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Abstract

Learning Vector Quantization has been introduced by Kohonen for classification. An
advanced method derived thereof is the Robust Soft Learning Vector Quantization de-
veloped by Seo&Obermayer bearing on parametrized probability estimates for class
and data distributions. We extended this method to handle data with fuzzy class as-
signments. Further, a parameter optimization scheme is considered for improvement
of the classifcation accuracy. The performance of new algorithm is demonstrated on
two examples: a two-dimensional toy problem and a real life data set. The outcomes
are compared with the known results using Fuzzy Cohen Kappa.

1 Introduction

The general Learning Vector Quantization (LVQ) belongs to the category of supervised
prototype based vector quantizers for classification [3]. This method is intuitive and
known for its stability solving a wide range of classification problems. In this frame-
work, each class is represented by one ore more prototypes. Usually, the prototype
training is based on Hebbian Learning, which provides a paradigm to obtain fast and
easy-to-use algorithms. There exist a variety of sub-types of the basic LVQ algorithm.
Standard LVQ is based on heuristics aiming on the reduction of classification errors [3].
Advanced LVQ schemes like Generalized LVQ (GLVQ) [5] or Robust Soft Learning Vec-
tor Quantization (RSLVQ, [7]) replace the simple classification error by sophisticated
cost functions which allow a gradient ascent/descent learning or EM-optimization.

Generally, for all the approaches, the placement of the prototypes within a class
depends on their distance to the respective data points. Given labeled training data
ξ ∈ RN and an appropriate distance measure d(ξ, w) in RN the class prototypes
w ∈ RN are placed according to the class distributions, which itself are determined
by the underlying metric. A common metric for the calculation of the similarity between
prototypes and data points is the Euclidean distance d(ξ, w) = (ξ − w)T (ξ − w). But
other distance measures might as well be suitable depending on the specific classifi-
cation problem.

All of the different LVQ schemes have in common, that they work on hard labeled
data only. Each data point for the training is known to belong to exactly one class. In
practice, this might not be a realistic assumption. E.g. in medicine a patients disease
might not be uniquely classifiable to only one diagnosis. The medical doctor implicitly
makes probability assumptions about the true kind of illness. Therefore, learning al-
gorithms for prototype classifiers handling uncertain class assignments during training
are required. RSLVQ is a gradient based method maximizing the likelihood ratio [7]. It
is a robust scheme but so far only applicable to crisp labeled training data. In this paper
we extend this approach for handling fuzzy labeled training data. For this purpose a
vectorial adaption scheme is proposed.

Example applications for toy and real world data show the abilities of the method. In
parallel some essential properties of the training behavior differing from crisp learning
are demonstrated.
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2 Robust Soft Learning Vector Quantization

The RSLVQ algorithm, an advanced LVQ, was introduced by Seo and Obermayer [7]
and is also a Nearest Prototype Classifier (NPC). Yet, on the contrary to the original
LVQ, RSLVQ is based on a statistical model. Here it is assumed that the probability
density p(ξ) of the data points ξ ∈ RN with N being the dimensionality of the data points
can be described by a mixture model. Every component j of the mixture is assumed
to generate data which belongs to only one of the C classes. The classification itself is
based on a winner takes all scheme.

The probability density of all the data points is given by

p(ξ|W ) =
C∑

i=1

m∑
j:c(wj)=i

p(ξ|j)P (j) (1)

where W = {(wj, c(wj))}m
j=1 is the set of m labeled prototype vectors wj ∈ RN and

their assigned class labels c(wj). P (j) stands for the probability that data points are
generated by component j of the mixture and is commonly set to an identical value for
all the prototypes. The conditional density p(ξ|j), which describes the probability that
component j is generating a particular data point ξ, is a function of the prototype wj

itself. p(ξ|j) can be chosen to have the normalized exponential form p(ξ|j) = K(j) ·
exp f(ξ, wj, σ

2
j ) where K(j) is the normalization constant and the hyper parameter σ2

j

the width of component j.
The aim of RSLVQ is to place the prototypes such that a given data set is classified

as accurately as possible. Therefore the likelihood ratio

L =
l∏

i=1

L(ξi, yi), with L(ξi, yi) =
p(ξi, yi|W )

p(ξi|W )
(2)

where l is the number of data points has to be maximized. The ratio is built up of
the particular probability density p(ξi, yi|W ) that data point ξi is generated by a mixture
component of the correct class yi

p(ξi, yi|W ) =
∑

j:c(wj)=yi

p(ξi|j)P (j) (3)

and the total probability density p(ξi, yi|W )

p(ξi|W ) =
∑

j

p(ξi|j)P (j). (4)

The derivation of the learning rules is obtained by a stochastic gradient ascent of
the cost function and can be found in detail in [6].

In general the cost function to maximize can be stated as

ERSLV Q =
l∑

i=1

log(
p(ξi, yi|W )

p(ξi|W )
). (5)
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3 Fuzzy RSLVQ

We now introduce fuzzy class labels for the data points, which implies a level of uncer-
tainty in the data set itself. There are various applications where there is only a diffuse
classification possible or the training data can only be obtained by insecure methods.

3.1 Introducing fuzzy class labels

The assumption of fuzzy labeled data points requires an adaption of the original RSLVQ
algorithm. The originally crisp class label yi for the training data point ξi becomes a
C-dimensional vector yk

i of assignment probabilities with
∑C

k=1 yk
i = 1 and yk

i ∈ [0, 1].
As before, each prototype w describes exactly one class with c(w) ∈ [1, C] and the
classification of untrained data is based on the winner takes all scheme. Taking the
fuzzy class assignments of the data points into account equation (3) changes to

p(ξi, yi|W ) =
C∑

k=1

yk
i

m∑
j:c(wj)=k

p(ξi|j)P (j). (6)

The total probability density p(ξi, yi|W ) (4) does not change.
Therefore, the cost function of Fuzzy RSLVQ reads as

EFRSLV Q =
l∑

i=1

log

(
p(ξi, yi|W )

p(ξi|W )

)
. (7)

3.2 Derivation of learning rules

In order to optimize the classification the cost function has to be maximized, which can
be done by a stochastic gradient ascent with respect to the parameter to update. In
the appendix we give a detailed description of the derivation process leading to the
following general update rule

∂ log p(ξ,y|W )

p(ξ|W )

∂Θj

=
(
Py(j|ξ)− P (j|ξ)

)( 1

K(j)

∂K(j)

∂Θj

+
∂f(ξ, wj, σ

2
j ))

∂Θj

)
(8)

Here we assumed a general parameter Θ 6= ξ to be updated. By replacing this pa-
rameter with the parameters of interest the appropriate learning rules can be obtained
easily.
The terms Py(j|ξ) and P (j|ξ) are assignment probabilities. Py(j|ξ) is the assignment
probability of ξ to component j within class c(wj). P (j|ξ) is the assignment probability
of ξ to component j independent of the class membership.
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Py(i|ξ) =
yc(wi)P (i)K(i)ef(ξ,wi,σ

2
i ,λi)

p(ξ, y|W )

P (i|ξ) =
P (i)K(i)ef(ξ,wi,σ

2
i ,λi)

p(ξ|W )

Further we concentrate on the update of the prototypes w and the hyper parameter σ2

assuming the special case of a Gaussian mixture model with P (j) = 1/m for all j. The
normalization constant K(j) can now be set to K(j) = (2πσ2

j )
(−N/2).

3.2.1 Updating the prototypes w

To derive the update rule for the prototypes we replaced the general parameter Θj in
equation (8) with the prototype wj. K(j) is independent of wj, therefore the partial
derivate ∂K(j)/∂wj evaluates to zero. Since we assume a Gaussian mixture model

we use the similarity function f(ξ, w, σ2) =
−d(ξ,w)

2σ2 with d(ξ, w) being the distance
between data point ξ and prototype w. This leads to

∂ log p(ξ,y|W )

p(ξ|W )

∂wj

=
(
Py(j|ξ)− P (j|ξ)

)(
− 1

2σ2

∂d(ξ, wj)

∂wj

)
(9)

The original RSLVQ algorithm was based on the squared Euclidean distance d(ξ, w) =
(ξ −w)T (ξ −w) which yields the update rule

∆wj =
α1

σ2

(
Py(j|ξ)− P (j|ξ)

)
(ξ −wj) (10)

for each prototype with α1 > 0 as learning rate.

3.2.2 Updating the hyper parameter σ2

The partial derivatives of K(j) and f(ξ, wj, σ
2
j ) with respect to the hyper parameter σ2

are

∂K(j)

∂σ2
j

= −N

2

1

(2πσ2
j )

N/2 σ2
j

∂f(ξ, wj, σ
2
j )

∂σ2
j

=
d(ξ, wj)

2 σ4
j

in combination with equation (8) we obtain the learning rule

∆σ2
j = α2 (Py(j|ξ)− P (j|ξ))

(
d(ξ, wj)

σ4
j

− N

σ2
j

)
, (11)

where α2 is the learning rate for the hyper parameter and d(ξ, wj) most commonly the
Euclidean Distance between the data point ξ and prototype wj.
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For the more general case of the global parameter σ2
j = σ2 being identical for all

components j, the hyper parameter can be updated by the summation of the probability
assignments

∆σ2 = α2

m∑
j=1

(Py(j|ξ)− P (j|ξ)) · d(ξ, wj)

σ4
. (12)

3.3 Artificial Data

In a first set of experiments, we apply Fuzzy RSLVQ to artificial toy data sets. The data
sets consist of two spherical Gaussian clusters of equal variance in a two-dimensional
space. We set the distribution’s mean values to µ1 = [−1, 0] and µ2 = [1, 0] and choose
four different settings for the variance ϕ2 ∈ {0.3, 0.5, 0.7, 1.0}. Each cluster consists of
1000 samples. We define the class memberships y1,2 of sample ξ depending on the
first component ξ(1) according to the linear relationship specified in Tab. 1, see also
Fig. 1. The experiments are split into three parts: At first, we learn one prototype per
class with constant σ2. Next, only the hyper parameter is optimized with the prototypes
being fixed in the cluster centers. Finally, hyper parameter and prototypes are learned
simultaneously. The findings are compared to identical experiments with RSLVQ.

For our analysis, we use the learning parameter settings α1 = 1 ·10−3, α2 = 5 ·10−5 ·
σ2(0). As fixed and initial values of the hyper parameter we set σ2(0) ∈ {0.05, 0.15, 0.3}.
The prototypes are initialized close to the cluster means, and training is continued for
500 epochs. We perform each experiment on ten independent data sets.

During FRSLVQ training with constant σ2, the prototypes move away from each
other; they move along the first axis away from the cluster centers. The final distance
‖w1 − w2‖ depends on the value of the hyper parameter and the cluster’s variance.
Namely, the distance increases with increasing softness and increasing variance ϕ2;
though, the influence of ϕ2 is comparably weak. These observations are depicted in
Fig. 2. On the contrary, we observe the opposite effect during RSLVQ training, i.e.,
the prototypes move in the direction of the decision boundary; the distance between
w1 and w2 decreases during training. The prototypes saturate closer to the decision
boundary, the larger ϕ2 and the smaller σ2 (see Fig. 3).

The results of hyper parameter learning with fixed prototypes are visualized in Fig.
4. FRSLVQ converges to values very close to zero after only a small number of train-
ing epochs. On the other hand, RSLVQ approaches the cluster’s variance. These
observations hold for both algorithms independent of the initialization σ2(0).

Concerning FRSLVQ, the simultaneous training of prototypes and hyper parame-
ter initially shows the same behavior as described above: the prototypes move away

Table 1: Relation between ξ(1) and the assignment probabilities of sample ξ to the two
classes.

ξ(1) ≤ −1 −1 < ξ(1) < 1 1 ≤ ξ(1)

y1 1 −0.5 · ξ(1) + 0.5 0
y2 0 0.5 · ξ(1)− 0.5 1
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Figure 1: Artificial data. Visualization of the relation between the first component of
sample ξ and the sample’s assignment probabilities to the two classes. The value ξ(2)
is irrelevant for the labeling.
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Figure 2: Artificial data. Left: Mean final prototype locations after FRSLVQ training with
varying softness on data sets with ϕ2 = 0.3. Right: Trajectories of first component of
class one prototype during FRSLVQ training on datasets with different cluster variance
and equal hyper parameter σ2 = 0.15.

from each other and the hyper parameter quickly converges to zero. However, the
prototypes’ movement is stopped, when σ2 reaches very small values. Hence, the dis-
tance between the prototypes does not increase that extensively as observed in the
experiments with constant σ2.

The hyper parameter training in RSLVQ weakens the movement of prototypes to-
wards to decision boundary; σ2 reaches smaller values compared to the experiments
with fixed prototypes.

3.4 Real Life Data

In our second set of experiments, the algorithms are applied to the real life data set
used in [1],[8] . The data is based on serial transverse sections of barley grains at
different developmental stages. The classification task consists in the identification of
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Figure 3: Artificial data. Left: Mean final prototype locations after RSLVQ training with
varying on data sets with ϕ2 = 0.3. Right: Trajectories of first component of class one
prototype during RSLVQ training on datasets with different cluster variances and equal
hyper parameter σ2 = 0.15.
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Figure 4: Artificial data. Mean evolution of the hyper parameter during training on
datasets with different cluster variances ϕ2 and constant prototypes fixed in the cluster
centers. The hyper parameter was always initialized with σ2(0) = 0.15. The plots are
representative for all tested σ2(0). Left: FRSLVQ-Training. Right: RSLVQ-Training.
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Figure 5: Grain data set. Visualization of the class 5 prototypes obtained by FRSLVQ-
Training (left) and RSLVQ-Training (right) in one training run.
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Figure 6: Grain data set. Mean evolution of the hyper parameter during training with
different initial settings σ2(0). Left: FRSLVQ-Training. Right: RSLVQ-Training.

11 different tissue types. Many sections cannot be classified distinctively, this holds
especially for borders between tissues. For this reason, fuzzy class assignments are
provided beside the crisp labeling. The samples are described by means of 144 fea-
tures and 4418 data points are available. The data set is randomly split into 3800
samples for training, while the remaining data is used for testing purposes.

In order to evaluate the classification accuracy, we compute Fuzzy Cohen’s Kappa
κ as introduced in [2]. This coefficient always lies in the interval [-1 1] and measures
the agreement of two classifiers. The degree of classification agreement reaches from
slight agreement with 0 < κ <= 0.2 over fair, moderate, and substantial up to perfect
agreement with 0.8 < κ <= 1.0. Values beneath zero indicate a poor or accidential
agreement only (see [4] for details). We train FRSLVQ and compare the results to
RSLVQ with the crisp labeling. In all experiments, one prototype per class and a global
hyper parameter are adapted to the data. We apply α1 = 0.01, α2 = 5 · 10−4 · σ2(0),
σ2(0) ∈ {0.5, 1.0, 2.0} and train the system for 200 epochs. To verify the results, the
experiments are repeated on five independent constellations of training- and test set.

The two algorithms identify nearly the same prototypes (see Fig. 5 for examples).
The same holds for the learning process of the hyper parameter, we do not observe
such drastic differences as in the previous experiments. The evolution of σ2 in the
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Figure 7: Grain data set. Mean evolution of the hyper parameter during FRSLVQ
training with different initial settings σ2(0). The fuzziness of the original data set was
increased by adding random noise to the class labels. Left: Uniform noise with variance
0.1 added. Right: Uniform noise with variance 0.5 added.

course of FRSLVQ- and RSLVQ-Training for the different initializations σ2(0) is depicted
in Fig. 6. The curves yielded by the alternative algorithms resemble to large extent: σ2

increases slightly at the beginning of training, but starts degrading after ≈ 10 sweeps
through the training set; finally, the hyper parameter always converges to the same
value, independent of σ2(0). Note however, that the final value σ2(t) is slightly smaller
after FRSLVQ training; we observe σ2

FRSLV Q(t) ≈ 0.9 and σ2
RSLV Q(t) ≈ 1.3. Obviously,

the uncertainty in the class memberships induces smaller optimal values σ2. To verify
this assumption, we artificially increase the fuzziness of the class labels: uniform noise
of different variance is added to the label vectors, followed by a normalization step
to guarantee

∑
i y

i = 1. We add noise of variance 0.1, 0.3 and 0.5 and repeat the
FRSLVQ training process with identical learning parameters. As depicted in Fig. 7,
σ2(t) approaches smaller values with increasing noise level.

The evolution of the coefficient κ during FRSLVQ-Training on the original data set is
depicted in Fig. 8. The coefficient reaches κtrain ≈ 0.83 which corresponds to perfect
agreement; the final value on the test data κtest = 0.78 implies substantial agreement
(Fig. 8, left). The additional noise in the class labeling clearly reduces the algorithm’s
performance. With the lowest noise level we applied in our testings, both values κtrain

and κtest degrade to only moderate agreement (Fig. 8, right).

4 Conclusion

We extended the known RSLVQ algorithm to work with uncertain class labels and
called this new variant Fuzzy RSLVQ (FRSLVQ). Therefore we substituted the crisp
class assignment of each prototype by a possibilistic vector reflecting the relative class
assignments. We derived the update rules for the prototypes and the hyper parame-
ters respectively. In extensive experiments we analyzed the behavior of the learning
process and obtained interesting results which we compared with the characteristics
of RSLVQ.

• Using RSLVQ the prototypes converge towards the decision boundary. For FRSLVQ
we observed that the prototypes tend to move away from each other into a region
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Figure 8: Grain data set. Mean evolution of coefficient κ on training and test data during
FRSLVQ-Training with adaptive softness and σ2(0) = 1. The plot is representative for
all initializations σ2(0). Left: Training on original data set. Right: Training on data set
with increased fuzziness.

of higher classification accuracy. This is due to the fact that the contribution of the
data points to the prototype update for a specific class depends on their strength
for describing this specific class. The higher the classification accuracy of the
data points the higher their attraction for the prototypes.

• The hyper parameter is very crucial for the classification accuracy and the ef-
ficiency of the runs. Therefore we considered to adapt this parameter in the
course of the training. We observed that the initial choice of σ2 has no influence
on the final value. Yet contrary to RSLVQ, where the hyper parameter approaches
the cluster’s variance, with FRSLVQ this parameter converges to rather small or
even close to zero values during the learning process depending on the degree
of uncertainty within the data set. The prototype update stops when the hyper
parameter reaches very small values.

Using real life data FRSLVQ shows the same behavior as with the artificial dataset
with the minor difference, that the results are not as strong pronounced. The hyper
parameter converges to small values but does not reach zero. The protoypes found by
the two algorithms are nearly identical, which is due to the fact that the real life dataset
is a mixture of fuzzy and crisp labeled data points.

We also compared the two algorithms in terms of Fuzzy Cohen Kappa and found a
perfect agreement of the classification accuracy for the training data and a substantial
agreement for the test data.
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5 Appendix

The learning rules for RSLVQ using fuzzy class labels are deduced in the style of
the derivation approach given in [6]. There the derivative of the likelihood ratio with
respect to a general parameter Θi 6= ξ was deduced. The parameter Θi can later on
be substituted by the prototype wi, the hyper parameter σ2

i or the metric parameter λi.

For our further considerations we chose the conditional density to have the normal-
ized exponential form p(ξ|i) = K(i)expf(ξ, wi, σ

2
i , λi) where K(i) is the normalization

factor. This factor depends on the shape of component i. Assuming a N -dimensional
Gaussian distribution K(i) can be set to K(i) = 2πσ2

i
(−N/2).

∂ log p(ξ,y|W )

p(ξ|W )

∂Θi

=
∂ log p(ξ, y|W )

∂Θi

− ∂ log p(ξ|W )

∂Θi

=
1

p(ξ, y|W )

∂p(ξ, y|W )

∂Θi︸ ︷︷ ︸
(a)

− 1

p(ξ|W )

∂p(ξ|W )

∂Θi︸ ︷︷ ︸
(b)

=
yc(wi)P (i)ef(ξ,wi,σ

2
i ,λi)

p(ξ, y|W )

(
∂K(i)

∂Θi

+ K(i)
∂f(ξ, wi, σ

2
i , λi)

∂Θi

)

− P (i)ef(ξ,wi,σ
2
i ,λi)

p(ξ|W )

(
∂K(i)

∂Θi

+ K(i)
∂f(ξ, wi, σ

2
i , λi)

∂Θi

)

= yc(wi)

(
P (i)ef(ξ,wi,σ

2
i ,λi)

p(ξ, y|W )

∂K(i)

∂Θi

+
P (i)K(i)ef(ξ,wi,σ

2
i ,λi)

p(ξ, y|W )

∂f(ξ, wi, σ
2
i , λi)

∂Θi

)

−

(
P (i)ef(ξ,wi,σ

2
i ,λi)

p(ξ|W )

∂K(i)

∂Θi

+
P (i)K(i)ef(ξ,wi,σ

2
i ,λi)

p(ξ|W )

∂f(ξ, wi, σ
2
i , λi)

∂Θi

)

(continued on next page)
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=
1

K(i)

yc(wi)P (i)K(i)ef(ξ,wi,σ
2
i ,λi)

p(ξ, y|W )︸ ︷︷ ︸
Py(i|ξ)

∂K(i)

∂Θi

+
yc(wi)P (i)K(i)ef(ξ,wi,σ

2
i ,λi)

p(ξ, y|W )︸ ︷︷ ︸
Py(i|ξ)

∂f(ξ, wi, σ
2
i , λi)

∂Θi

− 1

K(i)

P (i)K(i)ef(ξ,wi,σ
2
i ,λi)

p(ξ|W )︸ ︷︷ ︸
P (i|ξ)

∂K(i)

∂Θi

− P (i)K(i)ef(ξ,wi,σ
2
i ,λi)

p(ξ|W )︸ ︷︷ ︸
P (i|ξ)

∂f(ξ, wi, σ
2
i , λi)

∂Θi

= Py(i|ξ)

(
1

K(i)

∂K(i)

∂Θi

+
∂f(ξ, wi, σ

2
i , λi)

∂Θi

)

− P (i|ξ)

(
1

K(i)

∂K(i)

∂Θi

+
∂f(ξ, wi, σ

2
i , λi)

∂Θi

)

=
(
Py(i|ξ)− P (i|ξ)

)( 1

K(i)

∂K(i)

∂Θi

+
∂f(ξ, wi, σ

2
i , λi)

∂Θi

)

The terms Py(i|ξ) and P (i|ξ) are assignment probabilities

12 Machine Learning Reports
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Py(i|ξ) =

∑C
k=1 ykδk,c(wi)P (i)K(i)ef(ξ,wi,σ

2
i ,λi)∑C

k=1 yk
∑m

j=1 δk,c(wj)P (j)K(j)ef(ξ,wj ,σ2
j ,λj)

=
yc(wi)P (i)K(i)ef(ξ,wi,σ

2
i ,λi)∑C

k=1 yk
∑m

j=1 δk,c(wj)P (j)K(j)ef(ξ,wj ,σ2
j ,λj)

=
yc(wi)P (i)K(i)ef(ξ,wi,σ

2
i ,λi)

p(ξ, y|W )

P (i|ξ) =
P (i)K(i)ef(ξ,wi,σ

2
i ,λi)∑m

j=1 P (j)K(j)ef(ξ,wj ,σ2
j ,λj)

=
P (i)K(i)ef(ξ,wi,σ

2
i ,λi)

p(ξ|W )

Py(i|ξ) is the assignment probability to component i within class c(wi). P (i|ξ) is
the assignment probability to component i independent of the class membership.

(a)

∂p(ξ, y|W )

∂Θi

=
∂

∂Θi

(
C∑

k=1

yk

m∑
j=1

δk,c(wj)p(ξ|j)P (j)

)

=
C∑

k=1

yk

m∑
j=1

δk,c(wj)P (j)
∂p(ξ|j)

∂Θi

=
C∑

k=1

yk

m∑
j=1

δk,c(wj)P (j)ef(ξ,wi,σ
2
i ,λi)

(
∂K(j)

∂Θi

+ K(j)
∂f(ξ, wi, σ

2
i , λi)

∂Θi

)

= yc(wi)P (i)ef(ξ,wi,σ
2
i ,λi)

(
∂K(i)

∂Θi

+ K(i)
∂f(ξ, wi, σ

2
i , λi)

∂Θi

)

Machine Learning Reports 13
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(b)

∂p(ξ|W )

∂Θi

=
∂
∑m

j=1 p(ξ|j)P (j)

∂Θi

= P (i)
∂p(ξ|i)

∂Θi

= P (i)ef(ξ,wi,σ
2
i ,λi)

(
∂K(i)

∂Θi

+ K(i)
∂f(ξ, wi, σ

2
i , λi)

∂Θi

)
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