neural network research.”

• In its modern, conceptually extended re-incarnation, the Support Vector Ma-
chine (SVM) [29–32], the perceptron persists to be used successfully in a large
variety of practical applications. The precise relation of the SVM to the simple
perceptron will be discussed in great detail in Section 4.3.

• The history of the perceptron provides insights into how the scientific commu-
nity deals with high expectations and disillusionments leading to the extreme
over-reaction of stalling an entire field of research [33].

Several original texts from the early days of the perceptron are available in
the public domain. This includes an original article from 1958 [26], the highly
interesting official Manual of the Perceptron Mark I hardware [34] and Rosenblatt’s
monograph Principles of Neurodynamics [27]. An interesting TV documentation is
available at [35].

The so-called Perceptron Controversy and its perception and long-lasting impact
on the machine learning community is analysed in a paper entitled A Sociological
Study of the Official History of the Perceptron Controversy by M. Ozaran [33].

Clear presentations of the Rosenblatt algorithm can be found in virtually all
texts that cover the perceptron. Discussions which are quite close to these lecture
notes (apart from notation issues) are given in the monographs by J.A. Hertz, A.
Krogh, and R.G. Palmer [5] and by S. Haykin in [4], for instance.

The counting argument for the number of linearly separable functions is pre-
sented in [5]. In this context, it should be useful to consult the original publi-
cations by R. Winder [36], T.M. Cover [37] and G.J. Mitchison and R.M.
Durbin [38]. The latter work also presents the extension of the counting argument
to two-layered networks (machines) with K hidden units.
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The Perceptron architecture
building block and simple feed-forward ”network”:

⇠ N -dimensional inputs

w (adaptive) weights

S = sign(w · ⇠ � ✓) = ±1 (threshold unit)

Perceptron Convergence Theorem: Rosenblatt (1958)
Capacity: Winder (1963), Cover (1965), Schläfli (1852)
Perceptrons, Minsky and Papert (1969)
Statistical physics theory of perceptron weights: Gardner (1988)
Support Vector Machines: Vapnik (1995)

Figure 3.2: Illustration of the single layer perceptron with N -dim. inputs and a
binary output of the McCulloch Pitts type.

3.2 Linearly separable functions

The perceptron can be viewed as the simplest feed-forward neural network. It re-
sponds to real-valued inputs ξ ∈ IRN in terms of a binary output S ∈ {−1,+1}. The
response of a perceptron with weight vector w is obtained by applying a threshold
operation to the weighted sum of inputs:

Sw,θ(ξ) = sign (w · ξ − θ) = ±1, (3.1)

where the N -dim. weight vector and the threshold θ parameterize the specific in-
put/output relation. Its mathematical structure suggests an immediate geometrical
interpretation of the perceptron which is illustrated in Fig. 3.3: The set of points
in feature space {

ξ̃ ∈ IRN
∣∣∣
(
w · ξ̃ − θ

)
= 0

}
(3.2)

corresponds to a (hyper-)plane orthogonal to to w with an off-set θ |w| from the
origin2. Inputs with w · ξ > θ result in perceptron output +1, while vectors ξ
with w · ξ < θ yield the response −1. Hence, the perceptron realizes a linearly
separable (lin. sep. ) function: Feature vectors with perceptron output +1 are
separated by the hyperplane (3.2) from those with output −1.

Two cases can be distinguished: Input/output relations of the form (3.1) with
θ 6= 0 are called inhomogeneously lin. sep., while homogeneously lin. sep. func-
tions can be written as

Sw(ξ) = sign (w · ξ ) . (3.3)

For the latter, the corresponding hyperplane, cf. Fig. 3.3, has no offset (θ = 0) and
includes the origin.

In the following we will focus on homogeneously linearly separable functions,
mostly. This does not constitute an essential restriction because any inhomoge-
neously lin. sep. function can be interpreted as a homogeneous one in a higher di-
mensional space: Consider the function Sw,θ(ξ) = sign (w · ξ − θ) with w, ξ ∈ IRN .
Now let us define the modified (N + 1)-dimensional weight vector

w̃ = (w1, w2, . . . , wN , θ)
>

and augment all feature vectors by an auxiliary, ”clamped” input dimension:

ξ̃ = (ξ1, ξ2, . . . , ξN ,−1) ∈ IRN+1.

We observe that

w̃ · ξ̃ = w · ξ − θ and, thus, sign
(
w̃ · ξ̃

)
= sign (w · ξ − θ) . (3.4)

2The distance of the plane from the origin is exactly θ in case of normalized w with |w| = 1.
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geometrical interpetation:

w defines a hyperplane in IRN

✓ is the off-set from the origin (e.g. |w | = 1)

linearly separable (l.s.) classification

of all possible inputs

w/|w| 

Figure 3.3: Geometrical interpretation of the perceptron. The hyperplane orthogo-
nal to w with off-set θ from the origin separates feature vectors with output S = +1
and S = −1, respectively.

As a consequence, a non-zero threshold θ in N -dimensions can always be re-written
as an additional weight in a trivially augmented feature space and, formally, the two
cases can be treated on the same grounds. Note that the argument is analogous to
the formal inclusion of a constant term in multiple linear regression, see Eq. (2.4).
Later, we will encounter subtleties which require more precise considerations, but
for now we will restrict ourselves to homogeneous functions and simply refer to
them as linearly separable for brevity.

In the following, we will also call a set of P input/output pairs

ID = {ξµ, SµT }
P

µ=1 (3.5)

(homogeneously) linearly separable, if at least one weight vector w exists with

Sµw = sign (w · ξµ) = SµT for all µ = 1, 2, . . . , P, (3.6)

where we use the shorthand notation Sµw ≡ Sw(ξµ). The labels in ID are denoted
as ST = ±1, with the subscript T for target or training.

A number of interesting questions related to linear separability come to mind:

(Q1) When is a given data set of the form (3.5) linearly separable? Can we re-
formulate the condition (3.6) as a set of equations or inequalities which we
can solve (numerically) in weight space?

(Q2) Given a data set which is indeed linearly separable, (how) can we find a
perceptron weight vector w that satisfies (3.6)?

(Q3) How many linearly separable functions, i.e. how many lin. sep. ways to label
P input vectors, exist in N dimensions? In other words: How serious is the
restriction to linearly separability in the space of binary target functions?

(Q4) If, for a given ID, several or many vectors w satisfy the conditions (3.6), which
one is the best? What is a meaningful measure of quality and how can the
corresponding optimal weight vector be found?

(Q5) If ID comprises examples of a linearly separable function, which can be ap-
plied to any input vector, how does the realization or ”storage” of the given
labels in ID relate to the learning of the unknown rule?
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(Q6) What can we do if a given data set is not linearly separable? Can we still
approximate the classification by means of a perceptron? Which alternatives
or extensions exist?

The first five questions will be addressed in the forthcoming sections, while Sec-
tion 4 deals with the realization or approximation of classification schemes beyond
linear separability.

3.3 The Perceptron Storage Problem

To a large extent, the success of the perceptron has been due to the existence of
a training algorithm and the associated convergence theorem, both presented by
Frank Rosenblatt already [26, 27]. In the following, we first define precisely the
basic goal of the training process, outline the general form of iterative perceptron
algorithms and present Rosenblatt’s algorithm. As a key result, we reproduce the
corresponding proof of convergence, eventually.

3.3.1 Formulation of the problem

Here we address question (Q1) of the list given in the previous section. First we
consider the task of reproducing the labels given in a given data set of form (3.5)
through a perceptron. We define the so-called perceptron storage problem (PSP) as

Perceptron Storage Problem (I) (3.7)

For a given ID = {ξµ, SµT }
P

µ=1 with ξµ ∈ IRN and SµT ∈ {−1,+1} ,
find a vector w ∈ IRN with sign (w · ξµ) = SµT for all µ = 1, 2, . . . , P.

The term storage refers to the fact that we are not (yet) aiming at the application
of the function Sw(ξ) to vectors ξ 6∈ ID. We are only interested in reproducing the
correct assignment of labels within the data set by means of a perceptron network.
Alternatively, this aim could be achieved by storing ID in a memory and look up
the correct SµT when needed.

In order to re-write the PSP we note that sign(w · ξ) = S ⇔ w · ξ S > 0.
Defining the so-called local potentials (the term indicates a vague relation to the
membrane potentials, cf. Sec. 1.1.)

Eµ = w · ξµ SµT for µ = 1, 2, . . . , P, (3.8)

we obtain an equivalent formulation of the PSP in terms of a set of inequalities:

Perceptron Storage Problem (II) (3.9)

For a given ID = {ξµ, SµT }
P

µ=1 with ξµ ∈ IRN and SµT ∈ {−1,+1} ,
find a vector w ∈ IRN with Eµ ≥ c > 0 for all µ = 1, 2, . . . , P.

Here, we have introduced a constant c > 0 as a margin in terms of the conditions
Eµ > 0. Note that the actual value of c is essentially irrelevant: Consider vectors
w1 and w2 = λw1 with λ > 0. Due to the linearity of the scalar product

Eµ1 = w1 · ξµ SµT ≥ c > 0 implies Eµ2 = w2 · ξµ SµT ≥ λ c > 0. (3.10)

The existence of weights w with all Eµ ≥ c > 0 also implies that a solution for any
positive constant can be constructed. This is a consequence of the fact that the
function Sw(ξ) = sign(w · ξ) only depends on the direction of w in N -dim. feature
space while it is invariant under changes of the norm |w| only.
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3.3.2 Iterative training algorithms

In order to address question (Q2) in Sec. 3.2, we consider iterative learning algo-

rithms which present a single
{
ξν(t), S

ν(t)
T

}
at time step t of the training process.

Often, the sequence of examples corresponds to repeated cyclic presentation, i.e.3

t ∈ Z+ with ν(t) = 1, 2, 3, . . . , P, 1, 2, 3, . . . (3.11)

where each loop through the examples in ID is called an epoch in the literature. A
frequently used alternative is random sequential presentation, where at each time
step t one of the examples in ID is selected with equal probability 1/P .

The specific form of perceptron updates we consider in the following is

Generic iterative perceptron update (weights) (3.12)

at discrete time step t
- determine the index ν(t) of the current training example

- compute the local potential Eν(t) = w(t) · ξν(t) S
ν(t)
T

- update the weight vector according to
po

In order to turn (3.12) into a practical training algorithm, the prescription has to
be completed by specifying initial condition w, and by defining a stopping criterion,
obviously.

Together with the definition of the sequence ν(t), the so-called modulation func-
tion f(. . .) determines the actual training algorithm and we assume here that it de-
pends only on the local potential of the actual training example. Note that (3.12)
constitutes a realization of Hebbian learning: the change of a component wj of the
weight vector is proportional to the ”pre-synaptic” input ξµj and the ”post-synaptic”
output SµT .

As a consequence, the weight vector accumulates Hebbian terms ξµ SµT starting
from the given initialization w(0). Most frequently, we will consider a so-called
tabula rasa initialization, i.e. w(0) = 0. In this case, after performing updates at
time steps t = 1, 2, . . . τ the weight vector is bound to have the form

w(τ) =
1

N

P∑

µ=1

xµ(τ) ξµ SµT . (3.13)

This implies that the resulting perceptron weight vector is a linear combination
of the vectors ξµ ∈ ID and the so-called embedding strengths xµ(τ) ∈ IR quantify
their specific contributions.

Assuming that w(0) = 0, it is also possible to rewrite the update (3.12) in terms
of the embedding strengths:

3Formally, this can be represented by the function ν(t) = mod[(t+P−1),P] + 1 for t ∈ Z+
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Generic iterative perceptron update (embedding strengths) (3.14)

at discrete time step t
- determine the index ν(t) of the current training example

- compute the local potential Eν(t) = w(t) · ξν(t) S
ν(t)
T

- update the embedding strength xν(t) according to

xν(t)(t+ 1) = xν(t)(t) + f(Eν(t))

(all other embedding strengths remain unchanged at time t)

At the end of the training process, the actual weight vector can be constructed
according to Eq. (3.13).

Several algorithms considered in the following can be run in the weights directly
or, alternatively, in terms of the embedding strengths, along the lines of (3.12) or
(3.14). While in principle equivalent, we note that the number of variables used to
represent the perceptron during training is N in the weight vector formulation and
P if embedding strengths are updated, with only one of them modified per training
step. Thus, the computational efficiency of training and the corresponding storage
needs will depend on the ration P/N , in practice.

Note that the simple correspondence between (3.12) and (3.14) can be lost if
the structure of the actual updates is modified. For instance, in the AdaTron
algorithm [39–41] for the perceptron of optimal stability, constraints of the from
xµ ≥ 0 are imposed, see Sec. 3.5. This prevents a straightforward formulation of
the training scheme as an iteration in weight space. Of course, one can always
construct the weight vector via relation (3.13) if needed.

3.3.3 The Rosenblatt Perceptron Algorithm

In terms of the generic algorithm (3.12, 3.14), the Rosenblatt Perceptron Algorithm
is specified by

• tabula rasa initial conditions: w(0) = 0 or, equivalently, {xµ = 0}Pµ=1

• deterministic, cyclic presentation of the examples in ID according to (3.11)

• the modulation function

f(Eµ) = Θ [c− Eµ] =

{
0 if Eµ > c
1 if Eµ ≤ c (3.15)

with the Heaviside function Θ[x] =

{
1 for x > 0
0 else.

The update (3.15) modifies w(t) only if the example input is misclassified by the
current weight vector with a margin c as in (3.9). In that case, a Hebbian term is
added. This is often referred to as ”learning from mistakes”, a principle which is
the basis of several other training algorithms discussed in forthcoming sections.

Most frequently, the updates are performed with the simple setting c = 0, and
the resulting algorithm is referred to as the Rosenblatt perceptron algorithm, in the
literature.

Note that the modulation function (3.15), the xµ remain unchanged or increase
by 1 in every update step. Consequently, the resulting embedding strengths are
non-negative integers.

The (c = 0) algorithms stops as soon as all examples in ID are correctly classified:
the evaluation of the modulation function yields Θ(−Eµ) = 0 in all forthcoming
update steps.
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t=0 t=1 t=2

t=3 t=4 t=5

t=6
——————————————————————
t = 0 : w(0) = 0 xµ = 0 for all µ

t = 1 : w(1) = 1
2ξ

1 x1 → 1

t = 2 : w(2) = w(1) zero update

t = 3 : w(3) = w(2) + 1
2ξ

3 x3 → 1

t = 4 : w(4) = w(3) zero update

t = 5 : w(5) = w(4)− 1
2ξ

5 x5 → 1

t = 6 : w(6) = w(5) algorithm stops!
——————————————————————

Figure 3.4: Rosenblatt perceptron algorithm.
Illustration of the training scheme with c = 0 in (3.15) in an (N = 2)-dimensional
feature space. A set of six examples is presented sequentially, empty circles represent
feature vectors labelled with ST = −1, filled circles mark data from class ST = +1.
Initial conditions correspond to w(0) = 0 (tabula rasa). Only one epoch of training
is considered with ν(t) = t = 1, 2, . . . , 6. At each time step, ξt is marked by a
shaded circle. The current weight vector is either updated by adding a Hebbian
term if example t is misclassified (time steps t = 1, 3, 5) or it remains unchanged
if the current classification is correct already (time steps t = 2, 4, 6). We refer to
the latter as zero updates. Actual non-zero updates are displayed as the addition
(StT = +1) or subtraction (StT = −1) of 1

N ξ
t which is displayed as an arrow in

the illustration. The resulting weight vector is shown in the next time step. In
the specific data set considered here, all examples are correctly classified after one
epoch already. In general, the data set has to be presented several times before the
Rosenblatt algorithm stops.
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We will show below that the Rosenblatt algorithm (3.15) converges in a finite
number of steps and finds a weight vector that solves perceptron storage problem
(3.7,3.9), provided the given data set is indeed linearly separable.

First we illustrate the algorithm in terms of a simple two-dimensional feature
space and a data set ID comprising 6 labelled inputs, see Fig. 3.4. In this specific
case, the perceptron classifies all feature vectors in ID correctly, and the algorithm
stops after one epoch of training, already.

3.3.4 Perceptron Convergence Theorem

The Perceptron Convergence Theorem is one of the most important, fundamental
results in the field. The guaranteed convergence of the Rosenblatt Perceptron Al-
gorithm for linearly separable problems has played a key role for the popularity of
the perceptron framework:

Perceptron Convergence Theorem (3.16)

For linearly separable data ID = {ξµ, SµT }
P

µ=1, the Rosenblatt Perceptron

Algorithm (3.15) stops after a finite number of update steps (3.15) and

yields a weight vector w with w · ξµSµT > 0 for all µ = 1, 2, . . . P.

A few remarks:

• The required number of training steps is finite according to the theorem.
However, their actual number depends on the detailed properties of ID and
can be very large.

• It is difficult to decide whether a given ID is linearly separable: If a solution
is not found by the Rosenblatt algorithm after a number of steps, this could
imply that it simply should be run for more epochs or that, indeed, a solution
does not exist.

• For the convergence proof, we have to assume the existence of a solution.
The Perceptron Convergence Theorem does not provide any insight into the
algorithm’s performance if ID is not linearly separable.

In the following we sketch the proof of convergence. We consider a linearly separable

ID = {ξµ, SµT }
P

µ=1, which implies that at least one solution w∗ of the (PSP) exists
with

{
sign (w∗ ·ξµ) = SµT

}P

µ=1
or, equivalently,

{
Eµ∗ = w∗·ξµ SµT ≥ c > 0

}P

µ=1
(3.17)

for some non-negative constant c.
We do not have to further specify w∗ here. In fact, for a given ID there could be
many solutions of the form (3.17), but here it is sufficient to assume the existence
of at least one. We will furthermore denote its squared norm as

Q∗ ≡ w∗ ·w∗ = |w∗|2. (3.18)

Note that any pair of vectors w,w∗ ∈ IRN satisfies

0 ≤ (w ·w∗)2

|w∗|2 |w|2 = cos2 ∠ {w,w∗} ≤ 1. (3.19)
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As discussed above, the algorithm yields - after t time steps - a weight vector of
the form

w(t) =
1

N

P∑

µ=1

xµ(t) ξµSµT for w(0) = 0. (3.20)

In the Rosenblatt algorithm the quantity xµ(t) is an integer that counts how often
example µ has contributed a Hebbian term to the weights, cf. Sec. 3.3.3, The total
number of non-zero updates is, therefore, given by

M(t) =

P∑

µ=1

xµ(t). (3.21)

Now let us consider the projection R(t) = w(t) ·w∗. Inserting (3.20) and exploiting
the condition (3.17) we obtain the following lower bound:

R(t) =
1

N

P∑

µ=1

xµ(t) [w∗ · ξµSµt ] =
1

N

P∑

µ=1

xµ(t) Eµ∗︸︷︷︸
≥c
≥ 1

N
cM(t). (3.22)

Similarly, we consider the squared norm Q(t) = w(t) · w(t) of the trained weight
vector. At time step t with presentation of example ν(t) it changes as

Q(t+ 1) =

(
w(t) +

1

N
Θ
[
c− Eν(t)

]
ξν(t) S

ν(t)
T

)2

(3.23)

= Q(t) +
2

N
Θ
[
c− Eν(t)

]
Eν(t) +

1

N2
Θ2
[
c− Eν(t)

] ∣∣∣ξν(t)
∣∣∣
2

In any finite data set ID, one of the examples will have the largest norm. We can
therefore always identify the quantity

Γ ≡ 1

N
max
µ

{
|ξµ|2

}P
µ=1

, (3.24)

where the scaling with dimension N is convenient in the following4. Next, we
observe that Θ2(x) = Θ(x) for all x. Furthermore we note that

Θ[c− Eν(t)] = 0 and Eν(t) ≥ c in a zero learning step, while
Θ[c− Eν(t)] = 1 and Eν(t) < c in a non-zero learning step.

As a consequence, we can replace all Eν(t) by c in Eq. (3.23) to obtain the upper
bound

Q(t+ 1) ≤ Q(t) +
2

N
cΘ[c− Eν(t)] +

1

N
Γ Θ[c− Eν(t)] (3.25)

Here we exploit the fact that Q changes only in non-zero updates with Θ[. . .] = 1.
Taking into account the initial value Q(0) = 0, we can conclude that

Q(t) ≤ 1

N
(2 c + Γ) M(t), (3.26)

where M(t) is the number of non-zero changes of Q. In summary, we have obtained
the two bounds

R(t) ≥ 1

N
cM(t) and Q(t) ≤ 1

N
(2c+ Γ)M(t), (3.27)

respectively. Exploiting Eq. (3.19) we can write

1 ≥ (w(t) ·w∗)2

(|w(t)||w∗|)2
=

R2(t)

Q∗Q(t)
≥

1
N2 c

2M2(t)

Q∗ 1
N (2c+ Γ)M(t)

=
c2

Q∗N (2c+ Γ)
M(t).

(3.28)

4We could also consider the simpler, yet less general case of normalized inputs |ξµ|2 = ΓN .
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We conclude that

M(t) ≤ M∗ =
(2c+ Γ)N Q∗

c2
, (3.29)

where the right hand side involves only constants: N and Γ can be obtained directly
from the given data set. The constants c and Q∗ characterize the assumed solution
w∗, which is - of course - unknown a priori. However, in any case, Eq. (3.29)
implies that the number of non- zero learning steps remains finite, if a solution w∗

exists for the given ID. In other words, after at most M∗ non-zero learning steps,
the perceptron classifies all examples correctly with Eµ ≥ c > 0. The number of
required training epochs is also upper-bounded by M∗, because - as long as the
algorithm does not stop - at least one non-zero step must occur in every epoch.

The dependence of M∗ on the constant c deserves further attention: In the limit
c → 0, the upper bound appears to diverge (M∗ → ∞). However, if ID is linearly
separable, solutions w∗ with Q∗ ∝ c2 can be found for small values of c. This is due
to the linear dependence of Eµ∗ on |w∗| =

√
Q∗, which was also discussed in the

context of Eq. (3.10). In the limit c→ 0 with Q∗ ∝ c2 the upper bound becomes

lim
c→0

M∗ ≈ ΓN
Q∗

c2
(3.30)

Hence, we can express our finding without reference to a specific value of c in (3.16).

3.4 Learning a linearly separable rule

Obviously it is not the ultimate goal of perceptron training to reproduce the labels
in a given data set, only. This could be done quite efficiently by simply storing ID
in memory and look it up when needed.

In general, it is the aim of machine learning to extract information from given
data and formulate (parameterize) the acquired insight as a hypothesis, which can
be applied to novel data not contained in ID in the working phase.

In the forthcoming sections, we will assume that an unknown, linearly separable
function or rule exists, which assigns any possible input vector ξ ∈ IRN to the
binary output SR(ξ) = ±1, where the subscript R stands for ”rule”.

Training of a perceptron from ID = {ξµ, SµT } should infer some information
about the unknown SR(ξ) as long as the training labels SµT are correlated with the
correct SµR = SR(ξµ). In the simplest and most clear-cut situation we have

SµT = SµR for all µ = 1, 2, . . . , P. (3.31)

Hence, we assume that the set of training data ID = {ξµ, SµR}
P

µ=1 comprises perfectly
reliable examples for the application of the rule. It does - for instance - not contain
mislabelled example data and is not corrupted by any form of noise in the input or
output channel.

We will use the notation SµR or SR(ξµ) for labels which are given by a rule,
explicitly. Here, this indicates that the examples in ID represent a linearly separable

function, indeed. Note that more general data sets ID = {ξµ, SµT }
P

µ=1 can also be

linearly separable without direct correspondence of the SµT to a lin. sep. rule: Few
examples for a non-separable function or examples corrupted by noise can be very
well linearly separable

3.4.1 Student-teacher scenarios

Even for data sets of reliable noise-free examples only, it is not a priori clear that
a perceptron is able to reproduce the labels in ID correctly, since the target might
not be linearly separable.
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Figure 3.5: Generalization error of the perceptron in a student/teacher scenario.
For N -dim. random input vectors generated according to an isotropic density, the
probability of disagreement between student vector w and teacher w∗ is propor-
tional to the red shaded area, i.e. to the angle ∠(w,w∗).

To further simplify our considerations, we restrict ourselves to cases, in which
the rule is indeed given by a function of the form

SR(ξ) = sign (w∗ · ξ) (3.32)

for a particular weight vector w∗. In fact, all weight vectors λw∗ with λ > 0 would
define the same rule and, therefore, we will for instance assume |w∗| = 1 implicitly,
without loss of generality.

A perceptron with weights w∗ is always correct5. It is therefore referred to as
the teacher perceptron (or teacher, for short) and can be thought of providing the
example data from which to learn. Likewise, the trained perceptron with adaptive
weights w will be termed the student.

The choice of a specific student weight vector corresponds to a particular hy-
pothesis, which is represented by the linearly separable function

Sw(ξ) = sign (w · ξ) for all ξ ∈ IRN . (3.33)

Student-teacher scenarios have been used extensively to model machine learning
processes, aiming at a principled understanding of the relevant phenomena. They
conveniently allow to control the complexity of the target rule vs. that of the trained
system in model situations, thus enabling the systematic study of a variety of setups.

In the following sections we will consider idealized situations, in which student
and teacher both represent linearly separable functions. Under this condition, a
plausible guideline for training the student from a set ID = {ξµ, SµR} is to achieve
perfect agreement with the unknown teacher in terms of the given examples. How-
ever, the agreement should not only concern data in ID as in the storage problem;
it should extend or generalize to novel data, ideally.

Frequently, the so-called generalization error serves a measure of success of the
learning process. In practical situations, it would correspond to the performance
of the student with respect to novel data, for instance in a test set which was not
used for training. In our idealized setup, we can revisit the basic geometrical inter-
pretation of linearly separable functions. Figure 3.5 displays a student-teacher pair
of weight vectors. The illustration is, obviously, two-dimensional. Note, however,
that it can be interpreted as representing the two-dimensional subspace spanned by
N -dimensional vectors w,w∗, more generally.

5The characteristic trait of many teachers, at least in their self-perception.
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V(3)

Figure 3.6: Dual geometrical interpretation of linear separability. Illustration in
terms of input vectors ξ ∈ IR3 and normalized weight vectors with |w|2 = const.
Left: A single, labelled input ξ1 separates all weight vectors with S1

w = +1 from
those with S1

w = −1. Right: A set of P labelled input vectors (here: P = 3) defines
the (lighter) region V(3) of all weight vectors w with correct response Sw(ξµ) = SµR
for µ = 1, 2, 3. For clarity, the vectors ξµ are not shown.

We assume that a test input ξ is generated according to an isotropic, unstruc-
tured density anywhere in IRN . The corresponding generalization error εg, i.e. the
probability for a disagreement

sign(w · ξ) 6= sign(w∗ · ξ)

between student and teacher is directly proportional to the area of the red shaded
segments, i.e. to the angle ∠(w,w∗):

εg =
1

π
arccos

(
w ·w∗
|w||w∗|

)
. (3.34)

Orthogonal student-teacher pairs would result in εg = 1/2, which corresponds to
randomly guessing the output. Perfect agreement with εg = 0 is achieved for
w ‖ w∗. The latter statement holds true independent of the statistical properties
of the test data, obviously.

3.4.2 Learning in version space

In the classical set-up of supervised learning, the training data comprises the only
available information about the rule. If the target rule is known to be linearly
separable and for reliable noise-free example data, it appears natural to require
that the hypothesis is perfectly consistent with ID.

But is this a promising training strategy? In other words, can we expect to infer
meaningful information about the unknown w∗ by ”just” solving the perceptron
storage problem with respect to ID?

In order to obtain an intuitive insight, we re-visit and extend the geometrical
interpretation of linear separability. Following the so-called dual geometric inter-
pretation of linear separability, see Fig. 3.6 (left panel), we note that every vector
ξ also defines a hyperplane through the origin of the N -dim. feature space. This
plane separates weights w ∈ IRN with positive w · ξ and Sw(ξ) = +1 from those
with negative scalar product and Sw(ξ) = −1. Hence, given the correct target
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V(3) = V(4)

Figure 3.7: Illustration of perceptron learning in version space.
Left: The hyperplane associated with the additional example ξ4 does not intersect
the version space V(3). Consequently, all weight vectors in V(3) already classify ξ4

correctly and V(4) = V(3). Right: The hyperplane associated with ξ5 cuts through
V(4) and, consequently, V(5) corresponds to either the small triangular region or the
remaining light area, depending on the actual target S5

R.

label SR(ξ), the plane orthogonal to ξ separates correct from wrong students in
N -dimensional weight space.

Consequently, a set ID of P labelled feature vectors defines a region or volume of
vectors w which reproduce Sw(ξµ) = SR(ξµ) for all µ = 1, 2, . . . , P , as illustrated
in Fig. 3.6 (right panel).

The set of all perceptron weight vectors which are consistent with the P examples
in ID, i.e. which give Sµw = SµR for all µ = 1, 2, . . . , P , is termed version space and
can be defined as

V =

{
w ∈IRN , w2 =1

∣∣∣∣ sign(w · ξµ) = SµR for all {ξµ, SµR} ∈ ID
}
. (3.35)

In the following we will use the notation V(P ), if we want to refer to the number of
examples in ID explicitly.

It is important to note that defining V as a set of normalized vectors with
w2 = 1 is convenient but not essential. Obviously, the normalization is irrelevant
with respect to the conditions sign(w ·ξµ) = SµR and could be replaced by any other
constant norm or even omitted.

The version space is non-empty, V 6= ∅, if and only if ID is linearly separable:
If a (normalized) teacher vector w∗ defines the linearly separable rule represented
by the examples in ID, then w∗ ∈ V, necessarily. In words: at least the teacher
vector itself must be inside version space. However, in absence of any information
beyond the data set ID, the unknown w∗ could be located anywhere in V with equal
likelihood.

The term learning in version space refers to the idea of admitting only
hypotheses which are perfectly consistent with the example data. Let us assume
that, given a set ID of P reliable examples for a linearly separable rule, we have
identified some vector w ∈ V. According to the Perceptron Convergence Theorem
(3.16) this is always possible, e.g. by means of the Rosenblatt perceptron algorithm6.
In our low-dimensional illustration, Fig. 3.6 (right panel), this means that we can
always place a student vector w somewhere in the lighter region representing V(3)

for P = 3 training examples.

6. . . with subsequent normalization in order to match the definition (3.35) precisely.
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Now, consider a fourth labelled example {ξ4, S4
R} as displayed in Fig. 3.7 (left

panel). The hyperplane associated with ξ4 does not intersect the version space V(3).
Consequently all student vectors w ∈ V(3) fall into the same half-space with respect
to the new example and yield the same perceptron output sign(w · ξ4).

This implies in turn that, if the extended data set {ξµ, SµR}
4

µ=1 is still linearly

separable, only one value of the target label S4
R is possible, which must be S4

R =
sign(w · ξ4) for w ∈ V(3). Consequently we have that V(4) = V(3); the version space
with respect to the extended data set remains the same as for the previously known
P = 3 examples. Hence, our strategy of learning in version space does not require
to modify the hypothesis or select a new student vector w to parameterize it. In
this sense, the input/output pair {ξ4, S4

R} is un-informative in the given setting.
The situation is different in the case illustrated in the right panel of Fig. 3.7.

Here, the data set is amended by {ξ5, S5
R} with the plane orthogonal to ξ5 cutting

through V(4) = V(3). Elements of V(4) on one side of the hyperplane correspond to
the perceptron response Sw(ξ5) = +1, while the others yield Sw(ξ5) = −1.

Depending on the actual target S5
R of the additional example, the version space

V5 corresponds to either the green area or the remaining lighter region in the illus-
tration. In any case, the extended data set {ξµ, SµR}

5

µ=1 is linearly separable and

the new version space V(5) of consistent weight vectors is bound to be smaller than
the previous V(4) = V(3). The volume of consistent weight vectors w shrinks due
to the information associated with the new example data.

As we add more examples to the data set, the corresponding version space can
only remain the same or decrease in size. Indeed, one can show that V will shrink
to a point with P/N → ∞ under rather mild assumptions on the properties of
N -dimensional feature vectors.

Together with the fact that the teacher w∗ ∈ V(P ) for any P , we can conclude
that learning from version space will enforce w → w∗ with increasing training set
size. More precisely, we conclude that the angle ∠(w,w∗) → 0 for unnormalized
vectors w,w∗. Hence, we can expect that learning in version space yields hypotheses
which agree with the unknown rule to a large extent, provided the data set contains
many examples. In the sense of the above discussed generalization error (3.34), it
will achieve perfect generalization εg → 0 for P →∞.

Our elementary, illustrative considerations do not enable us to obtain more con-
crete mathematical relations which quantify the generalization error as a function
of the training set size P . Here, we can only refer the reader to the literature. One
can show, for instance, that under rather mild assumptions on the input data, the
generic asymptotic generalization behavior is given by

εg ∝
(
P

N

)−1

as

(
P

N

)
→∞ (3.36)

for linearly separable rules learnt from P examples in N -dimensional feature space.
This result has been obtained by so-called counting arguments which determine

the number of linearly separable functions of P feature vectors in N dimensions
under quite general assumptions [36–38]. Alternatively, methods borrowed from
statistical physics have been applied to compute the typical version space volume
in high dimensions (N → ∞) and yield the same basic dependence (3.36) of the
generalization error on (P/N), see [5, 22,42] and references therein.

3.4.3 Optimal generalization

In the student-teacher setup discussed above, we only know that the teacher w∗ is
located somewhere in V. In absence of additional knowledge it could be anywhere
in the version space with equal probability.
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Learning in version space places the student w also somewhere in V. Its gen-
eralization error εg is, under very general circumstances, a decreasing function of
the angle ∠(w,w∗), which itself is a decreasing function of the Euclidean distance
|w −w∗| for normalized weight vectors w,w∗, see Fig. 3.5. As a consequence, the
smallest expectation value of εg over all possible positions w∗ ∈ V would be achieved
by placing the student vector in the center of mass wcm of the version space

wcm =

∫

V

w dNw. (3.37)

By definition, it has the smallest average distance from all other points in the
set. Note that the center of mass wcm of the normalized vectors in V itself is not
normalized.

In principle, the definition (3.37) immediately suggests how to determine wcm

for a given lin. sep. data set ID: We would have to determine many, random elements
w(i) ∈ V independently and compute the simple empirical estimate [43]

w(est)
cm =

1

M

M∑

i=1

w(i). (3.38)

In practice, sampling the version space with uniform density is a non-trivial task.
The theoretical background and practical strategies for how to achieve the optimal
generalization ability when learning a linearly separable rule are discussed in, e.g.,
[43–45].

3.5 The perceptron of optimal stability

Here we approach the question of how to choose (and define) a good or even optimal
weight vector in version space from a different perspective. It avoids the explicit
computation of the center of mass of V and leads to a well-defined problem of
quadratic optimization.

3.5.1 The stability criterion

The so-called stability of the perceptron has been established as a meaningful opti-
mality criterion.

We first consider the stability of a particular example, which is defined as

κµ =
Eµ

|w| =
w · ξµ SµT
|w| . (3.39)

Due to the linearity of Eµ in w, cf. Eq. (3.8), the quantity κµ is invariant under
a rescaling of the form w → λw (λ > 0). In terms of the geometric interpretation
of linear separability, the scalar product of ξµSµT and w/|w| measures distance of
the input vector from the separating hyperplane, see Fig. 3.8. More precisely κµ

is an oriented distance: For κµ > 0, the input vector is classified correctly by the
perceptron, while for κµ < 0 we have sign(w · ξµ) = −SµT and the input is located
on the wrong side of the plane.

The stability (its absolute value) quantifies how robust the perceptron response
would be against small variations of ξµ. Examples with a large distance from the
hyperplane will hardly be taken to the opposite side by noise in the input channel.

We define the stability of the perceptron as the smallest of all κµ in ID:

κ(w) = min {κµ}Pµ=1 . (3.40)
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wmax

κ

Figure 3.8: Stability of the perceptron. Left: The stability κµ, defined in Eq. (3.39),
corresponds to the oriented distance of ξµ from the plane orthogonal to w. The
stability of the perceptron κ(w) is defined as the smallest κµ in the set of examples,
i.e. κ(w) = minµ{κµ}. Here, all inputs are classified correctly with κµ > 0. Right:
Restricting the student hypotheses to weight vectors with κ(w) > κ for a given data
set, selects weight vectors w in the center region of the version space. The largest
possible value of κ singles out the perceptron of optimal stability wmax.

Note that if the perceptron does not separate the classes correctly (yet), κ(w) < 0
corresponds to the negative κµ with the largest absolute value. Positive stability
κ(w) > 0 indicates that w is a solution of the PSP and separates the classes correctly
in ID. In this case, κ(w) corresponds to the smallest distance of any example from
the decision boundary. It quantifies the size of the gap between the two classes or,
in other words, the classification margin of the perceptron.

In a linear separable problem it appears natural to select the perceptron weights
which maximize κ(w). In principle, the concept of stability extends to negative κµ

according to Eq. (3.39). Therefore, we can also define the perceptron of optimal
stability without requiring linear separability of the data set ID = {ξµ, SµT } with
more general targets ST (ξµ) = ±1.

Hence, the perceptron of optimal stability7 is the target of the following problem:

Perceptron of optimal stability (3.41)

For a given data set ID = {ξµ, SµT }
P

µ=1, find the vector wmax ∈ IRN

with wmax = argmax

w ∈ IRN κ(w) for κ(w) = min
{
κµ =

w·ξµSµT
|w|

}P
µ=1

,

For linearly separable data, the search for w could be limited to the version space V,
formally. However, this restriction is non-trivial to realize [45] and would not con-
stitute an advantage in practice. Moreover, for more general data sets of unknown
separability, the version space might not even exist (V = ∅) and κ(wmax) < 0. We
will discuss the usefulness of a corresponding solution wmax with negative stability
κmax < 0 later and focus on linearly separable problems in the following.

The perceptron of optimal stability wmax does not exactly coincide with wcm, cf.
Sec. 3.4.3, in general. The ”center” as defined by the ”maximum possible distance
from all boundaries” is identical with the center of mass only if V has a regular,

7Not very precisely termed the optimal perceptron in the literature, occasionally.
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symmetric shape. However, one can expect that wcm is quite close to the true
center of mass, generically, and could serve as an approximative realization.

As a consequence, the perceptron of optimal stability should display favorable
(near optimal) generalization behavior when trained from a given reliable, lin. sep.
data set. In fact, the difference appears marginal from a practical perspective,

3.5.2 The MinOver algorithm

An intuitive algorithm that can be shown to achieve optimal stability for a given
lin. sep. data set ID has been suggested in [46]. The so-called MinOver algorithm
performs Hebbian updates for the currently least stable example in ID. We assume
here tabula rasa initialization, i.e. w(0) = 0, but more general initial states could
be considered. The update is given as follows:

MinOver algorithm (3.42)

at discrete time step t with current w(t)
- compute the local potentials Eµ(t) = w(t) · ξµ SµT for all examples in ID

- determine the index µ̂ of the training example with minimal overlap,

i.e. with the currently lowest local potential: Eµ̂ = min {Eµ(t) }Pµ=1

- update the weight vector according to

w(t+ 1) = w(t) +
1

N
ξµ̂ Sµ̂T (3.43)

[
or, equivalently, increment the corresponding embedding strength

xµ̂(t+ 1) = xµ̂(t) + 1.

]
(3.44)

The prescription always aims at improving the least stable example. Note that for
a given weight vector w(t), the minimal local potential coincides with minimum
stability since κµ(t) = Eµ(t)/|w(t)|.

A few remarks:

• According to the original presentation of the algorithm [46], the Hebbian
update is only performed if the currently smallest local potential also satisfies
Eν(t) ≤ c for a given c > 0. This is reminiscent of learning from mistakes as
in the Rosenblatt algorithm (3.3.3). However, as pointed out in [46], optimal
stability is only achieved in the limit c→∞, which is equivalent to (3.43).

• In the above formulation (3.43), which corresponds to the limit c→∞ in the
previous remark, MinOver updates the weights (or embedding strengths) even
if all examples in ID are classified correctly already. As the algorithm keeps
performing non-zero Hebbian updates, the temporal change of the weight
vector w(t) itself does not constitute a reasonable stopping criterion. Instead,
one of the following quantities could be considered:

- the angular change ∠
(
w(t),w(t+T )

)
=

1

π
arccos

(
w(t) ·w(t+T )

|w(t)||w(t+T )|

)

or the argument of the arccos, for simplicity.

- the total change of stabilities
∑P
µ=1

[
κµ(t)− κµ(t+T )

]2
,

for example. For these and similar criteria, reasonably large numbers of train-
ing steps T should be performed, e.g. with T ∝ P , in order to allow for
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noticeable differences. In both criteria, changes of the norm |w(t)| only are
disregarded as they do not affect the classification or its stability.

• From the definition of the MinOver algorithm (3.43) we see that it can only
yield non-negative, integer embedding strengths when the initialization is tab-
ula rasa. This feature of wmax will be encountered again in the following
section, together with several other properties of optimal stability.

• As proven in [46], the MinOver algorithm converges and yields the perceptron
weights of optimal stability, if ID is linearly separable. The proof of conver-
gence is similar in spirit to that of the Perceptron Convergence Theorem, cf.
(3.16). We refrain from reproducing it here. Instead, we show only that the
perceptron of optimal stability can always be written in the form

wmax =
1

N

P∑

µ=1

xµmax ξ
µ SµT with embedding strengths {xµmax ∈ IR}Pµ=1 .

(3.45)

The existence of embedding strengths xmax will be recovered en passant in the next
section. However, it is instructive to prove the statement explicitly here. To this
end, we consider two perceptron weight vectors: The first one is assumed to be
given as a linear combination of the familiar form

w1 =

P∑

µ=1

xµ1ξ
µ SµT with embedding strengths {xµ1}

P
µ=1 , (3.46)

while for the second weight vector we assume that

w2 = w1 + δ with |δ| > 0 and δ · ξµ = 0 for all µ = 1, 2, . . . , P. (3.47)

Hence, w2 cannot be written in terms of embedding strengths as it contains contri-
butions which are orthogonal to all input vectors in ID.

If we consider the local potentials with respect to w2, we observe that

Eµ2 = w2 · ξµSµT = w1 · ξµSµT + δ · ξµSµT︸ ︷︷ ︸
=0

= Eµ1 . (3.48)

On the other hand we have

|w2|2 = |w1 + δ|2 = |w1|2 + 2 w1 · δ︸ ︷︷ ︸
=0

+ |δ|2︸︷︷︸
>0

⇒ |w2| > |w1|, (3.49)

where the mixed term vanishes because w1 is a linear combination of the ξµ⊥ δ.
As a consequence, we observe that

κµ2 =
Eµ2
|w2|

=
Eµ1
|w2|

<
Eµ1
|w1|

= κµ1 for all µ, and therefore κ2 < κ1. (3.50)

We conclude that any contribution orthogonal to all ξµ inevitably reduces the stabil-
ity of the weight vector w1. This implies that maximum stability is indeed achieved
by weights of the form (3.45). The result also implies that the framework of iterative
Hebbian learning is sufficient to find the solution.

Note that a non-zero δ in Eq. (3.47) cannot exist for P > N , in general. Obvi-

ously, if span
(
{ξµ}Pµ=1

)
= IRN , any N -dimensional vector including wmax can be

written as a linear combination. In this case, Eq. (3.45) holds true, trivially.
Our simple consideration does not yield restrictions on the possible values that

the embedding strengths can assume. However, the proven convergence of the
MinOver algorithm implies that the perceptron of optimal stability can always be
written in terms of non-negative xmax ≥ 0. We will recover this result more formally
in the next section.
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3.6 Perceptron training by quadratic optimization

Here we will exploit the fact that the problem of optimal stability can be formulated
as a problem of constrained quadratic optimization. Consequently, a wealth of
theoretical results and techniques from optimization theory becomes available [47].
They provide deeper insight into the structure of the problem and allow for the
identification of efficient training algorithms, as we will exemplify in terms of the
so-called AdaTron algorithm [39–41] Before deriving and discussing this training
scheme we re-visit another prototypical training scheme from the early days of
neural network models: B. Widrow and M.E. Hoff’s Adaptive Linear Neuron or
Adaline [48,49].

3.6.1 Optimal stability re-formulated

For a given lin. sep. ID = {ξµ, SµT }
P

µ=1, the perceptron of optimal stability corre-
sponds to the solution of the following problem:

maximize
w ∈ IRN κ(w) where κ(w) = min

{
κµ =

Eµ

|w| =
w>ξµSµT
|w|

}P

µ=1

(3.51)

which is just a more compact version of (3.41).
Obviously, the stability κ can be made larger by increasing the Eµ for constant

norm |w|. Analogously, κ increases with decreasing norm |w| if all local potentials
obey the constraint Eµ ≥ c > 0. As discussed previously, the actual choice of the
constant c is irrelevant because Eµ is linear in w and we can set c = 1 without loss
of generality. This allows us to re-formulate the problem as follows:

minimize
w ∈ IRN

N

2
w2 subject to inequality constraints {Eµ ≥ 1}Pµ=1

(3.52)

Hence, we have re-written the problem of maximal stability as the optimization
of the quadratic cost function Nw2/2 under linear inequality constraints of the
form Eµ = w>ξµSµT ≥ 1. The solution wmax then displays the (optimal) stability

κmax = 1
/
|wmax|. Note that the pre-factor N/2 in (3.52) is irrelevant for the

definition of the problem but is kept for convenience and consistency of notation.

3.6.2 The Adaptive Linear Neuron - Adaline

The problem of optimal stability in the formulation (3.52) involves a system of
inequalities. Before we address its solution in the following sections, we resort to the
more familiar case of equality constraints, i.e. we consider the simpler optimization
problem

minimize
w ∈ IRN

N

2
w2 subject to constraints {Eµ = 1}Pµ=1 . (3.53)

Historically, this relates to the the so-called Adaptive Linear Neuron or Adaline
model which was introduced by B. Widrow and M.E. Hoff in 1960 [48]. Like the
Rosenblatt Perceptron, it constitutes one of the earliest artificial neural network
models and truly groundbreaking work in the area of machine learning.8

8A series of videos about B. Widrow’s pioneering work is presented in the youtube channel
”widrowlms” [50].
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Widrow realized learning Adaline systems in hardware as ”resistors with mem-
ory” and introduced the term Memistor.9 The concept was also extended to layered
Madaline (Many Adaline) networks [49] consisting of several linear units which were
combined in a majority vote for classification.

For our purposes, the Adaline can be interpreted as a single layer perceptron
which differs from Rosenblatt’s model only in terms of the training procedure. The
Adaline framework essentially treats the problem of binary classification as a linear
regression with subsequent thresholding of the continuous w · ξµ.

We will take a rather formal perspective based on the theory of Lagrange mul-
tipliers [47]. The P linear constraints of the form Eµ = w>ξµSµT = 1 can be
incorporated in the corresponding Lagrange function

L
(

w, {λµ}Pµ=1

)
=
N

2
w2 −

P∑

µ=1

λµ
(

w>ξµSµT − 1

)
. (3.54)

With the gradient ∇w = (∂/∂w1, ∂/∂w2, ..., ∂/∂wN )> in weight space we obtain

∇wL = Nw−∑µ λ
µξµSµT . Furthermore, ∂

∂λν

[∑
µ λ

µ(Eµ − 1)
]

= (Eν−1). Hence,

the first order stationarity conditions for a solution w∗, {λ∗µ} of problem (3.53)
read

∇wL|∗ = 0 ⇒ w∗ =
1

N

P∑

µ=1

λ∗µ ξµSµT (3.55)

and
∂L
λµ

∣∣∣∣
∗

= 0 ⇒ E∗µ = w∗>ξµSµT = 1 for all µ (3.56)

where the shorthand (. . .)|∗ stands for the evaluation of (. . .) in w=w∗ and λµ=λ∗µ

for all µ. Note that according to the theory of Lagrange parameters, the function
L is minimized in w but maximized with respect to the λµ [47].

The second condition (3.56) merely reproduces the original equality constraints,
which have to be satisfied by any candidate solution, obviously. The first, more
interesting stationarity condition (3.55) implies that the formally introduced La-
grange parameters can be identified as the embedding strengths of the weights and
re-named accordingly. Hence, we can eliminate the weights from L to obtain

L
(
{xµ}Pµ=1

)
=

1

2N

∑

µ,ν

xµSµT ξ
µ>ξνSνTx

ν−
∑

µ

xµ

[
1

N

∑

ν

xνSνT ξ
ν

]>
ξµSµT+

∑

µ

xµ

= − 1

2N

P∑

ν,µ=1

xµSµT ξ
µ> ξνSνTx

ν +
P∑

µ=1

xµ. (3.57)

It turns out useful to resort to a compact notation which also exploits that the
weights are of the form w = 1

N

∑
µ x

µξµSµT .

We introduce the symmetric correlation matrix

C = C> ∈ IRP×P with elements Cµν =
1

N
SµTS

ν
T ξ

µ>ξν (3.58)

and define the P -dimensional vectors ~x = (x1, x2, ..., xP )>, ~E = (E1, E2, ..., EP )>

and the formal ~1 = (1, 1, ..., 1)> ∈ IRP , yielding, e.g., ~x>~1 =
∑
µ x

µ.

We will also write ~a > ~b in order to indicate that aµ > bµ for all µ = 1, 2, ....P
and use analogous notations for the relations ”<”, ”≥” and ”≤”.

9not to be confused with the more recent concept of Memristor elements [51]
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In the convenient matrix-vector notation, we have furthermore

Eν =
1

N

P∑

µ=1

xµ SµTS
ν
T ξµ>ξν︸ ︷︷ ︸
NCµν

= [C~x]ν i.e ~E = C~x (3.59)

w2 =
1

N2

∑

µ,ν

xµxν
︷ ︸︸ ︷
SµTS

ν
T ξ

µ>ξν =
1

N
~x>C ~x =

1

N
~x> ~E. (3.60)

In this compact notation, the Lagrange function (3.57) becomes

L(~x) = −1/2 ~x> C ~x + ~x>~1,

which has to be maximized with respect to ~x. Consequently we can re-formulate
the optimization problem (3.61) after having exploited the stationarity conditions
as the following unconstrained maximization:

maximize
~x ∈ IRP f(~x) = − 1

2
~x>C~x + ~x>~1. (3.61)

Compared to (3.53), the cost function appears slightly more complicated. In turn,
however, the constraints are eliminated. While completely equivalent with (3.53),
the re-written problem is given in terms of the embedding strengths ~x ∈ IRP .

In absence of constraints, it is straightforward to maximize f(~x) and we could
resort to a variety of methods. Here, we discuss simple gradient ascent with tabula
rasa initialization ~x(0) = 0. We can also identify an equivalent update in terms of

weights with initial w(0) = 0 by exploiting the relation w(t) = 1
N

∑P
µ=1 x

µ(t) ξµSµT :

Adaline algorithm, parallel updates

~x(t+ 1) = ~x(t) + η∇xf = ~x(t) + η
(
~1− ~E(t)

)
(3.62)

[
or w(t+ 1) = w(t) +

η

N

P∑

µ=1

(
1− Eµ(t)

)
ξµSµT

]
(3.63)

where Eµ(t) = [C~x(t)]
µ

= w(t)>ξµSµT . The learning rate η controls the magnitude
of the update steps.

As an important alternative to the parallel algorithm, sequential gradient-based
methods can be devised, which present the example data repeatedly in, for in-
stance, deterministic sequential order and update only the corresponding embedding
strength in each step with learning rate η̃:

Adaline algorithm, sequential updates (repeated presentation of ID)

– at time step t, present example10 µ = 1, 2, 3, ..., P, 1, 2, 3, ...
– perform the update

xµ(t) = xµ(t) + η̃ (1− Eµ(t)) (3.64)

[
or w(t+ 1) = w(t) +

η̃

N

(
1− Eµ(t)

)
ξµSµT .

]
(3.65)

10More precisely we should use the index µ(t) for the current example. For the sake of brevity
we omit the explicit time-dependence.
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Both versions of the Adaline algorithm can be shown to converge for suitable
choices of the learning rate. In the parallel version, η has to be small enough
enough to ensure convergence. If Eµ = 1 can be achieved for all µ, the sequential
version finds the solution for 0 < η̃ < 2 with the canonical choice η̃ = 1. The
convergence properties and conditions will be discussed in greater detail when we
re-visit gradient-based learning in the context of more general regression problems.

Remark: relation to the SSE in linear regression

It is interesting to note that (3.63) cannot be interpreted as a gradient ascent in
weight space along ∇wf of the cost function (3.61). It is the equivalent of (3.62) in
weight space, but the projection does not preserve the gradient property, in general.
In fact, (3.63, 3.65) correspond to gradient based methods for a different, yet related
cost function: The Sum of Squared Errors (SSE), cf. Eq. (2.5), for linear regression
with the special target values SµT = ±1

ESSE =
1

2

P∑

µ=1

(1−Eµ)2 =
1

2

P∑

µ=1

(
SµT −w>ξµ

)2
with ∇wESSE =

P∑

µ=1

(1−Eµ)ξµSµT .

(3.66)

This correspondence also indicates what the behavior of the Adaline will be if ~E = 1
cannot be satisfied: The algorithm will find an approximate solution by minimizing
the SSE.

The sequential algorithm (3.65) in weight space is equivalent to Widrow and
Hoff’s original LMS (Least Means Square) method for the Adaline [48, 50]. The
LMS, also referred to as the delta-rule or the Widrow-Hoff algorithm in the litera-
ture, can be seen as one of the most important ancestors of gradient-based training
methods such as the prominent backpropagation of error for multilayered neural
networks. A review of the history and conceptual relations between these classical
algorithms is given in [49].

3.6.3 The Adaptive Perceptron Algorithm - AdaTron

In Rosenblatt’s perceptron algorithm an update is performed whenever the pre-
sented example is misclassified. All non-zero Hebbian learning steps are performed
with the same magnitude, independent of the example’s distance from the current
decision plane. On the contrary, the Adaline learning rule is adaptive in the sense
that the magnitude of the update depends on the actual deviation of Eµ from the
target value 1. While this appears to make sense and is expected to speed up learn-
ing, it also facilitates negative Hebbian updates with η(1−Eµ) < 0 if the example
is correctly classified with large Eµ > 1, already. In fact, Adaline can yield negative
embedding strengths xµ < 0 in order enforce Eµ = 1 when the example otherwise
could have Eµ > 1.

This somewhat counter-productive feature of the Adaline is corrected for in the
Adaptive Perceptron (AdaTron) algorithm [39–41]. It retains the concept of adap-
tivity but takes into account the inequality constraints in problem (3.52), explicitly.
In essence, it performs Adaline-like updates, but prohibits the embedding strengths
from assuming negative values. As we will see, this relatively simple modification
yields the perceptron of optimal stability for linearly separable data.

The method of Lagrange multipliers has been extended to the treatment of
inequality constraints [47]. Therefore, we can make use of several well-established
results from optimization theory in the following. We return to the problem of
optimal stability in the form (3.52), which we repeat here for clarity:
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Perceptron of optimal stability (weight space)

minimize
w ∈ IRN

N

2
w2 subject to inequality constraints {Eµ ≥ 1}Pµ=1

Formally, we have to consider the same Lagrange function as for equality con-
straints, already given in Eq. (3.54):

L
(
w, ~λ

)
=
N

2
w2 −

P∑

µ=1

λµ
(

w>ξµSµT − 1

)
.

The Kuhn-Tucker Theorem of optimization theory [47] provides the first order
necessary stationarity conditions for general, non-linear optimization problems with
inequality and/or equality conditions. In our special case, these so-called Kuhn-
Tucker (KT) conditions, sometimes referred to as Karush-Kuhn-Tucker conditions,
read

w∗ =
1

N

P∑

µ=1

λ∗µ ξµSµT embedding strengths λµ (3.67)

E∗µ = w∗>ξνSµT ≥ 1 for all µ linear separability (3.68)

λ∗µ ≥ 0 (not all λ∗µ = 0) non-negative multipliers (3.69)

λ∗µ (1− E∗µ) = 0 for all µ complementarity. (3.70)

The first condition is the same as for equality constraints and follows directly
from ∇wL = 0. As in the case of the Adaline, it implies that the solution of
the problem can be written in the familiar form (3.45). Moreover, the Lagrange
multipliers λµ play the role of the embedding strengths and we can set λµ = xµ

in the following considerations. The second condition (3.68) merely reflects the
original constraint, i.e. linear separability.

Intuitively, the non-negativity of the multipliers, KT-condition (3.69), reflects
the fact that an inequality constraint is only active on one side of the hyperplane
defined by Eµ = 1. As long as Eµ > 1, the corresponding multiplier could be set
to λµ = 0 as the constraint is satisfied in the entire half-space. Since the solution
can be written with xµ = λµ due to (3.67), we formally recover the insight from
Sec. 3.5.2 which indicates that wmax can always be represented by non-negative
embedding strengths.

After renaming the Lagrange multipliers λµ to xµ, we refer to a solution ~x∗ of
the problem (3.52) as a KT-point. Using our convenient matrix-vector notation,
the KT conditions conditions read

~E∗ = C~x∗ ≥ ~1 linear separability (3.71)

~x∗ ≥ 0 (~x∗ 6= 0) non-negative embeddings7 (3.72)

x∗µ (E∗µ − 1) = 0 for all µ complementarity. (3.73)

The most interesting condition is that of complementarity (3.70) and (3.73). It
states that at optimal stability, any example with non-zero embedding will have
E∗µ = 1 while input/output pairs with E∗µ > 1 do not contribute to the linear

10Obviously ~x = 0, w = 0 cannot be a solution of the problem.
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combination (3.45). We will discuss this property in greater detail later. Comple-
mentarity also implies that x∗µE∗µ = x∗µ for all µ and, therefore

~x∗>C~x∗ = ~x∗> ~E∗ =
P∑

µ=1

x∗µE∗µ =
P∑

µ=1

x∗µ = ~x∗>~1. (3.74)

Now consider two potentially different KT-points ~x1 and ~x2, both satisfying the
first order stationarity conditions. By definition, the matrix C is symmetric and
positive semi-definite:

~u>C ~u ∝
∑

µ,ν

uµSµT ξ
µ · ξνSνTuν =

(∑

µ

uµξµSµT

)2

≥ 0 for all ~u ∈ IRP .

Setting ~u = ~x1 − ~x2 we obtain with (3.74):

0 ≤ (~x1 − ~x2)>C(~x1 − ~x2) = ~x>1 C~x1︸ ︷︷ ︸
=~x>1 ~1

+ ~x>2 C~x2︸ ︷︷ ︸
=~x>2 ~1

−~x>1 C~x2 − ~x2
>C~x1

= ~x>1
(
~1− C~x2

)
+ ~x>2

(
~1− C~x1

)
.

All components of the KT-points ~x1,2 are non-negative, while all components of

vectors (~1 − C~x1,2) ≤ 0 due to the linear separability condition. Therefore, we
obtain 0 ≤ (~x1 − ~x2)>C(~x1 − ~x2) ≤ 0 and hence:

⇒ 0 = (~x1 − ~x2)>C(~x1 − ~x2) ∝
∑

µ,ν

(xµ1 − xµ2 )SµT ξ
µ · ξνSνT (xν1 − xν2)

=

[∑

µ

(xµ1 − xµ2 ) ξµSµT

]2

∝ [w1 −w2]
2 ⇒ w1 = w2.

We conclude that any two KT-points define the same weight vector, which corre-
sponds to the perceptron of optimal stability. Even if ~x1 6= ~x2, which is possible
for singular matrices C despite C~x1 = C~x2, the solution is unique in terms of the
weights. Moreover, this finding implies that any local solution (KT-point) of the
problem (3.52) is indeed a global solution. In contrast to many other cost function
based learning algorithms, local minima do not play a role in optimal stability. This
is a special case of a more general result, which applies to all convex optimization
problems [47].

The stationarity conditions also facilitate a re-formulation of the optimization
problem. It amounts to the elimination of the weights in terms of the Lagrange
multipliers, as in the Adaline. One arrives at a special case of what is known as the
Wolfe Dual in optimization theory, see [47] for the general definition and proof of
the corresponding Duality Theorem. It is frequently applied in order to rewrite a
given problem in terms of a modified cost function with simplified constraints.

Without going into detail we only note that the following formulation is fully
equivalent to problem (3.52):

Perceptron of optimal stability (embedding strengths, dual problem)

maximize
~x f(~x) = −1

2
~x>C~x+ ~x>~1 + subject to ~x ≥ 0. (3.75)

Hence, the resulting dual problem still comprises constraints, albeit simpler ones,
which can be taken care of by restricting the search to the hyperoctant ~x ≥ 0 of
non-negative embedding strengths.
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It is straightforward to construct a corresponding projected gradient ascent [47].
Again, we can perform sequential or parallel updates. In the former case, we obtain
the following prescription:

AdaTron algorithm, sequential updates (repeated presentation of ID)

– at time step t, present example µ = 1, 2, 3, ..., P, 1, 2, 3, ...
– perform the update

xµ(t+ 1) = max

{
0, xµ(t) + η̂

(
1− [C~x(t)]µ

)}
(3.76)

with learning rate η̂.

The name AdaTron has been coined for this Adaptive Perceptron algorithm [39–41].
By comparison with the sequential Adaline algorithm (3.64) we observe that the
change from equality constraints (Eµ = 1) to inequalities (Eµ ≥ 1) leads to the
restriction of embedding strengths to non-negative values. Otherwise, the update
+η̂ (1−Eµ) is adaptive in the sense of the discussion of Adaline. Unlike the Rosen-
blatt algorithm, Adaline and AdaTron can decrease an embedding strength if Eµ is
already large. The sequential AdaTron algorithm satisfies the constraint ~x ≥ 0 by
simply clipping each xµ to zero whenever the gradient ascent based update would
lead into the excluded region of xµ < 0.

The sequential AdaTron algorithm can be shown to converge and yield optimal
stability for 0 < η̂ < 2 if the data set ID is linearly separable [39–41]. The proof is
based on the following key insights:

a) For lin. sep. ID, the cost function f(~x) is bounded from above in ~x ≥ 0. This
is a consequence of Farkas’ lemma for inhomogeneous systems, see [47] for
details.

b) It is straightforward to show that the function f(~x) increases monotonically
under non-zero, sequential AdaTron updates with 0 < η̂ < 2 [39–41].

c) Obviously, any KT-point ~x∗ of the problem, cf. Eq. (3.71–3.73), is a fixed
point (with zero update) of the AdaTron and vice versa.

In combination, (a-c) imply that the algorithm converges to a KT-point which
represents the (unique) perceptron of optimal stability.

A parallel version of the algorithm can be formulated, which performs steps
along the direction of ∇xf , but always ensures ~x > 0 by limiting the step size
where necessary. Thus, for sufficiently small values of η̂, the cost function will also
decrease monotonically [39–41]. We refrain from giving a more explicit mathemat-
ical formulation and discussion of the parallel updates, here.

In contrast to the Rosenblatt or Adaline algorithm, it is not straightforward to
re-write the AdaTron in terms of explicit updates in weight space. Obviously we
can compute the new weight vector as w(t + 1) =

∑P
µ=1 x

µ(t + 1)ξµSµT after each
training step. However, a direct iteration of the weights w(t) cannot be provided
without involving the xµ(t), explicitly. This is due to the non-linear clipping of
embeddings at zero which has no simple equivalent in weight space.
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Eµ=1

∝wmax

Figure 3.9: Support Vectors in the perceptron of optimal stability.
The arrow represents the normalized weight vector wmax/|wmax|. Class mem-
bership is indicated by filled (ST = +1) and open symbols (ST = −1), respec-
tively. Support vectors, marked as squares, fall into the two hyperplanes with
Eµ = 1, i.e. κµ = κmax. All other examples (circles) display greater stability with-
out being embedded explicitly.

Remarks

Non-separable data
The outcome of the AdaTron training (3.76) for data that is not linearly separable
is not obvious. Modifications of the SSE (3.66) which take into account that for
Eµ > 1 the actual deviation is irrelevant have been considered in the literature, see
the discussion in Sec. 4.1.

For these, corresponding gradient descent methods in weight space can be de-
rived, which - for suitable choices of the cost function - resemble the AdaTron
scheme. However, they are not identical and, in particular, additional constraints
have to be imposed in order to achieve optimal stability for linearly separable data.
We refer to Sec. 4.1 for a more detailed discussion.

The concept of optimal stability has been generalized in the so-called soft margin
classifier which tolerates misclassifications to a certain degree. A corresponding
extension of the AdaTron algorithm is discussed in Sec. 4.1.2.

Efficient algorithms
The Minover and AdaTron are presented here as prototypical approaches to solving
the problem of optimal stability. While they are suitable for solving the problem in
relatively small data sets, the computational load may become problematic when
dealing with large numbers of examples and, consequently, a large number of sup-
port vectors.

A variety of algorithms have been devised aiming at computational efficiency
and scalability, mainly in the context of Support Vector Machines, cf. Sec. 4.3.
A prominent example is J.C. Platt’s Sequential Minimal Optimization (SMO) ap-
proach [52]. It is the basis of many implementations, see e.g. [53] for links and the
SVM literature for further discussions and references [29–32].
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3.6.4 Support Vectors

The treatment of optimal stability as a constrained, convex optimization problem
has provided useful insights, from which practical algorithms such as the AdaTron
and other schemes emerged, see [54] for just one example. The absence of local
minima and the resulting availability of efficient optimization tools is one of the
foundations of the Support Vector Machine and has contributed largely to its pop-
ularity [29–32], see Sec. 4.3.

One of the most important observations with respect to optimal stability is a
consequence of the complementarity condition (3.73). It implies that in a KT-point
we have

either

{
Eµ = 1
xµ ≥ 0

}
or

{
Eµ > 1
xµ = 0

}
. (3.77)

In the geometrical interpretation of linear separability, the former set of feature
vectors with xµ ≥ 0 falls into one of the two hyperplanes with w · ξ = −1 or
+1, respectively. Both planes are parallel to the decision boundary and mark the
maximum achievable gap between the two classes of outputs, see Fig. 3.9. Only
these examples, marked in red in the figure, contribute to the linear combination
(3.45) with non-zero embedding strength. They can be said to form the support of
the weights and, therefore, are referred to as the set of support vectors. In a sense,
they represent the hard cases in ID which end up closest to the decision boundary.
The remaining training data display larger distances from the separating hyperplane
and do not explicitly contribute to the linear combination (3.45).

For the support vectors we observe that wmax is the weight vector that solves
the system of linear equations Eµ = 1 with minimal norm |w|. All other examples
appear to be stabilized ”accidentally”. Hence, if we were able to identify them
beforehand in a given ID, we could solve the simpler problem (3.61) restricted to
the support vectors by applying, e.g., the Adaline algorithm. Unfortunately, the
set of support vectors is not known a priori and their determination is an integral
part of the training process.

It is important to realize that, despite the special role of the support vectors, all
examples in the data set are relevant, implicitly. Even if some of them end up with
zero embedding, the composition of the entire ID implicitly determines the set of
support vectors and, thus, the actual weight vector.

3.7 Concluding Remarks

In this chapter we have considered the simple perceptron as a prototypical machine
learning system. It serves as a framework in which to obtain insights into the basic
concepts of supervised learning. It also illustrates the importance of optimization
techniques and the related theory in machine learning.

The restriction to linearly separable functions is, of course, significant. In the
next chapter we will therefore consider a number of ways to deal with non-separable
data sets and address classification problems beyond linear separability.

Interestingly, the perceptron still ranks among the most frequently applied ma-
chine learning tools in practice. This is due to the fact that the very successful
Support Vector Machine is frequently used with a linear kernel, cf. Sec. 4.3. In this
case, however, it reduces to a classifier that is equivalent to the simple perceptron
of optimal stability or its extension to the soft margin classifier, cf. Sec. 4.1.2.
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Chapter 4

Beyond linear separability

Nothing is more practical than a good theory.

– Vladimir Vapnik

In the previous sections we studied learning in version space as a basic training
strategy in terms of the simple perceptron classifier. We obtained important insights
into the principles of learning a rule and obtained the concept of optimal stability.

As pointed out already, learning in version space only makes sense under a
number of conditions, which – unfortunately – are rarely fulfilled in realistic settings.
The key assumptions are

(a) The data set ID = {ξµ, SµT }
P

µ=1 is perfectly reliable, labels are correct and
noise–free.

(b) The unknown rule is linearly separable, or more generally: the student com-
plexity perfectly matches the target task.

In practice, a variety of effects can impair the reliability of the training data: Some
examples could be explicitly mislabelled by an unreliable expert to begin with.
Class labels could be inverted due to some form of noise in the communication
between student and teacher. Alternatively (or additionally), some form of noise
or corruption may have distorted the input vectors ξµ in ID, potentially rendering
some of the labels SµT inconsistent.

In fact, real world training scenarios and data sets will hardly ever meet the
conditions (a) and/or (b). From the perspective of perceptron training, i.e. restrict-
ing the hypothesis space to linearly separable functions, the following situations are
much more likely to occur:

i) The unknown target rule is linearly separable, but ID contains mislabelled
examples, for instance in the presence of noise. Depending on the number P
of examples and the degree of the corruption the following may occur:

i.1) In particular small data sets ID with few mislabelled samples can still be
linearly separable and the labels SµT can be reproduced by a perceptron
student. While the non-empty version space V is consistent with ID, it is
not perfectly representative of the target rule and the success of training
will be impaired.

59
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i.2) The data set ID is not linearly separable and, consequently, a version
space of linearly separable functions does not exist: V = ∅. In this case,
learning in version space is not even defined for the perceptron. Hence,
the data set still contains information (albeit noisy or corrupted) about
the rule, but it is not obvious how it can be extracted efficiently.

ii) The target rule itself is not linearly separable and would require learning
systems of greater complexity than the simple perceptron, ideally. Again, the
consequences for perceptron training depend on the size of the available data
set:

ii.1) In particular small data sets may be linearly separable and one can ex-
pect/hope that a student w ∈ V at least approximates the unknown rule
to a certain extent, in this situation.

ii.2) Larger data sets become non-separable and V = ∅ should signal that the
target is, in fact, more complex.

Of course, superpositions of cases i) and ii) can also occur. We could have to deal
with a non-separable rule, represented by a data set which in addition is subject to
some form of corruption.

In practice, it is a difficult task to determine whether a given data set ID is
linearly separable or not. Not finding a solution by use of the Rosenblatt algorithm,
for instance, could simply indicate that a larger number of training steps is required.
Nabutovsky and Domany present a perceptron-like algorithm which either finds a
lin. sep. solution or establishes non-separability [55].

In the following we discuss several strategies for coping with non-separable data
sets, addressing the following basic ideas:

• A simple perceptron could be trained to implement ID approximately in the
sense that a large (possibly maximal) fraction of training labels is reproduced
by the perceptron. In Sec. 4.1 we will present and discuss corresponding
training schemes.

• More powerful, layered networks for classification can be constructed from
perceptron-like units. We will consider the so-called committee machine and
parity machine as example two-layer systems in Sec. 4.2. For the latter, we
show that the latter constitutes a universal classifier.

• Many perceptrons (or other simple classifiers) can be combined into an en-
semble in order to take advantage of a wisdom of the crowd effect [56, 57].
So-called Random Forests, i.e. ensembles of decision trees [58], constitute one
of the most prominent examples in the literature, currently. We refrain from
a detailed discussion of ensembles and refer the point to the literature [56,57].
for further references.

• A perceptron-like threshold operation of the form S = sign(. . .) with linear
argument can be applied after a non-linear transformation of the feature vec-
tors. Along these lines, the framework of the Support Vector Machines (SVM)
was developed. It has been particularly successful and continues to do so. In
Sec. 4.3 we will outline the concept and show that the SVM can be seen as a
(highly non-trivial) conceptual extension of the simple perceptron.

• Perhaps the most frequently applied strategy is to treat the classification as a
regression problem. A network of continuous units (including the output) can
be trained by standard methods and, eventually, the output is thresholded.
We have seen one example already in terms of the Adaline scheme, see Sec.
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3.6. For a detailed discussion in the context of multilayered networks we refer
to the lectures on deep learning [1].

• Prototype-based systems [59] offer another, very powerful framework for clas-
sification beyond linear separability. In chapter 5 we will discuss the example
of Learning Vector Quantization (LVQ), which implements – depending on
the details – piecewise linear or piecewise quadratic decision boundaries. It is
moreover a natural tool for multi-class classification.

4.1 Perceptron with errors

Assume that a given data set ID = {ξµ, SµT } with ξµ ∈ IRN and SµT = {−1,+1} is
not linearly separable due to one or several of the reasons discussed above.

In the following, we discuss extensions of perceptron training which tolerate
misclassification to a certain degree. Intuitively, this corresponds to the assumption
that the data set is nearly linearly separable or in other words: the unknown rule
can be approximated by a linearly separable function.

4.1.1 Minimal number of errors

Aiming at a linearly separable approximation, one might want to minimize the
number of misclassifications by choice of the weight vector w ∈ IRN in a simple
perceptron student. Formally, the corresponding optimization problem reads

Minimal number of errors (Perceptron) (4.1)

For a given ID = {ξµ, SµT }
P

µ=1 with ξµ ∈ IRN and SµT ∈ {−1,+1} ,

minimize

w ∈ IRN Herr(w) =
P∑

µ=1

ε(w, ξµ, SµT ) with ε =

{
1 if sign (w · ξµ) = −SµT
0 if sign (w · ξµ) = +SµT

While the idea of minimizing Herr appears plausible at a glance, we should realize
that the outcome should be very sensitive to individual, misclassified examples in
ID. The cost function does not differentiate between nearly correct examples with
Eµ ≈ 0 close to the decision boundary and clear cases where the feature vector falls
deep into the incorrect half-space.

The above problem proves very difficult. Note that the number of misclassified
examples is obviously integer and can only display discontinuous changes with w.On
the other hand∇wHerr = 0 almost everywhere in feature space. As a consequence,
gradient based methods cannot be employed for the minimization or approximate
minimization of Herr.

A prescription that applies Hebbian update steps and can be seen as a modifi-
cation of the Rosenblatt algorithm (3.15) has been introduced by S.I. Gallant [60].
The so-called Pocket Algorithm relies on the stochastic presentation of simple exam-
ples in combination with the principle of learning from mistake for a weight vector
w.

In addition to the randomized, yet otherwise conventional, Rosenblatt updates
of the vector w, the so far best (with respect to Herr) weight vector ŵ is ”put into
the pocket”. It is only replaced when the on-going training process yields a vector
w with a lower number of errors.
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Pocket algorithm (4.2)

– initialize w(0) = 0 and ŵ = 0 (tabula rasa), set Ĥ = 0

– at time step t, select a single feature vector ξµ with class label SµT
randomly from the data set ID with equal probability 1/P

– compute the local potential Eµ(t) = w(t) · ξµSµT
– for w(t), perform an update according to (Rosenblatt algorithm)

w(t+1) = w(t) +
1

N
Θ
[
−Eµ(t)

]
ξµ SµT .

– compute H(t+1) = Herr
(
w(t+1)

)
acc. to Eq. (4.1)

– update the pocket vector ŵ(t) and Ĥ(t) according to

ŵ(t+1) =

{
w(t+1) if H(t+1) < Ĥ(t)

ŵ(t) if H(t+1) ≥ Ĥ(t) (ŵ unchanged)

Ĥ(t+1) = Herr
(
ŵ(t+1)

)

Obviously, the number of errors Ĥ(t) of the pocket vector ŵ(t) can never increase
under the updates (4.2). Moreover, one can show that the stochastic selection of
the training sample guarantees that, in principle, ŵ(t) approaches the minimum of
Herr with probability one [60, 61].

However, this quite weak convergence in probability does not allow to make
statements about the expected number of updates required to achieve a solution of
a particular quality. Certainly it is not possible to provide upper bounds as in the
context Perceptron Convergence Theorem.

Several alternative, well-defined approaches have been considered which can be
shown to converge in a more conventional sense, at the expense of having to accept
sub-optimal Herr.

Along the lines discussed towards the end of Sec. 3.6.2, the gradient based min-
imization of several cost functions similar to Eq. (3.66) has been considered in the
literature. For instance [62] discusses objective functions which correspond to

H [k](w) =
P∑

µ=1

(c− Eµ)k Θ[c− Eµ] with Eµ = w · ξµSµT

in our notation. Note that the limiting case c = 0, k → 0 would recover the non-
differentiable Herr, Eq. (4.1). In [62] the above functions are, not quite precisely,
referred to as the perceptron cost function for k = 1 and the adatron cost function
for k = 2, respectively. We would like to point out that, despite the conceptual
similarity, the case c = 1, k = 2 is not strictly equivalent to the AdaTron algorithm
for non-separable data sets. Moreover, for lin. sep. data, any w ∈ V gives H [2](w) =
0, optimal stability would have to be enforced through an additional minimization
of the norm w2.
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4.1.2 Soft margin classifier

An explicit extension of the large margin concept has been suggested which allows
for the controlled acceptance of misclassifications. For an introduction in the context
of the SVM, see e.g. [29] and references therein. The formalism presented there
reduces to the soft margin perceptron in the case of a linear kernel function, see Sec.
4.3 for the relation.

A corresponding, extended optimization problem similar to (3.52) reads

Soft margin perceptron (weight space)

minimize
w, ~β

N

2
w2 + γ

P∑

µ=1

βµ subject to {Eµ ≥ 1− βµ}Pµ=1

and {βµ ≥ 0}Pµ=1 (4.3)

Here, we introduce so-called slack variables βµ ∈ IR with

{
βµ = 0 ⇔ Eµ ≥ 1
βµ > 0 ⇔ Eµ < 1.

We recover the unmodified problem of optimal stability (3.52) if βµ = 0 for all
µ = 1, 2, ..., P, which also implies that all Eµ ≥ 1. On the contrary, non-zero βµ > 0
correspond to violations of the original constraints, i.e. examples with Eµ < 1 which
includes misclassifications (Eµ < 0), potentially. In (4.3), the Lagrange multiplier
γ ∈ IR controls to which extent non-zero βµ are accepted.

In the by now familiar matrix-vector notation with ~β = (β1, β2, ..., βP )> we can
re-write the problem in terms of embedding strengths:

Soft margin perceptron (embedding strengths)

minimize
~x, ~β

1

2
~x>C~x + γ~β>~1 subject to ~E ≥ ~1− ~β

and ~β ≥ 0 (4.4)

Here, the derivation of the Wolfe Dual [47] amounts to the elimination of the

slack variables ~β. Similar to the error-free case, Sec. 3.6, we obtain a modified cost
function with simpler constraints:

Soft margin perceptron (dual problem)

maximize
~x − 1

2
~x>C~x + ~x>~1 subject to ~0 ≤ ~x ≤ γ~1 (4.5)

In comparison to the dual problem (3.52) for the error-free case, the non-negative
embedding strengths ~x ≥ 0 are now also bounded from above. The parameter γ
limits the magnitudes of the xµ.
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Eµ=1

∝wmax

Figure 4.1: Support vectors in the soft margin perceptron.
The arrow represents the normalized weight vector wmax/|wmax|. Filled and open
symbols correspond to the classes SµT = ±1, respectively. Support vectors, displayed
as squares, fall onto the two hyperplanes with Eµ = 1, into the region between the
planes, or even deeper into the incorrect half-space. All other examples, marked by
circles, display Eµ > 1 without explicit embedding.

In analogy to the derivation of the AdaTron algorithm (3.76) we can devise a
similar, sequential projected-gradient descent algorithm:

AdaTron with errors, sequential updates (repeated presentation of ID)

– at time step t, present the example µ = 1, 2, ..., P, 1, 2, ...
– perform the update

x̃µ(t+ 1) = xµ(t) + η̂ (1− [C~x(t)]µ) gradient step

x̂µ(t+ 1) = max {0, x̃µ(t+ 1)} non-negative embeddings

xµ(t+ 1) = min {γ, x̂µ(t+ 1)} with limited magnitude (4.6)

Compared to the original AdaTron for separable data, the only difference is the
restriction of the search to the region

0 ≤ ~x ≤ γ~1.

Obviously we recover the the original algorithm in the limit γ →∞.
As in the separable case, the algorithm follows the gradient of the cost function

along (~1− ~E), in principle. Hence, an individual embedding strength will increase
if the corresponding example has a local potential Eµ < 1 or is even misclassified
with Eµ < 0. If some of the errors cannot be corrected because ID is not separable,
the corresponding xµ would grow indefinitely. In the soft margin version (4.6), how-
ever, updates are clipped at xµ = γ and the misclassification1 of the corresponding
example is tolerated. For fixed γ, the problem is well-defined and the AdaTron
with errors (1.2) finds a solution efficiently. We refrain from further analysis and a
formal proof.

It is important to realize that the precise nature of the solution depends strongly
on the setting of the parameter γ: It controls the compromise between the goals
of – on the one hand – minimizing the norm w2 (maximizing the margin) and -

1the violation of Eµ ≥ 1, to be more precise
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input layer ξ ∈ IRN

adaptive weights wk ∈ IRN

(k = 1, 2, . . .K)

hidden units σk = sign
(
wk · ξ−θk

)

fixed hidden-to-output relation F (...)

binary output S
(
ξ
)

= F
({
σk(ξ)

}K
k=1

)

Figure 4.2: The architecture of a ”machine” as introduced in Sec. 4.2. A number
K of hidden units of the perceptron type are connected by adaptive weights with
the N -dim. input layer, K = 3 in the illustration. The binary response S(ξ) is
determined by a pre-defined, fixed functional dependence F

(
σ1, σ2, ...σK

)
.

on the other hand – correcting misclassifications. More precisely, the emphasis is
not explicitly on the number of errors, but on the violations of Eµ ≥ 1 and their
severity.

If, for instance a mismatched (too small) value of γ is chosen, misclassifications
will be accepted and favored even in a linearly separable data set. In practice, a
suitable value can be determined by means of a validation procedure which estimates
the performance for different choices of γ.

In analogy to Sec. 3.6.4 the support vectors are characterized by xµ > 0, as
before. However, only examples with 0 < xµ < γ will lie exactly in one of the
planes with Eµ = 1. Clipped embedding strengths xµ = γ correspond to examples
which fall into the region between the planes in Fig. 4.1 or even deeper into the
incorrect half-space.

The soft margin concept for the toleration of misclassification is highly relevant
in the context of the Support Vector Machine, see Sec. 4.3.

4.2 Multi-layer networks of perceptron-like units

Perceptron-like units can be assembled in more powerful architectures as to over-
come the restriction to linearly separable functions. We will highlight this in terms
of a family of systems which are occasionally termed machines in the literature,
see [22,38,42,63–66] and references therein.

As illustrated in Fig. 4.2) the architecture of a machine is outlined. It comprises

• an input layer representing feature vectors ξ ∈ IRN

• a single layer of K perceptron-like hidden units σk(ξ) = sign
(
wk · ξ − θk

)

• a set of adaptive input-to-hidden weight vectors wk ∈ IRN and

local thresholds2 θk ∈ IRN

• a single, binary output, determined by a fixed function F (σ1, σ2, ...σK)

The function F ultimately determines the network’s input/output relation. How-
ever, it is assumed to be pre-wired and cannot be adapted in the training process.
Learning is restricted to the adaptive wk connecting input and hidden layer.

2Thresholds could be replaced by a formal weight fro a clamped input as outline in (3.4).

Supervised Learning - An Introduction

Machine Learning Reports 67



66 CHAPTER 4. BEYOND LINEAR SEPARABILITY

Figure 4.3: Illustration of the output functions of Committee machine and the
Parity machine, applied to identical sets of feature vectors ξ. In both machines,
K = 3 oriented hyperplanes tesselate the feature space. Arrows mark the respective
half-space of σk = +1. The networks’ responses S = ±1 are marked by empty and
filled circles. Left panel: The majority of σk determines the total response of the
CM. Dotted lines mark pieces of the hyperplanes which do not separate outputs
S = +1 from S = −1. In Right panel: In the PM, the total output is S =

∏
k σ

k.
Every hyperplane separates total outputs S = ±1 locally, everywhere.

4.2.1 Committee and parity machines

Two specific machines have attracted particular interest:

CM: The committee machine combines the hidden unit states σk in a majority
vote. This is realized by setting

FCM
({
σk
}K
k=1

)
= sign

(
K∑

k=1

σk

)
⇒ SCM (ξ)=sign

(
K∑

k=1

sign
[
wk · ξ − θk

]
)

(4.7)

which is only well-defined for odd values of K which avoids ties
∑
k σ

k = 0.
The majority vote is reminiscent of an ensemble of independently trained
perceptrons. The CM, however, is meant to be trained as a whole [66].

PM: In the parity machine the output is computed as a product over the hidden
unit states σk [22, 42,65]:

FPM
({
σk
}K
k=1

)
=

K∏

k=1

σk ⇒ SPM (ξ) =

K∏

k=1

sign
[
wk · ξ

]
(4.8)

which results in a well defined binary output SPM (ξ) = ±1 for any K. Note
that the product depends on whether the number of units with σk=−1 is odd
or even. In this sense FPM (. . .) is analogous to a parity operation.

The hidden-to-output relation of the PM, i.e. the parity operation cannot be repre-
sented by a single perceptron unit.3 We could realize the hidden-to-output function
by a more complex multi-layered network. But since F is considered to be pre-wired
and not adaptive, we do not have to specify a neural realization here.

3Interestingly, the gist of Minsky and Papert’s book [25] is often reduced to this single insight,
which is not only a gross injustice but also largely irrelevant.
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On the contrary, the committee machine can be interpreted as a conventional
two-layered feedforward neural network with N−K−1 architecture as discussed
in Sec. 1.3.2 and illustrated in Fig. 1.5 (right panel). However, compared with
the general form of the output, Eq. (1.14), we have to use activation function
g(z) = sign(z) throughout the net and fix all hidden-to-output to vk=1 in the CM.

Many theoretical results are available for CM and PM networks and more gen-
eral machines. Among other things, their storage capacity and generalization ability
have been addressed, see [38, 66, 67] for examples and [22, 42, 63] for further refer-
ences.

4.2.2 The parity machine: a universal classifier

Here, we focus on a particularly interesting result. We show that a PM with suffi-

ciently many hidden units can implement any data set of the form ID = {ξµ, SµT }
P

µ=1
with binary training labels.

In the following, we outline a constructive proof which is based on the application
of a particular training strategy. So-called growth algorithms add units to a neural
network with subsequent training until the desired performance is achieved and,
for example, a given data set ID has been implement. Mezard and Parisi coined
the term tiling algorithm for a particular procedure [68], which adds neurons one
by one. Several other similar growth schemes have been suggested, see [69, 70] for
examples and references.

A particular tiling-like algorithm for the PM was introduced and analysed in [65].
It was not necessarily designed as a practical training prescription for realistic ap-
plications. Tiling-like training of the PM proceeds along the following lines:

Tiling-like learning, (parity machine) (4.9)

(I) Initialization (m = 1):

Train the first unit with output S1(ξ) = σ1(ξ) = sign[w1 · ξ − θ1]

from the data set ID1 = ID , aiming at a low number of errors Q1.4

(II) After training of m units:

Given the PM with m hidden units {σ1, σ2, ...σm}, re-order the
indices µ of the examples such that the PM output is

Sm(ξµ) =
m∏

j=1

σj(ξµ) =

{
+SµT for 1 ≤ µ ≤ Qm
−SµT for Qm < µ ≤ P,

where Qm is the number of misclassified examples in ID.

Define the new training set IDm+1 = {ξµ, [Sm(ξµ)SµT ]}Pµ=1

with labels [Sm(ξµ)SµT ] =

{
+1 for 1 ≤ µ ≤ Qm (Sm was correct)
−1 for Qm < µ ≤ P (Sm was wrong )

(III) Training step:

add and train the next hidden unit with σm+1(ξ) = sign [wm+1 · ξ − θm+1]

as to achieve a low number of errors Qm+1 with respect to data set IDm+1

4Any of the algorithms discussed in Sec. 4.1 could be used in this step. For the inhomogeneity,
a clamped input as in Eq. (3.4) can be employed, for simplicity.
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Note that if a solution with zero error QM = 0 is found in step (III) for the M -th
hidden unit σM , the total output of the PM is

M∏

m=1

σm(ξµ) = SµT for all examples in ID,

i.e. the data set is perfectly reproduced by the PM of M units.

It is surprisingly straightforward to show that the number of errors can be
decreased by at least one (Qm+1 < Qm) when adding the (m + 1)-th unit in step
(III) of the procedure (4.9).

To this end, we consider a set of normalized input vectors in the procedure
(4.10). The normalization (4.11) could always be implemented in a pre-processing
step. The second condition (4.12) is trivially satisfied and δ can be determined in
any given data set by computing all pairwise scalar products.

Grandmother neuron (4.10)

Consider a set of feature vectors {ξµ}Pµ=1 with

|ξµ|2 = Γ for all µ = 1, 2, ..., P (4.11)

0 < δ < Γ− ξµ · ξν for all µ, ν (µ 6= ν). (4.12)

Compute a perceptron weight vector and threshold as

w = −ξP and θ = δ − Γ. (4.13)

It results in the inhomogeneously linearly separable classification

Sw,θ(ξ
µ)=sign

[
−ξP · ξµ−δ+Γ

]
=





sign
[
−ξP · ξP︸ ︷︷ ︸

=Γ

+Γ−δ
]

=−1 for µ = P

sign
[
− ξP · ξµ + Γ︸ ︷︷ ︸

>δ

−δ
]

=+1 for µ 6= P.

(4.14)

The corresponding perceptron separates exactly one feature vector, ξP , from all
others in the set. The term grandmother neuron has been coined for this type
of unit. It relates to the debatable concept that a single neuron in our brain is
activated specifically whenever we see our grandmother.5

For the tiling-like learning (4.9), this implies that by use of a grandmother
unit, we can always separate ξP from all other examples in the training step (III).
The hidden unit response for this input is σm+1(ξP ) = −1, which corrects the
misclassification as the incorrect output Sm(ξP ) = −SPT is multiplied with −1

yielding Sm+1(ξP ) = SPT . All other PM outputs are left unchanged.

Hence, at least one error can be corrected by adding a unit to the growing PM.
With at most P units in the worst case, the number of errors is zero and all labels
in ID are reproduced correctly.

5An idea which is possibly not quite as unrealistic as it may seem, see for instance [71] for a
discussion of grandmother neurons and ”Jennifer Aniston cells”.
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A few remarks

• The grandmother unit (4.14) serves at best as a minimal solution in the con-
structive proof - it is not suitable for practical purposes. The use of O(P )
perceptron units for the labelling of P examples would be highly inefficient.

• Step (III) can be improved significantly as compared to the constructive so-
lution by using efficient training algorithms such as the soft margin AdaTron,
see Sec. 4.1.1,

• Tiling-like learning imposes a strong ordering of the hidden units. Neurons
added to the system later are supposed to correct only the (hopefully) very few
misclassifications made by the first units. To some extent this contradicts the
attractive concept of neural networks as fault-tolerant and robust distributed
memories.

• The strength of the tiling concept is at the same time its major weakness:
Unlimited complexity and storage capacity can be achieved by adding more
and more units to the system, until error-free classification is achieved. This
will lead to inferior generalization behavior as the system adapts to every little
detail of the data. This suggests to apply a form of early stopping, which limits
the maximum number of units in the PM according to validation performance.

We conclude that the parity machine is a universal classifier in the sense that
a PM with sufficiently many hidden units can implement any two-class data set ID:

Universal classifier (parity machine) (4.15)

For a given data set ID = {ξµ, SµT }
P

µ=1 with binary labels SµT ∈ {−1,+1}
and normalized feature vectors with |ξµ|2 = const. for all µ = 1, 2, . . . P ,

weight vectors wk ∈ IRN and thresholds θk ∈ IR exist (and can be found) with

SPM (ξµ) =

K∏

k=1

sign
[
wk · ξµ − θk

]
= SµT for all µ = 1, 2, . . . P.

Similar theorems have been derived for other ”shallow” architectures with a
single layer of hidden units and a single binary output.6

This finding is certainly of fundamental importance. In contrast to the Percep-
tron Convergence Theorem, however, (4.15) and similar propositions are in general
not associated with practical, efficient training algorithms.

These results parallel the findings of Cybenko [72] and others, that a single
hidden layer with sufficiently many continuous non-linear units constitute universal
approximators, see also [17] for a discussion and further references.

It is interesting to note that also extremely deep and narrow networks can be
universal classifiers. As an example, stacks of single perceptron units with shortcut
connections to the input layer have been studied in [73,74].

6Strictly speaking the PM does not fall into this class, as FPM cannot be realized by a single
perceptron-like unit.
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4.3 Support Vector Machines

The Support Vector Machine (SVM) constitutes one of the most successful frame-
works in supervised learning for classification tasks. It combines the conceptual
simplicity of the large margin linear classifier, a.k.a. the perceptron of optimal sta-
bility, with the power of general non-linear transformations to high-dimensional
spaces. In particular, it employs the so-called kernel trick which makes it possible
to realize the transformation implicitly.

For a detailed presentation of the SVM framework and further references see,
for instance, [29–32]. A comprehensive repository of materials, including a short
history of the approach is provided at www.svms.org [53].

The concept of applying a kernel function in the context of pattern recognition
dates back to at least 1964, see Aizerman et al. [75]. Probably the first practical
version of Support Vector Machines, close to their current form, was introduced by
Boser, Guyon and Vapnik in 1992 [76] and relates to early algorithms developed by
Vladimir Vapnik in the 1960s [77]. According to Isabelle Guyon [78], the MinOver
algorithm [46] triggered their interest in the concept of large margins which was
then combined with the kernel approach. Eventually, the important and practically
relevant extension to soft margin classification was introduced by Cortes and Vapnik
in 1995 [79].

4.3.1 Non-linear transformation to higher dimension

The first important concept of the SVM framework exploits the fact that non-
separable data sets can become linearly separable by means of a non-linear mapping
of the form

ξ ∈ IRN → Ψ(ξ) ∈ IRM with components Ψj(ξ) (4.16)

where M can be different from N , in general. A function of the form

S(ξ) = sign [W ·Ψ(ξ)] with weights W ∈ IRM (4.17)

is by definition linearly separable in the space of transformed vectors Ψ. So, while
retaining the basic structure of the perceptron, formally, we will be able to realize
functions beyond linearly separability by proper choice of the non-linear transfor-
mation ξ → Ψ.

In fact, Rosenblatt already included this concept when introducing the Percep-
tron, originally: The threshold function sign(. . .) is applied to the weighted sum of
states in an association layer, cf. Fig. 3.1 showing the Mark I Perceptron. Its units
are referred to as masks or predicate units in the literature [26, 34], see also [25].
In the hardware realization, for instance, 512 association units were connected to
a subset of the 400 photosensor units and performed a threshold operation on an
effectively randomized weighted sum of the incoming voltages, see [34] for details.

In the Support Vector Machine, the non-linear mapping is – in general – to a
higher-dimensional space with M > N in order to achieve linear separability of
the classes. As an illustration of the concept we discuss a simple example which
was presented by Rainer Dietrich in [80]: Consider a set of two-dimensional feature
vectors ξ = (ξ1, ξ1)>, with two classes separated by a non-linear decision boundary
as displayed in Fig. 4.4 (left panel). We apply the explicit transformation

Ψ(ξ1, ξ2) = (ξ2
1 ,
√

2 ξ1 ξ2, ξ2)> ∈ IR3

which is non-linear as it contains the square ξ2
1 and the product ξ1 ξ2. In the

example, the plane orthogonal to the weight vector W = (1, 1,−1)> separates the
classes perfectly in M = 3 dimensions, see the center and right panels of Fig. 4.4.
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Figure 4.4: Illustration courtesy of Rainer Dietrich [80]. A two-dimensional data
set with two classes that are not linearly separable (left panel) can become lin-
early separable after applying an appropriate non-linear transformation to a higher-
dimensional space (center and right panel, two different viewpoints).

This is obviously only a toy example to illustrate the basic idea. In typical
applications of the SVM the dimension N of the original feature space is already
quite large and frequently M has to satisfy M � N in order to achieve linear
separability.

While the concept appears appealing, it is yet unclear how we should identify
a suitable transformation ξ → Ψ for a given problem and data set. Before we
return to this problem (and actually circumvent it elegantly), we discuss the actual
training, i.e. the choice of a suitable weight vector W in the M -dimensional space.

4.3.2 Large Margin classifier

Let us assume that for a given, non-separable data set IDN =
{
ξµ ∈ IRN , SµT

}P
µ=1

we have found a suitable transformation such that

IDM =
{

Ψµ ∈ IRM , SµT
}P
µ=1

is indeed linearly separable in M dimensions. Hence, we can apply conventional
perceptron training in the M -dimensional space and by means of the Perceptron
Convergence Theorem (3.16) we are even guaranteed to find a solution.

However, in general, we do not have an explicit control of (or reliable information
about) how difficult the task will be. On the one hand, we would wish to use a pow-
erful transformation to very high-dimensional Ψ in order to guarantee separability
and make it easy to find a suitable W . On the other hand, one could expect inferior
generalization behavior in that case. Along the lines of the student-teacher scenar-
ios discussed in Sec. 3.4.1, the corresponding version space of consistent hypotheses
W might be unnecessarily large.

The SVM aims at resolving this dilemma by determining the solution of maxi-
mum stability Wmax. Hence, the potentially very large freedom in selecting a weight
vector W in the high-dim. version space is efficiently restricted and – following the
arguments provided in Sec. 3.4.2 – we can expect good generalization ability.

The mathematical structure of the corresponding problem is fully analogous to
the original (3.41). The M -dim. counterpart reads
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Perceptron of optimal stability (M -dim. feature space) (4.18)

For a given data set IDM = {Ψµ, SµT }
P

µ=1, find the vector Wmax ∈ IRM

with Wmax = argmax
W κ(W ) with κ(W ) = min

{
κµ =

W ·ΨµSµT
|W |

}P
µ=1

,

Obviously we can simply translate all results, concepts and algorithms from Sec.
3.5 to the transformed space.

So far we have assumed that the transformation ξ → Ψ exists and is explicitly
known. We could for instance formulate and apply an M -dimensional version of
the MinOver algorithm (3.43) or (3.44). Moreover, we can apply the optimization
theoretical concepts and methods presented in Sec. 3.6 as exploited in the next
sections. Among other aspects, this implies that the resulting classifier can be
expressed in terms of support vectors, which ultimately motivates the use of the
term Support Vector Machine.

4.3.3 The kernel trick

In analogy to the original stability problem, cf. Sec. 3.6, we can introduce the
embedding strengths ~X = (X1, X2, ..., XP )> ∈ IRP . With the shorthand Ψµ =
Ψ(ξµ) we also define the correlation matrix

Γ with elements Γµν =
1

M
SµTΨµ ·ΨνSνT (4.19)

and analogous to Eqs. (3.60) we obtain

W =
1

M

P∑

µ=1

Xµ Ψµ Sµ and W 2 =
1

M
~X> Γ ~X. (4.20)

Eventually, we can re-formulate the problem (4.18) as

Perceptron of optimal stability (M -dim. feature space)

minimize
~X

1

2
~X>Γ ~X subject to inequality constraints Γ ~X ≥ ~1. (4.21)

and proceed along the lines of Sec. 3.6 to derive, for instance, the corresponding
AdaTron algorithm, see below.

The output of the M -dim. perceptron can be written as

S(ξ) = sign
[
W ·Ψ(ξ)

]
= sign

[
1

M

P∑

µ=1

Xµ SµΨµ ·Ψ(ξ)

]
. (4.22)

We note that this involves the scalar products of the M -dimensional, transformed
input vector with the transformed example training examples Ψµ. We define a
so-called kernel function

K : IRN×IRN→IR with K(ξ, ξ̂) =
1

M
Ψ(ξ) ·Ψ(ξ̂) =

1

M

M∑

j=1

Ψj(ξ) Ψj(ξ̂) (4.23)

which represents the scalar product in IRM . We observe that

S(ξ) = sign

[
P∑

µ=1

Xµ SµK(ξµ, ξ)

]
(4.24)
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does not involve the transformation Ψ(. . .) explicitly anymore. The kernel K is
defined as a function of pairs of original feature vectors. Similarly, we have

Eµ =
[

Γ ~X
]µ

= SµT

P∑

ν=1

SνT X
ν K(ξµ, ξν). (4.25)

One can also formulate the AdaTron algorithm for optimal stability in the M -
dimensional space. The Kernel AdaTron was introduced and discussed in [81] and
has been applied in a variety of practical problems. In analogy to (3.76) it is given
as

Kernel AdaTron algorithm, sequential updates (repeated presentation of ID)

– at time step t, present example µ = 1, 2, 3, ..., P, 1, 2, 3, ...
– perform the update

Xµ(t+ 1) = max

{
0, Xµ(t) + η̂

(
1 − SµT

P∑

ν=1

SνT X
ν K(ξµ, ξν)

)}
(4.26)

.

The training algorithm is also expressed in terms of the kernel and does not require
explicit use of the transformation Ψ, formally.

So far, the above insights suggest a strategy along the following lines:

a) For a given, non-separable IDN , identify a suitable non-linear mapping ξ → Ψ
from N to M dimensions that achieves linear separability of IDM .

b) Compute the kernel function for all pairs of example inputs:
Kµν = K(ξµ, ξν) = 1/M Ψµ ·Ψν .

c) Determine the embedding strengths ~Xmax corresponding to optimal stability
in the M -dim. weight space, for instance by use of the AdaTron (4.26).

d) Classify an arbitrary ξ ∈ IRN according to

S(ξ) = sign

[
P∑

µ=1

Xµ
max S

µK(ξµ, ξ)

]

In practice, of course, the problem is to find and implement a suitable trans-
formation that yields separability in a given problem and data set. However, we
observe that once step (a) is performed, the transformation ξ → Ψ is not explic-
itly used anymore. Even the weight vector Wmax is not required explicitly: it is
not explicitly updated in in the training (c), nor is it used for the classification in
working phase (d).

Ultimately, this suggests to by-pass the explicit transformation in the first place
replace step (a) by

a’) For a given, non-separable IDN , identify a suitable kernel function K(ξ, ξ̂)
and proceed from there as before.

This can only be mathematically sound if the selected kernel K(ξ, ξ̂) function
represents some meaningful transformation, implicitly. It is obvious that for any
transformation a kernel exists and we can work it out via the scalar products ψ(ξ) ·
ψ(ξ̂). However, the reverse is less clear: Given a particular kernel, can we guarantee
that there is a valid, i.e. consistent, well-defined transformation? Fortunately, such
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statements can be made with respect to a large class of functions without having
to work out the underlying ξ → Ψ explicitly.

Interestingly, sufficient conditions for a kernel to be valid can be provided accord-
ing to Mercer’s Theorem [82], see also [29–32]. Without going into the mathematical
details and potential additional conditions, it can be summarized for our purposes
as:

Mercer’s condition (sufficient condition for validity of a kernel) (4.27)

A given kernel function K can be written as K(ξ, ξ̂) =
1

M
Ψ(ξ) ·Ψ(ξ̂),

with a transformation ξ ∈ IRN → Ψ ∈ IRM of the form (4.16), if

∫ ∫
g(ξ) K(ξ, ξ̂) g(ξ̂) dNξ dNξ̂ ≥ 0

holds true for all square-integrable functions g with

∫
g(ξ)2dNξ <∞.

Several families of kernel functions have been shown to satisfy Mercer’s condition
and are referred to as Mercer kernels, frequently. A few popular examples are
discussed in the following.

Polynomial kernels

A polynomial kernel of degree q can be written as

K(ξµ, ξ) = (1 + ξµ · ξ )
q

yielding S(ξ) = sign

[
P∑

µ=1

Xµ SµT (1 + ξµ · ξ )
q

]

(4.28)
as the input-output relation of the classifier.

As a special case, let us consider the simplest polynomial kernel:

Linear kernel (q = 1)

K(ξµ, ξ) = (1 + ξµ · ξ ) with S(ξ) = sign

[
P∑

µ=1

Xµ SµT (1 + ξµ · ξ )

]
(4.29)

= sign

[
P∑

µ=1

Xµ SµT

︸ ︷︷ ︸
≡M Θ

+
P∑

µ=1

Xµ SµT ξ
µ

︸ ︷︷ ︸
≡MW

·ξ
]
.

In this case, we can provide an immediate, almost trivial interpretation of the kernel:
It corresponds to the realization of a linear separable function in the original feature
space (M = N) with

weights W =̂ w =

P∑

µ=1

Xµ SµT ξ
µ and off-set Θ =

P∑

µ=1

XµSµT .

The SVM with linear kernel is applied very frequently in practice. There is an
unfortunate trend to refer to it as ”the SVM”, even. However – strictly speaking –
the SVM is not a classifier but a framework for classification, it has to be specified
by defining the kernel in use. In particular, the linear kernel reduces the SVM to
the familiar perceptron of optimal stability (with local threshold Θ). 7

7It should be referred to as such, even if ”SVM...” may sound more sophisticated.
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In order to take full advantage of the SVM concept, we have to employ more
sophisticated kernels. The first non-trivial choice beyond linearity corresponds to
q = 2 in (4.28):

Quadratic kernel (q = 2)

K(ξµ, ξ) = (1 + ξµ · ξ )
2

= 1 + 2
N∑

j=1

ξµj [ξj ] +
N∑

j,k=1

ξµj ξ
µ
k [ξj ξk] (4.30)

Hence, the output S() in Eq. (1.2) corresponds to an inhomogeneously linearly
separable function in terms of the N original features ξj augmented by 1/2N(N +1)
products of the form [ξjξk] which includes the squares of features for j = k.

As intuitively expected, the use of the quadratic kernel represents the non-linear
mapping fromN -dimensional feature space to in totalM = 1/2N(N+3) transformed
features (original, squares and mixed products). An explicit formulation is remi-
niscent of Quadratic Discriminant Analysis (QDA) [17], albeit aiming at a different
objective function in the training.

Similarly, for the general polynomial kernel (4.28) the separating class boundary
becomes a general polynomial surface and the dimension M of the transformed
feature space grows rapidly with its degree q.

Next, we consider a somewhat extreme, yet very popular choice:

Radial Basis Functions (RBF) kernel

K(ξµ, ξ) = exp

[
− 1

2σ2

(
ξµ − ξ

)2
]

(4.31)

which involves the squared Euclidean distance and a width parameter σ.
In an attempt to interpret the popular RBF Kernel along the lines of the dis-

cussion of polynomial kernels we could consider the Taylor series

exp[x] =

∞∑

k=1

1

k!
xk = 1 + x+

1

2
x2 +

1

6
x3 +

1

24
x4 + . . .

which shows that the dimension of the corresponding space would be M → ∞ as
all powers and products of the original features are involved.

The RBF kernel has become one of the most popular choices in the literature.
The fact that an SVM with this extremely powerful kernel with M →∞ can gener-
alize at all demonstrates the importance of the restriction to optimal stability (the
large margin concept) which constitutes an efficient regularization of the classifier.

4.3.4 Control parameters and soft-margin SVM

In practice, the choice of the actual kernel function can influence the performance of
the corresponding classifier significantly. In addition, kernels may contain parame-
ters which have to be tuned to suitable values by means of validation techniques.
The RBF-kernel is just one example of kernels that feature a control parameter:
the width σ in Eq. (4.31). The data-driven adaptation of kernel parameters as part
of the training process has also been discussed in the literature, see [83] for just one
example.

In addition to the choice of the kernel and potential parameters thereof, one often
resorts to a soft margin version of the SVM [79], see also [29–32]. The considerations
of Sec. 4.1.2 for the simple perceptron immediately carry over to the SVM formalism,
once a kernel is defined.
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The modified optimization problems (4.4) and (4.5) are easily generalized to the

case of the Support Vector Machine by replacing the embedding strengths with ~X
and the correlation matrix by Γ from Eq. (4.20) and (4.19), respectively.

Consequently, we can immediately derive suitable training algorithms for the
soft margin SVM. For instance, the ”AdaTron with errors” algorithm (4.6) carries
over to the kernel-based formulation in a straightforward fashion.

In practice, the soft margin extension introduces an additional parameter in
the training process: The parameter γ in (4.4) implicitly controls the tolerance of
constraint violations (or even misclassifications). Like potential parameters of the
kernel, it should be determined by means of a suitable validation procedure.

Interestingly, the SVM offers a signal of overfitting which does not even require
the explicit estimation of the generalization error: the number of support vectors
ns with nonzero embedding strengths Xµ > 0. A relatively high fraction ns/P
indicates that the classifier may be overly specific to the given data set: The fact
that only very few examples in the data set are stabilized by embedding the others
suggests inferior classification performance with respect to novel data in the working
phase. This indication can be exploited for the choice of a suitable kernel to begin
with, for the tuning of its parameters and for the choice of control parameters in
the optimization.

4.3.5 Efficient implementations of SVM training

The remark at the end of Sec. 3.6.3 concerning computational efficiency and scala-
bility carries over to the kernel-based SVM as well.

Efficient implementations, for instance based on the concept of Sequential Min-
imal Optimization (SMO) [52] are available for a variety of platforms. As just
one source of information, the reader is referred to a list of links provided at
www.svms.org/software.html [53].
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Chapter 5

Prototype-based systems

There is nothing objective about objective functions.

– James L. McClelland

Prototype-based models constitute a very successful family of machine learning
approaches. They are appealing for a number of reasons: The extraction of infor-
mation from previously observed data in terms of typical representatives, so-called
prototypes, is particularly transparent and intuitive, in contrast to many, more
black-box like systems. The same is true for the working phase, in which novel data
are compared with the prototypes by use of a suitable (dis-)similarity or distance
measure.

Prototype systems are frequently employed for the unsupervised analysis of com-
plex data sets, aiming at the detection of underlying structures, such as clusters or
hierarchical relations, see for instance [17,18,24]. Competitive Vector Quantization,
the well-known K-means algorithm or Self-Organizing Maps are prominent exam-
ples for the use of prototypes in the context of unsupervised learning ( [8, 17,24]).

In the following emphasis is on supervised learning in prototype-based systems.
In particular, we focus on the framework of Learning Vector Quantization (LVQ)
for classification. Besides the most basic concepts and training prescriptions we
present extensions of the framework to unconventional distances and, moreover, to
the use of adaptive measures in so-called relevance learning schemes [59].

The aim of this chapter is far from giving a complete review of the ongoing
fundamental and application oriented research in the context of prototype-based
learning. It provides, at best, first insights into supervised schemes and can serve
as a starting point for the interested reader.

Emphasis will be on Teuvo Kohonen’s Learning Vector Quantization and its
extensions. Examples for training prescriptions are given and the use of uncon-
ventional distance measures is discussed. As an important conceptual extension of
LVQ, Relevance Learning is introduced, with Matrix Relevance LVQ serving as an
example.

In a sense, the philosophies behind LVQ and the SVM are diametrically opposed
to each other: While support vectors represent the difficult cases in the data set,
which are closest to the decision boundary, cf. Sec. 4.3, LVQ represents the classes
by - supposedly - typical exemplars relatively far from the class borders.

Note that LVQ systems could be formulated and interpreted as layered neural
networks with specific, distance-based activations and a crisp output reflecting the
Winner-Takes-All principle. In fact, after years of denying the relation in the liter-
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Figure 5.1: Left panel: Illustration of the Nearest Neighbor (NN) Classifier for an
artificial data set containing three different classes. Right panel: A corresponding
NPC scheme for the same data. Prototypes are represented by larger symbols.
Both schemes are based on Euclidean distance and yield piece-wise linear decision
boundaries.

ature, it has become popular again to point out the conceptual vicinity to neural
networks. Recent publications also discuss the embedding of LVQ modules in deep
learning approaches [84,85].

5.1 Prototype-based Classifiers

Among the many frameworks developed for supervised machine learning, prototype-
based systems are particularly intuitive, flexible, and easy to implement. Although
we restrict the discussion to classification problems, many of the concepts carry over
to regression or, to a certain extent, also to unsupervised learning, see ( [59]).

Several prototype-based classifiers have been considered in the literature. Some
of them can be derived from well-known unsupervised schemes like the Self-Organi-
zing-Map or the Neural Gas [8,9,86], which can be extended in terms of a posterior
labelling of the prototypes. Here, the focus is on the so-called Learning Vector
Quantization (LVQ), a framework which was originally suggested by Teuvo Kohonen
[8]. As a starting point for the discussion, we briefly revisit the well-known k-
Nearest-Neighbor (kNN) approach to classification, see [24,87].

5.1.1 Nearest Neighbor and Nearest Prototype Classifiers

Nearest Neighbor classifiers [24,87] constitute one of the simplest and most popular
classification schemes. In this classical approach, a number of labeled feature vectors
is stored in a reference set:

ID = {ξµ, yµ = y(ξµ)}Pµ=1

with ξµ ∈ IRN . In contrast to the discussion of the perceptron and similar systems
we do not have to restrict the presentation to binary labels, here. We therefore
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denote the (possibly multi-class) labels by yµ ∈ {1, 2, . . . C} where C is the number
of classes.

An arbitrary novel feature vector or query ξ ∈ IRN can be classified according
to its (dis-) similarities to the samples stored in the reference data. To this end its
distance from all reference vectors ξµ ∈ ID has to be computed. Most frequently, the
simple (squared) Euclidean distance is used in this context: d(ξ, ξµ) = (ξ − ξµ)2.
The query ξ is then assigned to the class of its Nearest Neighbor exemplar in ID. In
the more general kNN classifier, the assignment is determined by means of a voting
scheme that considers the k closest reference vectors [87].

The NN or kNN classifier is obviously very easy to implement as it does not even
require a training phase. Nevertheless one can show that the kNN approach bears
the potential to realize Bayes optimal performance if the number k of neighbors
is chosen carefully [17, 24, 87]. Consequently, the method serves, to date, as an
important baseline algorithm and is frequently used as a benchmark to compare
performances with.

Fig. 5.1 (left panel) illustrates the NN classifier and displays how the system
implements piece-wise linear class borders. Several difficulties are evident already
in this simple illustration: Class borders can be overly complex, for instance if single
data points in the set have been classified incorrectly. The fact that every data point
contributes with equal weight can lead to overfitting effects because the classifier
over-rates the importance of individual examples. As a consequence, it might not
perform well when presented with novel, unseen data.

Straightforward implementations of kNN compute and sort the distances of ξ
from all available examples in ID. While methods for efficient sorting can reduce
the computational costs to certain degree, the problem persists and is definitely
relevant for very large data sets.

Both drawbacks could be attenuated by reducing the number of reference data
in an intelligent way while keeping the most relevant properties of the data. Indeed,
the selection of a suitable subset of reference vectors by thinning out ID was already
suggested in [88]. An alternative, essentially bottom-to-top approach is considered
in the following sections.

5.1.2 Learning Vector Quantization

This successful and particularly intuitive approach to classification was introduced
and put forward by Teuvo Kohonen [8, 9, 59, 89–91]. The basic idea is to replace
the potentially large set of labeled example data by relatively few, representative
prototype vectors.

LVQ was originally motivated as a simplifying approximation of a Bayes clas-
sifier under the assumption that the underlying density of data corresponds to a
superposition of Gaussians [8]. LVQ replaces the actual density estimation by a
simple and robust method of supervised Vector Quantization: Each of the C classes
is to be represented by (at least) one representative. Formally, we consider the set
of prototype vectors

{
wj , cj

}M
j=1

with wj ∈ IRN and cj ∈ {1, 2, . . . C}. (5.1)

Here, the prototype labels cj = c(wj) indicate which class the corresponding pro-
totype is supposed to represent. The so-called Nearest Prototype classifier (NPC)
assigns an arbitrary, e.g. novel, feature vector ξ to the class c∗ = c(w∗) of the closest
prototype

w∗(ξ) with d
(
w∗(ξ), ξ

)
= min

{
d(wj , ξ)

}M
j=1

(5.2)
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where ties can be broken arbitrarily.

In the following, the closest prototype w∗(ξ) of a given input vector will be
referred to as the winner. For brevity we will frequently omit the argument of
w∗(ξ) and use the shorthand w∗ when it is obvious which input vector it refers to.

Figure 5.1 (right panel) illustrates the NPC concept: Class borders correspond-
ing to relatively few prototypes are smoother than the corresponding NN decision
boundaries shown in the left panel. Consequently, an NPC classifier can be expected
to be more robust and less prone to overfitting effects.

The performance of LVQ systems has proven competitive in a variety of practical
classification problems [92]. In addition, their flexibility and interpretability consti-
tute important advantages of prototype-based classifiers: Prototypes are obtained
and can be interpreted within the space of observed data, directly. This feature
facilitates the discussion with domain experts and is in contrast to many other, less
transparent machine learning frameworks.

5.1.3 LVQ training algorithms

So far we have not addressed the question of where and how to place the prototypes
for a given data set. A variety of LVQ training algorithms have been suggested in
the literature [8,90,91,93–96]. The first, original scheme suggested by Kohonen [8]
is known as LVQ1. Essentially, it includes already all aspects of the many modi-
fications that were suggested later. The algorithm can be summarized in terms of
the following steps:

LVQ1 algorithm, random sequential presentation of data

– at time step t, select a single feature vector ξµ with class label yµ

randomly from the data set ID with uniform probability 1/P

– identify the winning prototype, i.e. the currently closest prototype

w∗µ = w∗(ξµ) given by d(w∗µ, ξ
µ) = min

{
d(wj , ξµ)

}M
j=1

. (5.3)

with class label c∗µ = c(w∗µ).

– perform a Winner-Takes-All (WTA) update: (5.4)

w∗µ(t+1) = w∗µ(t) + ηw Ψ(c∗µ, y
µ)
(
ξµ−w∗µ

)
with Ψ(c, y) =

{
+1 if c=y
−1 else.

The magnitude of the update is controlled by the learning rate ηw. The actual
update step (5.4) moves the winning prototype even closer to the presented feature
vector if w∗µ and the example carry the same label as indicated by Ψ(c∗µ, y

µ) = +1.
On the contrary, w∗µ is moved even farther away, from ξµ if the winning prototype
represents a class different from yµ, i.e. Ψ(c∗µ, y

µ) = −1.

A popular initialization strategy is to place prototypes in the class-conditional mean
vectors in the data set, i.e.
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wj(0) =
P∑

µ=1

δ[yµ, cj ] ξµ

/
P∑

µ=1

δ[yµ, c]

with the Kronecker-delta δ[i, j]. If several prototypes are employed per class, inde-
pendent random variations could be added in order to avoid coinciding prototypes,
initially. More sophisticated initialization procedures can be realized, for instance
by applying a K-means procedure in each class separately.

After repeated presentations of the entire training set, the prototypes should
represent their respective class by assuming class–typical positions in feature space,
ideally.

Numerous modifications of this basic LVQ scheme have been considered in the
literature, see for instance [91, 93–96] and references therein. In particular, several
approaches based on differentiable cost-functions have been suggested. They allow
for training in terms of gradient descent or other optimization schemes. Note that
LVQ1 and many other heuristic schemes cannot be interpreted as descent algorithms
in a straightforward fashion.

One particular cost function based algorithm is the so-called Robust Soft LVQ
(RSLVQ) which has been motivated in the context of statistical modelling [97]. The
popular Generalized LVQ (GLVQ) [98, 99] is guided by an objective function that
relates to the concept of large margin classification [100]:

EGLVQ =
P∑

µ=1

Φ(eµ) with eµ =
d(wJ

µ , ξ
µ)− d(wK

µ , ξ
µ)

d(wJ
µ , ξ

µ) + d(wK
µ , ξ

µ)
. (5.5)

Here, the vector wJ
µ denotes the closest of all prototypes which carry the same label

as the example ξµ, i.e. cJµ = yµ. Similarly, wK
µ denotes the closest prototype with

a label different from yµ. For short, we will frequently refer to these vectors as the
correct winner wJ

µ and the incorrect winner wK
µ , respectively.

The cost function (5.5) comprises a, in general, non-linear and monotonically
increasing function Φ(e). A particularly simple choice is the identity Φ(e) = e,
while the authors of [98,99] suggest the use of a sigmoidal Φ(e) = 1/[1+exp(−γ e)],
where γ > 0 controls its steepness.

Negative values eµ < 0 indicate that the corresponding training example is
correctly classified in the NPC scheme, since then d(wJ

µ , ξ
µ) < d(wJ

µ , ξ
µ).1 For large

values of the steepness γ the costs approximate the number of misclassified training
data, while for small γ the minimization of EGLVQ corresponds to maximizing the
margin-like quantities eµ.

A popular and conceptually simple strategy to optimize EGLVQ is stochastic
gradient descent in which single examples are presented in randomized order [101–
103]. In contrast to LVQ1, two prototypes are updated in each step of the GLVQ
procedure:

1note that the argument of Φ obeys −1 ≤ eµ ≤ 1
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Generalized LVQ (GLVQ), stochastic gradient descent

– at time step t, select a single feature vector ξµ with class label yµ

randomly from the data set ID with uniform probability 1/P

– identify the correct and incorrect winners, i.e. the prototypes

wJ
µ with d(wJ

µ , ξ
µ) = min

{
d(wj , ξµ)

∣∣ cjµ = yµ
}M
j=1

.

wK
µ with d(wK

µ , ξ
µ) = min

{
d(wj , ξµ)

∣∣ cjµ 6= yµ
}M
j=1

.
(5.6)

with class labels cJµ = yµ and cKµ 6= yµ, respectively.

– update both winning prototypes according to:

wJ
µ(t+1) = wJ

µ(t)− ηw
∂Φ(eµ)

∂wJ
µ

wK
µ (t+1) = wK

µ (t)− ηw
∂Φ(eµ)

∂wK
µ

, (5.7)

where the gradients are evaluated in wL
µ (t) for L = J,K.

For the full form of the gradient terms we refer the reader to [98, 99]. Note that –
if Euclidean distance is used - the chain rule implies that the updates are along the
gradients

∂d(wL
µ , ξ

µ)

∂wL
µ

∝
(
wL
µ − ξµ

)
for L = J,K. (5.8)

Moreover, the signs of the pre-factors in (5.7) are given by Ψ(cL, yµ) = ±1 as in
(5.1.3). In essence, GLVQ performs updates which move the correct (incorrect)
prototype towards (away) from the feature vector, respectively. Hence, the basic
concept of the intuitive LVQ1 is preserved in GLVQ.

In both algorithms presented above, LVQ1 and GLVQ, very often a decreasing
learning rate ηw is used to ensure convergence of the prototype positions in prac-
tice [101]. Alternatively, schemes for automated learning rate adaptation or more
sophisticated optimization methods can be applied, see e.g. [104], which we will not
discuss here.

5.2 Distance measures and relevance learning

So far, the discussion focussed on Euclidean distance as a standard measure for the
comparison of data points and prototypes. This choice appears natural and it is
arguably the most popular one. One has to be aware, however, that other choices
may be more suitable for real world data. Depending on the application at hand,
unconventional measures might outperform Euclidean distance by far. Hence, the
selection of a specific distance constitutes a key step in the design of prototype-based
models. In turn, the possibility to choose a distance based on prior information and
insight into the problem, contributes to the flexibility of the approach.
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5.2.1 LVQ beyond Euclidean distance

As discussed above, training prescriptions based on Euclidean metrics generically
yield prototype displacements along the vector (ξµ −w) as in Eq. (5.8). Replacing
the Euclidean distance by a more general, differentiable measure δ(ξµ,w), allows
for the analogous derivation of LVQ training schemes. This is conveniently done in
cost function based schemes like GLVQ, cf. Eq. (5.5), but it is also possible for the
more heuristic LVQ1, which will serve as an example here. As a generalization of
Eq. (5.4) we obtain the analogous WTA update from example µ at time t:

w∗µ(t+ 1) = w∗µ(t) − ηw Ψ(c∗µ, y
µ) 1

2

∂δ(w∗µ,ξ
µ)

∂w∗µ
. (5.9)

Obviously, the winner w∗µ has to be determined by use of the same measure δ, for
the sake of consistency.

Along these lines, LVQ update rules can be derived for quite general dissimilari-
ties, provided the distance δ is differentiable with respect to the prototype positions.
Note that the formalism does not require metric properties of δ. As a minimal con-
dition, non-negativity δ(w, ξ) ≥ 0 should be satisfied for w 6= ξ and δ(ξ, ξ) = 0.

Note that cost function based approaches can also employ non-differentiable
measures if one resorts to alternative optimization strategies which do not re-
quire the use of gradients [104]. Alternatively, differentiable approximations of
non-differentiable δ can be used, see [105] for a discussion thereof.

In the following, we mention just a few prominent alternatives to the standard
Euclidean metrics that have been used in the context of LVQ classifiers. We refer
to, e.g., [59, 105,106] for more detailed discussions and further references.

Statistical properties of a given data set can be taken into account explicitly by
employing the well-known Mahalanobis distance [107]. This classical measure is a
popular tool in the analysis of data sets. Duda et al. present a detailed discussion
and several application examples [24].

Standard Minkowski distances satisfy metric properties for values of p ≥ 1 in

dp(ξ, ξ̂) =
[∑N

j=1

∣∣∣ξj − ξ̂j
∣∣∣
p]1/p

for ξ, ξ̂ ∈ IRN , (5.10)

which includes Euclidean distance as a special case for p = 2. Larger (smaller) values

of p put emphasis on the components ξj and ξ̂j with larger (smaller) deviations

|ξj − ξ̂j |, respectively. For instance, in the limit p→∞ we have

d∞(ξ, ξ̂) = max
j=1,...N

∣∣∣ξj − ξ̂j
∣∣∣ .

Setting p 6= 2 has been shown to improve performance in several practical applica-
tions, see [65,108] for specific examples.

The squared Euclidean distance can be rewritten in terms of scalar products:

d(w, ξ)2 = (w ·w − 2w · ξ + ξ · ξ) . (5.11)

So-called kernelized distances [109] replace all inner products in (5.11) by a kernel
function κ:

dκ(w, ξ)2 = κ(w,w)− 2κ(w, ξ) + κ(ξ, ξ). (5.12)

As in the SVM formalism, the function κ can be associated with a non-linear trans-
formation from IRN to a potentially higher-dimensional feature space. In SVM
training one takes advantage of the fact that data can become linearly separable
due to the transformation, as discussed in Sec. 4.3. Similarly, kernel distances can
be employed in the context of LVQ in order to achieve better classification perfor-
mance, see [110] for a particular application.
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As a last example, statistical divergences can be used to quantify the dissimilar-
ity of densities or histogram data. For instance, image data is frequently character-
ized by color or other histograms. Similarly, text can be represented by frequency
counts in a bag of words approach. In the corresponding classification problems,
the task would be to discriminate between class-characteristic histograms. Eu-
clidean distance is frequently insensitive to the relevant discriminative properties
of histograms. Hence, the classification performance can benefit from using spe-
cific measures, such as statistical divergences. The well-known Kullbach-Leibler
divergence is just one example of many measures that have been suggested in the
literature. For further references and an example application in the context of LVQ
see [111, 112]. There, it is also demonstrated that even non-symmetric divergences
can be employed properly in the context of LVQ, as long as the measures are used
in a consistent way.

5.2.2 Adaptive Distances in Relevance Learning

In the previous subsection, a few alternative distance measures have been discussed.
In practice, a particular one could be selected based on prior insights or according
to an empirical comparison in a validation procedure.

The elegant framework of relevance learning allows for a significant conceptual
extension of distance-based classification. It is particularly suitable for prototype
systems and was was introduced and put forward in the context of LVQ in [113–118],
for instance. Relevance learning has proven useful in a variety of applications,
including biomedical problems and image processing tasks, see for instance ( [119]).

In this very elegant approach, only the parametric form of the distance measure
is fixed in advance. Its parameters are considered adaptive quantities which can
be adjusted or optimized in the data-driven training phase. The basic idea is very
versatile and can be employed in a variety of learning tasks. We present here
only one particularly clear-cut and successful example in the context of supervised
learning: the so-called Matrix Relevance LVQ for classification [114].

Similar to several other schemes (e.g. [120–122]), Matrix Relevance LVQ employs
a generalized quadratic distance of the form

δΛ(w, ξ) = (w − ξ)
>

Λ (w − ξ) =
N∑

i,j=1

(wi − ξi) Λij (wj − ξj). (5.13)

Heuristically, diagonal entries of Λ quantify the importance of single feature dimen-
sions in the distance and can also account for potentially different magnitudes of
the features. Pairs of features are weighted by off-diagonal elements, which reflect
the interplay of the different dimensions.

In order to fulfil the minimal requirement of non-negativity, δΛ ≥ 0, a convenient
re-pameterization is introduced in terms of an auxiliary matrix Ω ∈ IRN×N :

Λ = Ω>Ω, i.e. δΛ(w, ξ) = [Ω (w − ξ)]
2
. (5.14)

Hence, δΛ can be interpreted as the conventional squared Euclidean distance but
after a linear transformation of feature space. Note that Eqs. (5.13, 5.14) define
only a pseudo-metric in IRN : Λ can be singular with rank(Λ) < N implying that
δΛ(w, ξ) = 0 is possible even if w 6= ξ.

Obviously, we could employ a fixed distance of the form (5.13) in GLVQ or LVQ1
as outlined in the previous sections. The key idea of relevance learning, however, is
to consider the elements of the relevance matrix Λ ∈ IRN×N as adaptive quantities
which can be optimized in the data-driven training process.
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Numerous simplifications or extensions of the basic idea have been suggested
in the literature: The restriction to diagonal matrices Λ corresponds to the orig-
inal formulation of Relevance LVQ in [113], which assigns a single, non-negative
weighting factor to each dimension in feature space. Rectangular (N×M)-matrices
matrices Ω with M < N can be used to parameterize a low-rank relevance ma-
trix [118]. The corresponding low-dimensional intrinsic representation of data fa-
cilitates, for instance, the class-discriminative visualization of complex data [118].
The flexibility of the LVQ classifier is enhanced significantly when local distances
are used, i.e. when separate relevance matrices are employed per class or even per
prototype [114,118].

Here we restrict the discussion to the simplest case of a single, N × N ma-
trix Ω corresponding to a global distance measure. The heuristic extension of the
LVQ1 prescription by means of relevance matrices is briefly discussed in [59] and
its convergence behavior is analysed in [123].

Gradient based updates for the simultaneous adaptation of prototypes and rel-
evance matrix can be derived from a suitable cost function: We observe that

∂δΛ(w, ξ)

∂w
= Ω>Ω (ξ−w) and

∂δΛ(w, ξ)

∂Ω
= Ω (w − ξ) (w − ξ)

>
. (5.15)

The full forms of the gradients with respect to the terms eµ in the GLVQ cost
function are presented in [114], for instance. They yield the so-called Generalized
Matrix Relevance LVQ (GMLVQ) scheme, which can be formulated as a stochastic
gradient descent procedure:

Generalized Matrix LVQ (GMLVQ), stochastic gradient descent

– at time step t, select a single feature vector ξµ with class label yµ

randomly from the data set ID with uniform probability 1/P

– with respect to the distance δΛ (5.13) with Λ = Ω(t)>Ω(t),
identify the correct and incorrect winners, i.e. the prototypes

wJ
µ with δΛ(wJ

µ , ξ
µ) = min

{
δλ(wj , ξµ)

∣∣ cjµ = yµ
}M
j=1

.

wK
µ with δΛ(wK

µ , ξ
µ) = min

{
δλ(wj , ξµ)

∣∣ cjµ 6= yµ
}M
j=1

. (5.16)

with class labels cJµ = yµ and cKµ 6= yµ, respectively.

– update both winning prototypes and the matrix Ω according to:

wJ
µ(t+ 1) = wJ

µ(t)− ηw
∂Φ(eµ)

∂wJ
µ

wK
µ (t+ 1) = wK

µ (t)− ηw
∂Φ(eµ)

∂wK
µ

,

Ω(t+ 1) = Ω(t) − ηΩ
∂Φ(eµ)

∂Ω
. (5.17)

where the gradients are evaluated in Ω(t) and wL
µ (t) for L = J,K.

In both, GMLVQ and Matrix LVQ1, the relevance matrix is updated in order
to decrease or increase δΛ(wL

µ , ξ
µ) for the winning prototype(s), depending on the

class labels in the, by now, familiar way.
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Figure 5.2: Visualization of the Generalized Matrix Relevance LVQ system as ob-
tained from the z-score transformed Iris flower data set, see Sec. 5.2.2 for details.
Left panel: Class prototypes are shown as bar plots with respect to the four fea-
ture space components in the left column. The right column shows the eigenvalue
spectrum of Λ, the diagonal elements of Λ, and the off-diagonal elements in a gray-
scale representation (top to bottom).
Right panel: Projection of the P = 150 feature vectors onto the two leading
eigenvectors of the relevance matrix Λ.

Frequently, the learning rate of the matrix updates is chosen to be relatively
small, ηΩ � ηw, in the stochastic gradient descent procedure. This follows the
intuition that the prototypes should be enabled to follow changes in the distance
measure. The relative scaling can be different in batch gradient realizations of
GMLVQ as for instance in e.g. [124].

The matrix Ω can be initialized as the N -dim. identity or in terms of independent
random elements. In order to avoid numerical difficulties, a normalization of the
form

∑
i Λii =

∑
i,j Ω2

i,j = 1 is frequently imposed [114].

In the following we illustrate Matrix Relevance LVQ in terms of a classical
benchmark data set: In the famous Iris data [125], four numerical features are
used to characterize 150 samples from three different classes which correspond to
particular species of Iris flowers.

We obtained the data set as provided at [126] and applied a simple GMLVQ
system with one prototype per class and global relevance matrix Λ ∈ IR4×4. For
the training, we employed the freely available beginner’s toolbox for GMLVQ ( [124])
with default parameter setting. An additional z-score transformation was applied,
resulting in re-scaled features with zero mean and unit variance in the data set.

Figure 5.2 visualizes the obtained classifier. The resulting LVQ system achieves
almost perfect, error-free classification of the training data and very good general-
ization behavior with respect to test set performance.

In the left panel, the prototypes after training and the resulting relevance matrix
and its eigenvalues are displayed. As discussed above, the diagonal elements Λii can
be interpreted as the relevance of features i in the classification. Apparently, features
3 and 4 are the dominant ones in the Iris classification problem. The off-diagonal
elements represent the contribution of pairs of different features. Here, also the
interplay of features 3 and 4 appears to be most important.

In more realistic and challenging data sets, Relevance Matrix LVQ can provide
valuable insights into the problem. GMLVQ has been exploited to identify the most
relevant or irrelevant features, e.g. in the context of medical diagnosis problems,
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see [119] for a variety of applications. A recent application in the context of galaxy
classification based on astronomical catalogue data is presented in [127,128].

In an N -dimensional feature space, the GMLVQ relevance matrix introduces
O(N2) additional adaptive quantities. As a consequence, one might expect strong
overfitting effects due to the large number of free model parameters. However,
as observed empirically and analysed theoretically, the relevance matrix displays a
strong tendency to become singular and displays very low rank(Λ) = O(1)� N af-
ter training [123]. This effect can be interpreted as an implicit, intrinsic mechanism
of regularization, which limits the complexity of the distance measure, effectively.

In addition, the low rank relevance matrix allows for the discriminative visual-
ization of the data by projecting feature vectors (and prototypes) onto its leading
eigenvectors. As an illustrative example, Fig. 5.2 displays the Iris flower data set.

5.3 Concluding remarks
Prototype-based models continue to play a highly significant role in putting for-
ward advanced machine learning techniques. We encourage the reader to explore
recent developments in the literature. Challenging problems, such as the analysis
of functional data, non-vectorial data or relational data, to name only very few,
are currently being addressed, see [59,91] for further references. At the same time,
exciting application areas are being explored in a large variety of domains.

Most recently, prototype-based systems are also re-considered in the context
of deep learning [1]. The combination of multilayer network architectures with
prototype- and distance-based modules appears very promising and is the subject
of on-going research, see, for instance, [84,129] and references therein.

Supervised Learning - An Introduction

Machine Learning Reports 89



88 CHAPTER 5. PROTOTYPE-BASED SYSTEMS

Supervised Learning - An Introduction

90 Machine Learning Reports



Chapter 6

Evaluation and validation

Accuracy is not enough.

– Paulo Lisboa

In supervised learning the aim is to infer relevant information from given data,
to parameterize it in terms of a model, and to apply it to novel data successfully.
It is obviously vital to know or at least have some estimate of the performance that
can be expected in the working phase.

In this chapter we will discuss several aspects related to the evaluation and
validation of supervised learning. We will take a rather general perspective on over-
fitting and underfitting effects without necessarily addressing a particular classifier
or regression framework. The specific scenarios considered in the following should
be seen as as illustrative examples, only.

In addition, practical aspects will be taken into account, such as the problem
of unbalanced data sets in classification and the appropriate use of performance
measures beyond the simple overall accuracy. Finally, we address the use of inter-
pretable models in machine learning.

6.1 Bias and variance

Different sources of error can influence the performance of supervised learning sys-
tems. Here, we will decompose the expected prediction error into two contributions,
see e.g. [17, 19]: The following, the so-called bias corresponds to systematic devi-
ations of a trained model from the true target, while the term variance refers to
variations of the model performance when trained from different realizations of the
training data1.

Frequently, a so-called irreproducible error is considered as a third, independent
contribution [17]. It could refer to, for instance, intrinsic noise in the test data
which cannot be predicted even with perfect knowledge of the target rule. As the
irreproducible error is beyond our control anyway, we refrain from including it in
the discussion, here.

1Note that the terms bias and variance are used in many different scientific contexts with
possibly different, area specific meanings.
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K = 1 K = 3 K = 7

IDA

IDB

IDC

Figure 6.1: Illustration of the bias-variance dilemma in regression. In each row
of graphs, a particular set of 10 points {xi, yi}10

i=1 is approximated by least square
linear regression (K = 1), by a cubic fit (K = 3), and by fitting a polynomial
of degree seven (K = 7). Rows correspond to three randomized, independently
generated data sets IDA,B,C .

6.1.1 The decomposition of the error

For the purpose of illustration, we consider a simple one-dimensional regression
problem as an example, see Fig. 6.1. The obtained insights, however, carry over to
much more complex systems.

As a simple learning scenario we consider least squares regression based on data
sets ID = {xµ, yµ}Pµ=1. The sets comprise sample arguments xµ , e.g. equidistant
xµ ∈ [−1, 1], and their corresponding target values yµ ∈ IR.

We assume that the latter represent a target function f(x) which is of course
unknown to the learning system. The provided training labels are considered to be
randomized, noisy versions of the target values:

yµ = f(xµ) + rµ with 〈rµ〉 = 0 and 〈rµ rν〉 = ρ2δµν (6.1)

with the Kronecker-delta δµν . Hence, the deviation of the training labels from the
underlying target function is given by uncorrelated, zero mean random quantities
rµ in each data point. Further details are irrelevant for the argument, but we could
for instance consider independent Gaussian random numbers with variance ρ2, i.e.
rµ ∼ N (0, ρ). We perform polynomial fits of the form

fK(x) =
∑K
j=0 ajx

j with coefficients aj ∈ IR (6.2)

for powers xj with maximum degree K. Given a data set ID = {xµ, yµ}Pµ=1, the aj
can be determined by minimizing the familiar quadratic deviation

ESSE = 1
2

∑P
µ=1

[
fH(xµ)− yµ

]2
. (6.3)
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Fig. 6.1 displays example data sets IDA,B,C with n = 11 for the underlying target
function f(x) = x3. For each of the three slightly different data sets, polynomial
least square fits were performed with K = 1 (linear), K = 3 (cubic) and with
degree K = 7. Hence, the same data sets were analysed by using models of different
complexity.

In order to obtain some insight into the interplay of model complexity and
expected performance, we consider the Gedankenexperiment of performing the same
training/fitting processes for a large number of slightly different data sets of the
same size, which all represent the target.

We denote by 〈. . .〉ID an average over many randomized realizations of the data
set or – more formally – over the probability density of training labels in ID. In this
sense, the expected total quadratic deviation of a hypothesis function fH from the
true target f in a point x ∈ IR is given by

〈[
fH(x)− f(x)

]2〉
ID
, (6.4)

where the randomness of ID is reflected in the outcome fH of the training. We
could also consider the integrated deviation over a range of x-values, which would
relate the SSE to the familiar generalization error. However, the following argument
would proceed in complete analogy due to the linearity of, both, integration and
averaging. Performing the square in Eq. (6.4) we obtain

〈
f2
H(x)

〉
ID
− 2 〈fH(x)〉ID f(x) + f2(x). (6.5)

Note that the true target f(x) obviously does not depend on the data and can be
left out from the averages.

For the sake of brevity, we omit the argument x ∈ IR of the functions fH and
f in the following. Including redundant terms (*) which add up to zero we can
re-write (6.5) as

〈fH〉2ID︸ ︷︷ ︸
∗

− 2 〈fH(x)〉ID f + f2 +
〈
f2
H

〉
ID
−2 〈fH〉2ID + 〈fH〉2ID︸ ︷︷ ︸

∗

(6.6)

and obtain a decomposition of the expected quadratic deviation in x:

〈[
fH−f

]2〉
ID

=
(
f−〈fH〉ID

)2

︸ ︷︷ ︸
bias2

+

〈(
fH−〈fH〉ID

)2
〉

ID︸ ︷︷ ︸
variance

. (6.7)

The equality with (6.6) is seen easily by expanding the squares and exploiting that

〈fH 〈fH〉ID〉ID = 〈fH〉2ID =
〈
〈fH〉2ID

〉
ID
.

Hence we can identify two contributions to the total expected error:

• Bias (squared): (f − 〈fH〉ID)
2

The bias term quantifies the deviation of the mean prediction from the true
target, where the average is over many randomized data sets and correspond-
ing training processes.
A small bias would indicate that there is very little systematic deviation of
the hypotheses from the unknown target rule.

• Variance:
〈(
fH − 〈fH〉ID

)2〉
ID

The variance indicates how much the individual predictions, obtained after
training on a given ID, will differ from the mean prediction, typically.
The observation of a small variance implies that the outcome of the learning
is robust with respect to details of the training data.
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Figure 6.2: Schematic illustration of underfitting and overfitting (after [17]): Ex-
pected error with respect to a test set (generalization error) and training set per-
formance as a function of the model complexity.

Similar considerations apply to more general learning problems, including clas-
sification schemes [130].

6.1.2 The bias-variance dilemma

Ideally, we would like to achieve low variance and low bias at the same time, i.e. a ro-
bust and faithful approximation of the target rule. Both goals are clearly legitimate,
but very often they constitute conflicting aims in practice, as further illustrated in
the following.

This is often referred to as the bias–variance dilemma or trade-off [17–19, 130].
It is closely related to the problem of overfitting in unnecessarily complex systems
and its counterpart, the so-called underfitting in simplistic models.

Overfitting: low bias – high variance
In terms of our polynomial regression example we can achieve low bias by employing
powerful models with large degree K. In the extreme case of K = P , for instance,
we can generate models which perfectly reproduce the data points, fK(xµ) = yµ

for all µ, in each individual training process.
Because the training labels themselves are assumed to be unbiased with 〈yµ〉ID =

f(xµ), cf. Eq. (6.1), the averaged fit result will also be in exact agreement with the
target in the xµ. In fact, since the objective function (6.3) of the training treats
positive and negative deviations symmetrically as well, there is no reason to expect
systematic deviations of the fits with fK(x) > f(x) or fK(x) < f(x) for all fits in
some arbitrary value of x.

However, using a very flexible model with large K will result in fits which are
very specific to the individual data set. As can be seen in Fig. 6.1, (right column),
already for a moderate degree of K = 7, very different models emerge from the
individual training processes.

For the sample points themselves, the variance of the nearly perfect fit would
be essentially determined by the statistical variance of the training labels ρ2 in
Eq. (6.1). However, when interpolating or even extrapolating to x ∈/ {xµ}Pµ=1, the
different fits will vary a lot in their prediction fK(x). Consider, for instance, the
extrapolation to x = ±1.1 in Fig. 6.1 as a pronounced example of the effect.

Underfitting: low variance – high bias
If emphasis is put on the robustness of the model, i.e. low variance, we would prefer
simple models with low degree K in (6.2). This should prevent the fits from being
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overly specific to the individual data set. As illustrated in the left column of Fig.
6.1, we achieve nearly identical linear models from the different data sets.

However, a price has to be paid for this robustness: Systematic deviations oc-
cur in each training procedure. We observe, for instance, that the linear fits (left
column) obtained from IDA,B,C are virtually identical. However, they display quite
large deviations from the sample points – which represent a non-linear function,
after all. These deviations are systematic in the sense that they are reproduced
qualitatively in each data set. For instance, for the first sample point x1 = −1 we
can see that always fK=1(x) > y1. As a consequence, interpolation and extrapola-
tion will also be subject to systematic errors.

Matched model complexity
In our example, fits of degree K = 3 seem to constitute an ideal compromise. In
the sample points, they achieve small deviations with no systematic tendency and,
consequently, have relatively low bias. At the same time the fits fK=3(x) appear
also robust against small variations of the data set, corresponding to a relatively
small variance.

This is of course not surprising, since polynomials of degree K = 3 perfectly
match the complexity of the underlying, true target function. It is important to
realize that this kind of information is rarely available in practical situations.

In fact, in absence of knowledge about the complexity of the target rule, it is
one of the key challenges in supervised learning to select an appropriate model that
achieves a good compromise with respect to bias and variance.

The trade-off
The above considerations suggest that there is a trade-off between the goals of small
variance and bias [17,130,131].

Indeed, in many machine learning scenarios one observes such a trade-off which
is illustrated in Fig. 6.2. It shows schematically the possible dependence of the
prediction performance in the training set and the generalization error (test set
performance) as a function of the model complexity.

In our simple example, we could use the polynomial degree K as a measure of
the latter. It could be also interpreted as, for instance, the degree of a polynomial
kernel in the SVM, the number of hidden units in a two-layer neural network, or
the number of prototypes per class in an LVQ system. Similarly, the x-axis could
correspond to a continuous parameter that controls the flexibility of the training
algorithm, e.g. a weight decay parameter or the training time itself [5, 18,19].

Generically, we expect the training error to be lower than the generalization
error for any model. After all, the actual optimization process is based on the
available training examples.

Simplistic models that cannot cope with the complexity of the task display, both,
poor training set and test set performance due to large systematic bias. Increasing
the model’s flexibility will reduce the bias and, consequently, training and test set
error decrease with K in Fig. 6.2. However, overly training set specific models dis-
play overfitting: while the training error typically decreases further with increasing
K, the test set error displays a U -shaped dependence which reflects the increase of
the model variance.

It is important to realize that the extent to which the actual behavior follows
the scenario in a practical situation depends on the detailed properties of the data
and the problem at hand. While one should be aware of the possible implications
of the bias–variance dilemma, the plausibility of the above discussed trade-off must
not be over-interpreted as a mathematical proof. Note that the decomposition (6.7)
itself does not imply the existence of a trade-off, strictly speaking.
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As argued and demonstrated in e.g. [132] and [131], a given practical problem
does not necessarily display the U -shaped dependence of the generalization error
schematically shown in Fig. 6.2. There is also no general guarantee that measures
which reduce the variance in complex models will really improve the performance of
the system [132]. In many practical problems, however, the assumed bias-variance
trade-off can indeed be controlled to a certain degree and may serve as a guiding
principle for the model selection process.

According to the above considerations, a reliable estimation of the expected gen-
eralization ability would be highly desirable in a given supervised learning scenario.
It could be used, for instance, to select the suitable complexity in a situation as
sketched in Fig. 6.2.

Similarly, it would be very useful to be able to compare and evaluate the use of
different approaches, say SVM and LVQ, in a given practical problem. In the next
section we discuss the basic idea of how to obtain estimates of the generalization
performance.

6.2 Validation procedures

In supervised learning, the availability of well-defined performance measures allows
us to formulate the training process as the optimization of a suitable objective
function. However, one has to be aware that this does not necessarily reflect the
ultimate goal of the learning. The cost function can only be defined with respect to
the training set, while the generic goal of machine learning is to apply the inferred
hypothesis to novel, unseen data. Objective functions serve, at best, as proxies for
the actual aim of training.

As a consequence, the strict minimization of the training error, for example, can
be even counter-productive as it may lead to overtraining or overfitting effects. From
a more positive perspective, this also implies that we should not take optimization
too seriously in the machine learning context. For instance, the existence of local
minima in gradient descent based learning frequently turns out much less harmful
than expected. In fact, the very success of simple-minded techniques like stochastic
gradient descent relates to the fact that strict minimization of the cost function is
usually not the primary goal of machine learning and could be even harmful.

On the negative side, it becomes necessary to acquire reliable information about
the expected performance on novel data if we do not want to face unpleasant sur-
prises in the working phase. Clearly, the training itself and the performance on the
training data does not provide us with such an insight.

Validation procedures can be employed which allow us to estimate the expected
generalization performance [17,19]. The key idea is rather obvious: Split the avail-
able data into a training set and a disjoint test set of examples. The former is then
used for the adaptation of the model, which is applied to the test set eventually.
This way, we can simulate working phase behavior while using only available data.

Obviously, the data is assumed to be representative for the task at hand, a
crucial assumption which we already discussed in Sec. 2.2 in the context of the
generic workflow of supervised learning.

6.2.1 n-fold cross-validation and related schemes

The simple idea of splitting the available data randomly into one training and one
test set has several problems:

• If only relatively few examples are available, as it is very often the case in
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practical problems,2 we cannot afford to disregard the information contained
in a subset of these in the training.

• The composition of the subsets could be lucky or unlucky in the sense that the
test set might contain only very difficult or very easy cases. As a consequence,
the test set performance might be overly optimistic or pessimistic, respectively.

• Performing a single test only cannot give valid insight into the robustness of
the system with respect to details of the training set, i.e. the variance in the
sense of Sec. 6.1.1.

All these issues are addressed in a very popular standard approach known as n-
fold cross-validation, see e.g. [17, 19, 133]. The idea is to split the available data
randomly into a number n of disjoint subsets of (nearly) equal size:

ID = ∪ni=1IDi with ∩ (IDi, IDj) = ∅ for i 6= j and |IDi| = P/n,

where the last condition may be satisfied only approximately in practice.

Now we can construct n splits of the data into

training sets IDtrain
i = ID \ IDi and validation sets IDval

i = IDi for 1 ≤ i ≤ n.

For each of the splits we can train the classifier or regression system on (1− 1/n)P
examples and evaluate its performance with respect to the P/n left out data sam-
ples. Eventually, we have obtained n systems trained on slightly different data sets
with n estimates of the performance, for instance in terms of the accuracies of a
classifier or the SSE in regression problems.

While the n validation sets are disjoint, we have to be aware that the training
sets strongly overlap. The obtained estimates of the generalization error and, even
more so, of the training error are definitely not statistically independent. Hence,
the mean or variance obtained over the n-fold training process should not be over-
interpreted.

Nevertheless, the procedure will provide us with some insight into the expected
generalization performance and the robustness of the system with respect to small
changes in the training set.

Obviously the parameter n in n-fold cross validation will influence the workload
and the quality of the results:

• For large n, many training processes have to performed, each one based on a
large fraction of the available data. In turn, the individual validation sets will
be relatively small.

• For small values of n we obtain fewer, but more reliable individual estimates
from larger validation sets. At the same time, the computational workload
is reduced in comparison with the use of larger n. However, averages are
performed over few individual results, only. Moreover, each training process
make use of a relatively small subset of the data and cannot take full advantage
of the available information.

In a practical situation, the choice of n will depend primarily on the number P of
available examples to begin with. For a more detailed discussion and corresponding
references see, for instance, [17, 133]. In the literature, a canonical value of n = 10
has become a standard choice, apparently.

2Image classification tasks like ”cats vs. dogs” have become one of the few notorious exceptions.
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Variations
Many variations of the basic idea of n-fold cross-validation have been considered in
the literature [133].

The split into n disjoint subsets of data may also suffer from lucky/unlucky
set composition. So-called Leave-p-out schemes realize all possible splits of the
data into (P − p) training and p validation examples. Obviously their number

(
P
p

)

grows rapidly with P and the computational costs can become unrealistically high.
Therefore, one often resorts to a few repetitions of the n-fold scheme, performed
with randomized splits and an additional average over the realizations.

Alternatively, Monte Carlo validation schemes generate a limited number of in-
dependent binary splits into P−p and p examples and perform averages accordingly.

We refrain from a thorough comparison and discussion of the advantages and
disadvantages of these variations of cross-validation. We refer the reader to, for
example, [134] and to the more general machine learning literature, e.g. [17–19].

Leave-one-out cross-validation
As an important extreme case, for very small data sets one often resorts to the so-
called Leave-One-Out validation [17–19,133]. It follows the idea of cross-validation,
but selects just one example as the smallest possible validation set in each training
run. Hence, we set n = P and run P training processes to obtain an average of the
performance measure of interest.

It is important to note that the Leave-One-Out estimate can be unreliable and
even bears the risk of yielding misleading results, systematically: In small data
sets, leaving out one sample from a specific class can lead to a bias in the training
set towards the other class(es), which may result in overly pessimistic estimates of
the generalization performance [133, 135]. A modification that hinders the effect
is known by the self-explanatory name Leave-one-out from each class, generating
validation sets that represent all classes [135].

6.2.2 Model and parameter selection

The above discussed validation schemes can be employed in the context of model
selection and, similarly, for the setting of parameters or hyper-parameters [133]. Ob-
viously we could use, for instance, n-fold cross-validation to compare the expected
performance of different classifiers or regression systems. We can also employ it
to fix the size of a hidden layer in a feed-forward neural network, to set algorithm
parameters like the learning rate in gradient descent, or to select a particular ker-
nel in an SVM, to name just a few examples. In the illustration of Fig. 6.2, for
instance, we would select the model complexity that corresponds to the minimum
of the U -shaped generalization error curve.

However, one has to be aware of the risk to over-interpret or even mis-use the
results of cross-validation. As an example consider LVQ-training based on a given
data set ID. Assume that, on the basis of n-fold cross-validation, we conclude that
systems with, say, K = 3 prototypes per class yield the best generalization ability3.

Is it justified to expect the observed, averaged performance for K = 3 when
applying the system to novel data? The problem is that we have used all of ID to
determine the supposedly best parameter setting. This constitutes a data-driven
learning process and could be subject to overfitting effects in itself: The specific
choice of K may be very specific to ID and could fail in the working phase.

In order to obtain a more reliable estimate of the expected performance we
would have to perform an extended validation procedure. We could split ID into
training set IDtrain and IDtest once, then apply n-fold cross-validation on IDtrain in

3For the difficulty to even define ”the best” see the next sections.
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order to determine a suitable value of K. Eventually, a system with the supposedly
best setting can be re-trained on IDtrain and validated on IDtest to obtain a more
realistic estimate.

Now, of course, we face the problem of lucky/unlucky set compositions again,
which suggests to perform a full loop along the lines of n-fold cross-validation (or
one of the discussed variants).

Strictly speaking, this has to be done for every independent parameter in an
additional layer of validation, separately. Obviously practical limitations apply, in
particular when only very small data sets are available.

6.3 Performance measures for classification

Despite the conceptual clarity of supervised learning, even the choice of an appro-
priate measure of success can constitute a problem in practice.

Assume we are comparing the performances of two different classifiers, A and
B, which have been trained to perform a given binary classification. By means of
cross-validation we obtain the estimates for the generalization ability in terms of
the overall error as, say,

εAg = 0.05 and εBg = 0.30.

Apparently, we could conclude that A is the better classifier and should be used in
the working phase.

A closer look into the available data ID, however, might reveal that it consists of
95% class 1 samples, while only 5% of the data represent class 2. We furthermore
might find that classifier 1 trivially assigns all feature vectors to class 1, resulting
in 95% accuracy in ID. On the other hand, model B might havelearned from the
data and provides 70% correct responses in both classes of the data set.

Clearly, this insight might make us reconsider our previous evaluation of classifier
A as the better one. If we are just after good overall accuracy and have reason to
believe that the true prevalence of class 1 data is also about 95% in the real world,
we can - of course - settle for the trivial model. If our main goal is to detect and
identify the relatively rare occurrences of class 2, classifier B is to prefer, obviously.

This somewhat extreme example illustrates two major questions that arise in
the practical approach to classification problems:

• How can we cope with strongly biased data sets in the training of a classifier?

• Can we evaluate classifiers beyond their overall accuracies in order to obtain
better insight into the performance?

6.3.1 Receiver Operating Characteristics

For two-class problems, both of the above mentioned questions can be addressed in
the framework of the so-called Receiver Operating Characteristics (ROC) [17–19,24,
136]. The concept and terminology goes back to signal processing tasks originally,
but has become popular in the machine learning community.

Most classifiers we have discussed obtain a binary assignment by applying a
threshold operation to a so-called discriminative function g. In terms of the simple
perceptron, for instance, we assign an input ξ ∈ IRN to class S = ±1 according to

S = sign [g(ξ)] with g(ξ) =
N∑

j=1

wjξj (6.8)
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Figure 6.3: Left panel: Schematic illustration of Receiver Operating Characteris-
tics. The extreme working points with Θ → ±∞ are marked by empty circles. A
filled circle corresponds to a (hypothetical) classifier with Θ = 0, while the dashed
line represents random, biased guesses. Right panel: Illustration of a two-class
data set with discriminative function g(ξ). Feature vectors from the negative (pos-
itive) class are displayed as green (red) filled circles, respectively. A randomly
selected negative example ξ− is marked by the large filled circle and corresponds to
g(ξ−) = Θ−. The variation of the threshold by δΘ is referred to in the arguments
employed in Sec. 6.3.2 to obtain the statistical interpretation of the AUC.

as discussed in Chapter 3 in great detail. Having trained the perceptron as to
implement the homogeneous lin. sep. function (6.8), we can introduce a threshold
Θ after training and consider the modified classification

SΘ = sign [g(ξ)−Θ] . (6.9)

While this is formally identical with the consideration of an inhomogeneously lin.
sep. function, see Sec. 3.3, here the perspective is different: We assume the threshold
is introduced manually after training. Furthermore, the concept could be applied
to any discriminatory function for binary classification.

By tuning Θ in Eq. 6.9 we can realize and control a bias towards one of the
two classes. For very large negative Θ → −∞, all inputs will be assigned to class
SΘ = −1, while large positive Θ→ +∞ result in SΘ = +1 exclusively.

In a two-class setup it makes sense to distinguish the two class-specific errors
that can occur: If a feature vector which is truly from class −1 is misclassified
as S = +1, we account this as a false positive or false alarm type of error. The
terminology reflects the idea that class +1 is to be detected, for instance in a medical
test which discriminates diseased (positive test result) from healthy control patients
(negative outcome). Analogously, the term false negative error is used when the
classifier misses to signal a truly positive case.4 Similarly, the complementary true
positive or true negative rates correspond to the class-wise accuracies in the two-
class problem.

The introduction of a controlled bias can be achieved in other classification
frameworks as well and is, by no means, limited to linear classifiers. For instance,
we can modify the Nearest Prototype Classification (NPC) in LVQ, Eq. (5.2). Iden-
tifying w∗(−1), the closest one among all prototypes representing class −1 and the

4In the literature, other terms like type I/II errors are used frequently, but are avoided here
for clarity.
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closest class-(+1)-prototype w∗(+1), we can assign an arbitrary feature vector ξ to
class +1 if

d
(
w∗(+1), ξ

)
< d(w∗(−1), ξ)−Θ (6.10)

and to class −1 else, thus introducing a margin Θ in the comparison of distances.
Similarly, we could consider the output unit activation in a multilayered feedforward
neural network as the discriminative function and perform a biased thresholding
along the same lines in order to obtain a crisp class assignment.

For a given value of the threshold Θ we can obtain, e.g. from a validation or test
set, the absolute number of false positive classifications FP , the observed number
of false negatives FP , and the number of true positive TP and true negatives
assignments TN . The corresponding rates are defined as

fpr=
FP

FP+TN
, tpr=

TP

FN+TP
, fnr=

FN

FN+TP
, and tnr=

TN

FP+TN
. (6.11)

Different names are used for the same quantities in the literature, depending on
the actual context and discipline. In medicine, for instance, the term sensitivity
(SENS) is frequently used for the tpr, while specificity refers to SPEC = tnr.

The quantities in Eq. (6.11) are not independent: Obviously, they satisfy

tpr + fnr = 1 and tnr + fpr = 1.

Consequently, two of the four rates can be selected to fully characterize the classi-
fication SΘ(ξ).

In the framework of Receiver Operating Characteristics (ROC) one determines
tpr(Θ) and fpr(Θ) for a meaningful range of thresholds Θ and displays the true
positive rate as a function of the false positive rate by eliminating the threshold
parameter5.

Figure 6.3 (left panel) displays an example ROC curve for illustration. The
lower left corner, as marked by an empty circle, would correspond to the extreme
setting Θ → ∞ with all inputs assigned to the negative class. Obviously, the false
positive rate is zero for this setting, the classifier does not give any false alarms. On
the other hand, no positive cases are detected and tpr = 0, as well. The upper right
corner in tpr = fpr = 1, also marked by an open circle, corresponds to Θ → −∞
in (6.9) or (6.10): The classifier simply assigns every feature vector to the positive
class, thus maximizing the true positive rate at the expense of having fpr = 1. An
ideal, error-free classifier would obtain fpr = 0, tpr = 1 in the upper left corner of
the ROC graph.

The performance of an unmodified classifier with Θ = 0 is marked by a filled
circle in the illustration 6.3 (left panel). It could correspond, for instance, to the
NPC in LVQ or the homogeneous, unbiased perceptron, Eq. (6.8). By selecting
a particular threshold −∞ < Θ < +∞, the user can realize any combination of
{tpr, tpr} that is available along the ROC curve. This way, the domain expert can
adjust the actual classifier according to the specific needs in the problem at hand.
In medical diagnosis systems, for instance, high sensitivity (tpr) might be more
important than specificity (1− fpr) or vice versa.

To a certain extent, we can also compensate for the effects of unbalanced training
data: In the illustrative example shown in Fig. 6.3 (left panel), the classifier with
Θ = 0 realizes very low fpr, which might be a consequence of an over-representation
of negative cases in the data set ID. An objective function which is related to the
number of mis-classification will favor classifiers with small fpr over those with
higher tpr. In retrospect, this can be compensated for by biasing the classifier

5For efficient implementation ideas see [24,136].
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towards the detection of positive cases and move the working point closer to the
upper left corner in the ROC.

The hypothetical, best possible ROC is obviously given by the step function
including the ideal working point fpr = 0, tpr = 1, i.e. the complete square in
Fig. 6.3. On the other hand, a completely random guess with biased probability
tpr = fpr for assignments to class +1 would correspond to the diagonal, i.e. the
dashed line in the left panel of the illustration.

6.3.2 The Area under the ROC curve

When evaluating different classifiers (or frameworks, rather) one often resorts to
the comparison of the area under the ROC curve, the so-called AUC or AUROC
[136]. Intuitively the AUC with 0 ≤ AUC ≤ 1 provides information about the
degree to which the ROC deviates from the diagonal with AUC = 1/2. Clearly, an
AUC > 1/2 indicates better–than–random classification and the AUC is often used
as a one quality measure for the evaluation of classifiers.6

The AUC with respect to novel data can be estimated, for instance, in the
course of cross-validation along the lines of Sec. 6.2. It provides better insight
into the performance of the trained system than a single specific working point.
Therefore, it serves as the basis for model selection or the setting of parameters.

Moreover, the AUC can be associated with a well-defined statistical interpreta-
tion. Fig. 6.3 (right panel) illustrates a two-class data set which can be classified
according to a discriminative function which, in the illustration, is assumed to in-
crease monotonically along the g(ξ)-axis. Note that here it is convenient, but not
necessary, to argue in terms of a linear classifier like the perceptron, in which the
weight vector w defines the discriminative direction.

In the illustration, a particular, e.g. randomly selected, negative example ξ−
is marked by a filled circle with the value g(ξ−) of the discriminative function. In
other words, in a classifier with Θ = g(ξ−) the considered example would be located
precisely at the decision boundary.

Now assume that we select a random example ξ+ from the positive class, i.e.
one of the feature vectors marked as red circles in the illustration. The probability
for such an example to satisfy g(ξ+) > Θ− = g(ξ−) is given precisely by tpr(Θ−),
which is the fraction of positive examples located on the correct side of the decision
boundary defined by g(ξ) = Θ−.

On the other hand, the local density of negative examples is given by the deriva-
tive dfpr/dΘ in Θ−: Shifting the threshold by δΘ, as marked by the gray shaded area,
will result in correcting the output for δfpr = (dfpr/dΘ) δΘ many samples from the
negative class.

In summary, this implies that for a pair of feature vectors comprising one ran-
domly selected ξ− from the negative class and one randomly selected ξ+ from the
positive class, the probability that g(ξ+) > g(ξ−) is given by the integral

+∞∫

−∞

tpr(ϑ)
dfpr

dϑ
dϑ =

1∫

0

tpr dfpr = AUC.

Hence, the AUC quantifies the frequency at which a pair of {ξ−, ξ+} is ordered
correctly according to the discriminative function g(. . .). This corresponds to the
probability that a threshold value Θ exists, at which the classifier would separate
such a pair of inputs correctly.

6In detail, the precise shape of the ROC should be taken into account as well. In practice,
individual ROC can differ significantly from the idealized shape displayed in Fig. 6.3.
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Figure 6.4: An example confusion matrix of a 5-class classification problem, taken
from [127]. Matrix elements c(i, j) correspond to the percentage of samples from
(truly) class i which are assigned to class j.

This intuitive interpretation of the AUC in the ROC-analysis also makes it
possible to perform the training of a classifier in such a way that the expected AUC
is maximized, for details see [137,138].

6.3.3 Alternative quality measures and multi-class problems

A variety of quality measures for binary classification schemes have been suggested
in the literature. As an alternative to the ROC, schemes like the Precision-Recall
(PR) formalism or other frameworks can be considered [139]. In the two-class
setting, they are also based on the quantities defined in Eq. (6.11) and provide,
therefore, similar information. For a discussion of commonalities and supposed
advantages or disadvantages see, for instance [139] and references therein.

Simpler point estimates can be computed at a single, specific working point of
a classifier, the over-all accuracy being just the most obvious example.

The so-called balanced accuracy BAC = (tpr + tnr)/2 is supposed to be more
suitable for unbalanced classification problems or data sets, respectively. Similar
claims have been made for versions of the so-called F -measure, the Matthews-
Correlation- Coefficient (MCC) and several other quality measures, see e.g. [140]
for an overview and further references. In fact, a large variety of measures is in use
which can lead to considerable confusion. We refrain from defining and discussing
them here for the sake of clarity. In [141], also a discussion of LVQ-based training
methods is provided, which can aim at a direct optimization of the quality measures.

Most commonly, the so-called confusion matrix c is provided in order summa-
rize the class-specific performance of a multi-class system with respect to a given
data set, e.g. in a validation set of examples not used for training. Illustration 6.4
displays an actual confusion matrix of a particular 5-class classification problem,
taken from [127]. Here, each element c(i, j) corresponds to the percentage of feature
vectors which belong to class i, truly, and are assigned to class j 7. Diagonal c(i, i)
correspond to the class-wise accuracies, while the off-diagonal elements provide in-
sight into which classes are relatively easy or difficult to separate, respectively.

Note that, while the confusion matrix provides detailed information about class-
wise performances, it corresponds to a single working point of the classifier, only.
The generalization of the ROC formalism to multi-class problems is non-trivial
[136, 142], while many of the above mentioned point measures can be extended to
multi-class problems in a straightforward fashion, see [140].

7Alternatively, absolute numbers can be provided.
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6.4 Interpretable systems

The above discussed quality measures and validation procedures focus on the per-
formance of a trained system in terms of classification or regression accuracy. This
is also true for the consideration of more sophisticated measures beyond overall or
class-wise accuracies in supervised classification.

Accuracy appears to be a natural evaluation criterion, if the goal is to, say,
distinguish cats from dogs in images or, perhaps, discriminate diseased patients
from healthy controls in a diagnosis problem.

However, machine learning systems should be evaluated and compared to each
other also according to complementary criteria. Some of these may not be expressed
in terms of simple quantitative measures.

As an illustration, we discuss an entertaining machine learning urban legend
[143]. As all urban legends it is not true, strictly speaking. However, it illustrates
and summarizes an important issue in machine learning along the lines of the open-
ing quotation of this chapter: ”Accuracy is not enough.”

The story is that the US military supposedly designed a classifier, aiming at the
discrimination of US tanks from Russian tanks. The system was trained from a
given set of labeled still images. The performance was nearly perfect: both training
and validation accuracies were close to 100%. However, in practice8, the classifier
failed miserably.

At last, somebody checked the image data base and noted that all American
tanks had been photographed on sunny days in the midst of lush vegetation, while
the photos of Russian tanks were all taken in some Siberian winter landscape. The
classifier had ”learned” to distinguish snow covered scenes from the green fields of
Kansas.

As usual with urban legends, it is told in great diversity, see [143] for an in-
teresting account of several versions. However, the legend’s core message is most
relevant:

Un-noticed biases in data sets can result in seemingly good or even excellent
performances. The effect is frequently much more subtle and more difficult to de-
tect than in the tank urban legend. As a particularly important example, medical
data set are frequently prone to selection biases that facilitate a seemingly suc-
cessful discrimination of diseased from healthy subjects. For example, the age or
gender distribution in the different classes could be different, while being essentially
unrelated with the actual target diagnosis. Even the more frequent occurrence of
missing values in one of the groups could be exploited by the machine learning sys-
tem, resulting in seemingly good yet useless performance. It the nature of machine
learning systems that they are excellent [?].

Hence, the evaluation and comparison of supervised learning models in terms
of accuracy only (or similar performance oriented criteria) can be misleading and
even dangerous. Responsible use of machine learning techniques requires at least
a certain degree of insight into what is the basis of the system’s response. Which
features, for instance, appear most relevant in a classification scheme? In the urban
legend example: Is it the shape of the tanks or the color of the background that the
assignment relies upon?

In this sense, machine learning systems should be transparent and interpretable.
At the very least, an effort should be made to understand how a given classifier or
regression system works. Intuitive prototype-based systems and relevance learning
constitute just two examples of approaches that can be useful in this context. A
qualitative or quantitative study of the importance of given features can be per-
formed in a variety of learning frameworks.

8The use of the term practice is somewhat worrisome in this context.
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The motivation for favoring white-box approaches is not limited to the detection
of potential biases. Interpretable models also facilitate the discussion with the
domain expert and increase the user acceptance for machine learning based support
systems.

Consequently, the topic of improved interpretability has attracted considerable
interest within the machine learning community and continuous to do so. Partly,
these efforts aim at closing the gap (if any) between the goals of statistical modelling
and genuine machine learning discussed in Sec. 2.4.

For recent reviews and research articles we refer the reader to several special
sessions which have been organized at the European Symposium on Neural Networks
(ESANN) in recent years [144–146]. The overview articles and session contributions
should provide a useful starting point for further explorations of the topic.
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Chapter 7

Concluding remarks

In any case, the number of chapters should be prime.

– Michael Biehl

These lecture notes are supposed to serve as a first introduction to supervised
machine learning. They cannot provide a comprehensive, complete overview of this
highly dynamical field of research.

Basic terms and the relation of artificial neural networks with their biological
counterparts are reviewed in Chapter 1. While the correspondence is, generally
speaking, rather weak, biological systems have inspired the area of machine learning
to a large extent and continue to do so.

The second chapter addresses different machine learning frameworks and puts
them into perspective. In particular, common practices in machine learning are
compared and discussed in relation to statistical modelling approaches.

The perceptron model, cf. Chapter 3, serves as a key example framework in which
to discuss a number of essential issues in supervised learning. Extensions of the
concept beyond linear separability are discussed in Chapter 4. This includes layered
neural networks of perceptron-like units for classification and the very successful
framework of the Support Vector Machine.

Chapter 5 is devoted to prototype-based approaches in supervised learning.
Learning Vector Quantization serves as the key example and illustrates the con-
cept of distance based classification. As an example of a data-driven weighting of
features, relevance learning is presented and discussed in the context of LVQ.

The important question of how to evaluate the performance of supervised sys-
tems is addressed in Chapter 6. In particular, the estimation of working phase per-
formance based on available data is discussed. In addition, specific quality measures
for classification schemes are presented. Finally, we briefly discuss the importance
of interpretable systems in supervised learning.

Quite a few important topics could not be addressed in the lecture notes or have
been mentioned only very briefly:

• Continuous, multi-layered neural networks

– The popular realization of classification by means of thresholded regres-
sion was only discussed briefly in terms of the Adaline system as a his-
torical example. To a certain extent, classification by use of multilayered
continuous neural networks is also presented in [1].
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– We have covered regression only in terms of very simple examples, i.e. lin-
ear regression and the Adaline algorithm. A more detailed presentation
of regression was left to the lectures on deep learning [1].

– For the discussion of gradient-based training algorithms for layered neu-
ral networks of continuous units, the reader is also referred to the set
of lectures by M. Huertas-Company [1]. This includes deep neural net-
works and deep learning in general. An introduction and discussion of
this currently very successful area within machine learning is provided
in [1].

• Alternative network architectures
A large variety of alternative architectures and frameworks for regression and
classification could only be mentioned briefly or were not treated at all in
the lectures. Among others, this includes Extreme Learning Machines [147],
Radial Basis Function Networks [4, 18, 19], and other shallow architectures.
Moreover, the areas of echo state machines, liquid state machines and re-
lated frameworks of reservoir computing could not be covered, see [11] for an
overview and references.

• Ensemble based methods
Methods employing ensembles of many classifiers or regression systems have
only been mentioned without going into detail. For an introduction to this
area, see [17, 56, 57]. Related techniques of bagging and boosting are also
introduced in [17].

• The lectures focussed on clear-cut scenarios of supervised learning. Impor-
tant other forms like semi-supervised learning, reinforcement learning, causal
learning could only be mentioned in Sec. 2.3, where references are also pro-
vided. This includes

• All issues related to the pre-processing of data have been excluded from the
presentation, essentially. The influence of normalization, transformations, im-
putation of missing data, integration of multimodal, heterogeneous data, cor-
relation analysis and many more processing techniques deserve significant at-
tention. Several of these aspects are treated in great detail in the standard
literature, e.g. [5, 17–19,22,24,148].

• The problems of model selection and overfitting have been addressed in Chap-
ter 6, to a very limited extent. While the interplay of model complexity and
generalization performance was discussed in principle, the important aspect
of regularization was left out, essentially. Techniques like weight decay or
drop-out can improve the performance of supervised systems significantly, see
among others [17,19,148].

• Feature selection plays an important role in practical applications of super-
vised learning. The related framework of relevance learning was briefly dis-
cussed in Chapter 5. A variety of techniques for the selection and evaluation
of feature importance is presented in [17,19] and other textbooks, the review
article [149] provides an overview and further references.

Clearly, this set of lectures is far from being complete, which also applies to the
above list of missing topics. A large number of highly relevant aspects of supervised
learning have not been taken into account at all. Nevertheless, the author hopes
that the lecture notes provide a useful starting point for further explorations into
the exciting world of machine learning.
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