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Abstract

In this paper we offer a systematic approach of the mathematical treatment of the t-
Distributed Stochastic Neighbor Embedding (t-SNE) as well as Stochastic Neighbor
Embedding method. In thsi way the theory behind becomes better visible and allows
an easy adaptation or exchange of the several modules contained. In particular,
this concerns the underlying mathematical structure of the cost function used in the
model (divergence function) which can now indepentently treated from the other
components like data similarity measures or data distributions. Thereby we focus
on the utilization of different divergences. This approach requires the consideration
of the Fréchet-derivatives of the divergences in use. In this way, the approach can
easily adapted to user specific requests.
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1 Introduction

Methods of dimensionality reduction are challenging tools in the fields of data anal-
ysis and machine learning used in visualization as well as data compression and
fusion [?],.

Generally, dimensionality reduction methods convert a high dimensional data set
X = {x} into low dimensional data Ξ = {ξ}. A probabilistic approach to visual-
ize the structure of complex data sets, preserving neighbor similarities is Stochastic
Neighbor Embedding (SNE), proposed by HINTON and ROWEIS [?]. In [9] VAN DER

MAATEN and HINTON presented a technique called t-SNE, which is a variation of
SNE considering another statistical model assumption for data distributions. Both
methods have in common, that a probability distribution over all potential neighbors
of a data point in the high-dimensional space is analyzed and described by their
pairwise dissimilarities. Both, t-SNE and SNE (in a symmetric variant [9]), originally
minimize a Kullback-Leibler divergence between a joint probability distribution in the
high-dimensional space and a joint probability distribution in the low-dimensional
space as the underlying cost function, using a gradient descent method. The pair-
wise similarities in the high-dimensional original data space are set to

p = pξη =
pη|ξ + pξ|η

2 ·
∫

1 dη′
(1.1)

with conditional probabilities

pη|ξ =
exp

(
−‖ξ − η‖2 / 2σ2

ξ

)∫
exp

(
−‖ξ − η′‖2 / 2σ2

ξ

)
dη′

.

SNE and t-SNE differ in the model assumptions according to the distribution in the
low-dimensional mapping space, later defined more precisely.

In this article we provide the mathematical framework for the generalization of
t-SNE and SNE, in such a way, that an arbitrary divergence can be used as cost-
function for the gradient descent instead of the Kullback-Leibler divergence. The
methodology is based on the Fréchet-derivative of the used divergence for the cost
function [16],[17].

2 Derivation of the general cost function gradient for

t-SNE and SNE

2.1 The t-SNE gradient

Let D (p||q) be a divergence for non-negative integrable measure functions p = p (r)

and q = q (r) with a domain V and ξ, η ∈ Ξ distributed according to ΠΞ [2]. Further,
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let r (ξ, η) : Ξ× Ξ→ R with the distribution Πr = φ (r,ΠΞ).
Moreover the constraints p (r) ≤ 1 and q (r) ≤ 1 hold for all r∈V . We denote such

measure functions as positive measures. The weight of the functional p is defined
as

W (p) =

∫
V

p (r) dr. (2.1)

Positive measures p with weight W (p) = 1 are denoted as (probability) density
functions.

Let us define
r = ‖ξ − η‖2 . (2.2)

For t-SNE, q is obtained by means of a Student t-distribution, such that

q′ = q (r (ξ′, η′)) =
(1 + r (ξ′, η′))−1∫ ∫
(1 + r (ξ, η))−1 dξdη

which we will abbreviate below for reasons of clarity as

q (r′) =
(1 + r′)−1∫ ∫
(1 + r)−1 dξdη

= f (r′) · I−1 .

Now let us consider the derivative of D with respect to ξ:

∂D

∂ξ
=

∂D (p, q (r (ξ, η)))

∂ξ

=

∫ ∫
δD

δr′
∂r′

∂ξ
dξ′dη′

=

∫ ∫
δD

δr (ξ′, η′)

∂r (ξ′, η′)

∂ξ
dξ′dη′

=

∫ ∫
δD

δr (ξ′, η′)
[2δξ′,ξ (ξ′ − η′)− 2δη′,ξ (ξ′ − η′)] dξ′dη′

= 2

∫ [
δD

δr (ξ, η′)
(ξ − η′) +

∫
δD

δr (ξ′, η′)
δη′,ξ (η′ − ξ′) dξ′

]
dη′

= 2

∫
δD

δr (ξ, η′)
(ξ − η′) dη′ + 2

∫
δD

δr (ξ′, ξ)
(ξ − ξ′) dξ′

= 4

∫
δD

δr (ξ, η)
(ξ − η) dη (2.3)

We now have to consider δD
δr(ξ,η)

. Again, using the chain rule for functional derivatives
we get

δD

δr (ξ, η)
=

∫ ∫
δD

δq (r (ξ′, η′))

δq (r (ξ′, η′))

δr (ξ, η)
dξ′dη′ (2.4)

=

∫
δD

δq (r′)
δq (r′)
δr

Πr′ dr
′ (2.5)

2 Machine Learning Reports



Mathematical Foundations of the Generalization of t-SNE and SNE for Arbitrary

Divergences

whereby
δq (r′)

δr
=
δf (r′)

δr
· I−1 − f (r′) · I−2 δI

δr

holds, with
δf (r′)

δr
= −δr,r′ (1 + r)−2 and

δI

δr
= − (1 + r)−2

So we obtain

δq (r′)

δr
=
−δr,r′ (1 + r)−2

I
+ f (r′) · I−2 · (1 + r)−2

=
−δr,r′ (1 + r)−1 f (r)

I
+
f (r′)

I

f (r)

I
(1 + r)−1

= −δr,r′ (1 + r)−1 q (r) + q (r′) q (r) (1 + r)−1

= − (1 + r)−1 q (r) (δr,r′ − q (r′)) .

Substituting these results in eq. (2.5), we get

δD

δr
=

∫
δD

δq (r′)
δq (r′)
δr

Πr′ dr
′

= − (1 + r)−1 q (r)

∫
δD

δq (r′)
(δr,r′ − q (r′)) Πr′ dr

′

= − (1 + r)−1 q (r)

(
δD

δq (r)
−
∫

δD

δq (r′)
q (r′) Πr′ dr

′
)

Finally, we can collect all partial results and get

∂D

∂ξ
= 4

∫
δD

δr
(ξ − η) dη

= −4

∫
(1 + r)−1 q (r)

(
δD

δq (r)
−
∫

δD

δq (r′)
q (r′) Πr′ dr

′
)

(ξ − η) dη (2.6)

We now have the obvious advantage, that we can derive ∂D
∂ξ

for several diver-
gences D (p||q) directly from (2.6), if the Fréchet derivative δD

δq(r)
of D with respect

to q (r) is known. Yet, for the most important classes of divergences, including
Kullback-Leibler-, Rényi and Tsallis-divergences, these Fréchet derivatives can be
found in [16].

2.2 The SNE gradient

In symmetric SNE, the pairwise similarities in the low dimensional map are given by
[9]

q′SNE = qSNE (r (ξ′, η′)) =
exp (−r (ξ′, η′))∫ ∫
exp (−r (ξ, η)) dξdη
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which we will abbreviate below for reasons of clarity as

qSNE (r′) =
exp (−r′)∫ ∫
exp (−r) dξdη

= g (r′) · J−1 .

Consequently, if we consider ∂D
∂ξ

, we can use the results from above for t-SNE. The
only term that differs is the derivative of qSNE (r′) with respect to r. Therefore we get

δqSNE (r′)

δr
=
δg (r′)

δr
· J−1 − g (r′) · J−2 δJ

δr

with
δg (r′)

δr
= −δr,r′ exp (−r) and

δJ

δr
= − exp (−r)

which leads to

δqSNE (r′)

δr
=
−δr,r′ exp (−r)

J
+ g (r′) · J−2 · exp (−r)

=
−δr,r′g (r)

J
+
g (r′)

J

g (r)

J
= −δr,r′qSNE (r) + qSNE (r′) qSNE (r)

= −qSNE (r) (δr,r′ − qSNE (r′)) .

Substituting these results in eq. (2.5), we get

δD

δr
=

∫
δD

δqSNE (r′)
δqSNE (r′)

δr
Πr′ dr

′

= −qSNE (r)

∫
δD

δqSNE (r′)
(δr,r′ − qSNE (r′)) Πr′ dr

′

= −qSNE (r)

(
δD

δqSNE (r)
−
∫

δD

δqSNE (r′)
qSNE (r′) Πr′ dr

′
)

Finally, substituting this result in eq. (2.3), we obtain

∂D

∂ξ
= 4

∫
δD

δr
(ξ − η) dη

= −4

∫
qSNE (r)

(
δD

δqSNE (r)
−
∫

δD

δqSNE (r′)
qSNE (r′) Πr′ dr

′
)

(ξ − η) dη(2.7)

as the general formulation of the SNE cost function gradient, which, again, utilizes
the Fréchet-derivatives of the applied divergences as above for t-SNE.

3 t-SNE gradients for various divergences

In this section we explain the t-SNE gradients for various divergences. There exist
a large variety of different divergences, which can be collected into several classes
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according to their mathematical properties and structural behavior. Here we follow
the classification proposed in [2].

For this purpose, we plug the Fréchet-derivatives of these divergences or diver-
gence families into the general gradient formula (2.6) for t-SNE. Clearly, one can
convey these results easily to the general SNE gradient (2.7) in complete analogy,
since its structural similarity to the t-SNE formula (2.6).

A technical remark should be given here: In the following we will abbreviate p (r)

by p and p (r′) by p′. Further, because the integration variable r is a function r =

r (ξ, η) an integration requires the weighting according to the distribution Πr. Thus,
the integration has formally to be carried out according to the differential dΠr (r)

(Stieltjes-integral). We shorthand this simply to dr but keeping this fact in mind, i.e.
by this convention, we’ll drop the distribution Πr, if it is clear from the context.

3.1 Kullback-Leibler divergence and other Bregman diver-
gences

As a first example we show that we obtain the same result as VAN DER MAATEN and
HINTON in [9] for the Kullback-Leibler divergence

DKL (p||q) =

∫
p log

(
p

q

)
dr .

The Fréchet-derivative of DKL with respect to q is given by

δDKL

δq
= −p

q
.

From eq. (2.6) we see that

∂DKL

∂ξ
= 4

∫
(1 + r)−1 q

(
p

q
−
∫
p′
q′
q′Πr′ dr

′
)

(ξ − η) dη

= 4

∫
(1 + r)−1 q

(
p

q
−
∫
p′Πr′ dr

′
)

(ξ − η) dη . (3.1)

Since the Integral I =
∫
p′Πr′ dr

′ in (3.1) can be written as an double integral over
all pairs of data points I =

∫ ∫
p′dξ′dη′, we see from (1.1) that the integral I equals

1. So, (3.1) simplifies to

∂DKL

∂ξ
= 4

∫
(1 + r)−1 q

(
p

q
− 1

)
(ξ − η) dη

= 4

∫
(1 + r)−1 (p− q) (ξ − η) dη . (3.2)

This formula is exactly the differential form of the discrete version as proposed for
t-SNE in [9].
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The Kullback-Leibler divergence used in original SNE and t-SNE belongs to the
more general class of Bregman divergences [1]. Another famous representative of
this class of divergences is the Itakura-Saito divergence DIS [6], defined as

DIS (p||q) =

∫ [
p

q
− log

(
p

q

)
− 1

]
dr

with the Fréchet-derivative

δDIS (p||q)
δq

=
1

q2
(q − p) .

For the calculation of the gradient ∂DIS
∂ξ

we substitute the Fréchet-derivative in eq.
(2.6) and obtain

∂DIS

∂ξ
= −4

∫
(1 + r)−1 q

(
1

q2
(q − p)−

∫
q′ − p′
q′

Πr′ dr
′
)

(ξ − η) dη

= −4

∫
(1 + r)−1

(
q − p
q
− q

∫
q′ − p′
q′

Πr′ dr
′
)

(ξ − η) dη

= 4

∫
(1 + r)−1

(
p

q
− 1 + q

∫ (
1− p′

q′

)
Πr′ dr

′
)

(ξ − η) dη . (3.3)

One more representative of the class of Bregman-divergences is the norm-like
divergence1 Dθ with the parameter θ, [10]:

Dθ (p||q) =

∫
pθ + (θ − 1) qθ − θ p q(θ−1) dr .

The Fréchet-derivative of Dθ with respect to q is given by

δDθ (p||q)
δq

= θ (1− θ) (p− q) qθ−2 .

Again, we are interested in the gradient ∂Dθ
∂ξ

, which is

∂Dθ

∂ξ
= 4 θ (θ − 1)

∫
(1 + r)−1

(
(p− q) qθ−1 − q

∫
(p′ − q′) q′(θ−1)Πr′ dr

′
)

(ξ − η) dη

(3.4)
The last example of Bregman-divergences we handle in this paper is the class of

β−divergences [2],[4], defined as

Dβ (p||q) =

∫
pβ
(

1

β − 1
− 1

β

)
− qβ−1

(
p

β − 1
+
q

β

)
dr .

We use eq. (2.6) and insert the Fréchet-derivative of the β−divergences, given by

δDβ (p||q)
δq

= qβ−2 (q − p) .

1We note that the norm-like divergence was denoted as η−divergence in previous work [16]. We
substitute the parameter η with θ in this paper to avoid confusion in denotation.
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Thereby the gradient ∂Dβ
∂ξ

reads as

∂Dβ

∂ξ
= 4

∫
(1 + r)−1

(
qβ−1 (p− q)− q

∫
q′(β−1) (p′ − q′) Πr′ dr

′
)

(ξ − η) dη . (3.5)

3.2 Csiszár’s f -divergences

Next we will consider some divergences belonging to the class of Csiszár’s f -
divergences [3],[8],[14].

A famous example is the Hellinger divergence [8], defined as

DH (p||q) =

∫
(
√
p−√q)2 dr .

With the Fréchet-derivative

δDH (p||q)
δq

= 1−
√
p

q

the gradient of DH with respect to ξ is

∂DH

∂ξ
= 4

∫
(1 + r)−1

(
√
p q − q − q

∫ (√
p′q′ − q′

)
Πr′ dr

′
)

(ξ − η) dη

= 4

∫
(1 + r)−1

(
√
p q − q

∫ √
p′q′ Πr′ dr

′
)

(ξ − η) dη . (3.6)

The α−divergence defines an important subclass of f -divergences

Dα (p||q) =
1

α (α− 1)

∫ [
pαq1−α − α p+ (α− 1) q

]
dr

defines an important subclass of f -divergences [2], with the Fréchet-derivative

δDα (p||q)
δq

= − 1

α

(
pαq−α − 1

)
can be handled as follows:

∂Dα

∂ξ
=

4

α

∫
(1 + r)−1 q

((
pαq−α − 1

)
−
∫ (

p′αq′(−α) − 1
)
q′ Πr′ dr

′
)

(ξ − η) dη

=
4

α

∫
(1 + r)−1

(
pαq1−α − q − q

∫ (
p′αq′(1−α) − q′

)
Πr′ dr

′
)

(ξ − η) dη

=
4

α

∫
(1 + r)−1

(
pαq1−α − q

∫
p′αq′(1−α)Πr′ dr

′
)

(ξ − η) dη . (3.7)

A widely applied divergence, closely related to the α−divergences, is the Tsallis-
divergence [15], defined as

DT
α (p||q) =

1

1− α

(
1−

∫
pαq1−αdr

)
.

Machine Learning Reports 7
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Utilizing the Fréchet-derivative of DT
α with respect to q, that is

δDT
α (p||q)
δq

= −
(
p

q

)α
.

We now can compute the gradient of DT
α with respect to ξ from eq. (2.6):

∂DT
α

∂ξ
= 4

∫
(1 + r)−1 q

((
p

q

)α
−
∫ (

p′

q′

)α
q′Πr′ dr

′
)

(ξ − η) dη

= 4

∫
(1 + r)−1

(
pαq(1−α) − q

∫
p′αq′(1−α)Πr′ dr

′
)

(ξ − η) dη , (3.8)

which is also clear from eq. (3.7), since the Tsallis-divergence is a rescaled version
of the α−divergence for probability densities.

Now, as a last example from the class of Csiszár’s f -divergences, we consider
the Rényi-divergences [12],[13], which are also closely related to the α−divergences
and defined as

DR
α (p||q) =

1

α− 1
log

(∫
pαq1−αdr

)
with the corresponding Fréchet-derivative

δDR
α (p||q)
δq

= − pαq−α∫
p′αq′(1−α)dr′

.

Hence,

∂DR
α

∂ξ
=

4∫
p′αq′(1−α)dr′

∫
(1 + r)−1

(
pαq1−α − q

∫
p′αq′(1−α)Πr′ dr

′
)

(ξ − η) dη

= 4

∫
(1 + r)−1

(
pαq1−α∫

p′αq′(1−α)dr′
− q
)

(ξ − η) dη . (3.9)

3.3 γ−divergences

A class of very robust divergences with respect to outliers are the γ−divergences
[5], defined as

Dγ (p||q) = log

(∫ pγ+1dr
) 1
γ(γ+1) ·

(∫
qγ+1dr

) 1
γ+1(∫

p qγ dr
) 1
γ

 .

The Fréchet-derivative of Dγ (p||q) with respect to q is

δDγ (p||q)
δq

= qγ−1

[
q∫

qγ+1dr
− p∫

p qγdr

]
=

qγ

Qγ

− p qγ−1

Vγ

=
qγVγ − p qγ−1Qγ

QγVγ
.
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Once again, we use eq. (2.6) to calculate the gradient of Dγ with respect to ξ :

∂Dγ

∂ξ
= − 4

QγVγ

∫
(1 + r)−1 q

(
qγVγ − p qγ−1Qγ −

∫ (
q′γVγ − p′ q′γ−1Qγ

)
q′Πr′ dr

′
)

(ξ − η) dη

= − 4

QγVγ

∫
(1 + r)−1 q

(
qγVγ − p qγ−1Qγ − Vγ

∫
q′γ+1Πr′ dr

′ +Qγ

∫
p′q′γΠr′ dr

′
)

(ξ − η) dη

= − 4

QγVγ

∫
(1 + r)−1 q

(
qγVγ − p qγ−1Qγ − VγQγ +QγVγ

)
(ξ − η) dη

= 4

∫
(1 + r)−1

(
p qγ∫
p′q′γdr′

− qγ+1∫
q′γ+1dr′

)
(ξ − η) dη . (3.10)

For the special choice γ = 1 the γ−divergence becomes the Cauchy-Schwarz diver-
gence [11],[7]:

DCS (p||q) =
1

2
log

(∫
q2dr·

∫
p2dr

)
− log

(∫
p · q dr

)
and the gradient ∂DCS

∂ξ
for t-SNE can be directly deduced from eq. (3.10):

∂DCS

∂ξ
= 4

∫
(1 + r)−1

(
p q∫
p′q′ dr′

− q2∫
q′2dr′

)
(ξ − η) dη . (3.11)

Moreover, similar derivations can be made for any other divergence, since one only
needs to calculate the Fréchet-derivative of the divergence and apply it to (2.6).

4 Conclusion

In this article we provide the mathematical foundation for the generalization of t-
SNE and the symmetric variant of SNE. This framework enables the application
of any divergence as cost-function for the gradient descent. For this purpose, we
first deduced the gradient for t-SNE in a complete general case. In the result of
that derivation we obtained a tool that enables us to utilize the Fréchet-derivative of
any divergence. Thereafter we gave the abstract gradient also for SNE. Finally we
calculated the concrete gradient for a wide range of important divergences. These
results are summarized in table 1.

Machine Learning Reports 9
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=
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−
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∂
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