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Preface

The 12 th international Mittweida Workshop on Computational Intelligence (MiWoCI) gather-
ing together more than 50 scientists from di�erent universities including Bielefeld, Groningen,
UAS Mittweida, UAS Würzburg-Schweinfurt, UAS Zwickau, University of Sydney, and IFF
Fraunhofer in Magdeburg. This year it was a little bit special, instead of all scientist coming to
Mittweida, Germany, the Workshop was digital. Nevertheless, from 1.7.- 3.7.2020 the tradition
of scienti�c presentations, vivid discussions, and exchange of novel ideas at the cutting edge of
research was continued. They were connected to diverse topics in computer science, automotive
industry, and machine learning.

This report is a collection of abstracts and short contributions about the given presentations
and discussions, which cover theoretical aspects, applications, as well as strategic developments
in the �elds.
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LVQ meets RNN

Jensun Ravichandran

University of Applied Sciences Mittweida, SICIM, Germany

Abstract

Learning Vector Quantization (LVQ) methods have been popular choices of classi�ca-
tion models ever since its introduction by T. Kohonen in the 90s [1]. Since then, a plethora
of improvements have been made to the original formulation of the LVQ algorithm to han-
dle several shortcomings. However, techniques to model recurrent relationships in the data
using prototype methods still remain quite unsophisticated. In this paper, we propose the
use of the Siamese architecture to not only model recurrent relationships within the pro-
totypes but also the ability to handle prototypes of di�erent dimensions simultaneously.

References

[1] T. Kohonen, Self- Organization and Associative Memory, Springer-Verlag, 1989.
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DeepView: A toolbox to visualize deep neural network

classi�ers and others

Alexander Schulz, Luca Hermes, Fabian Hinder and Barbara Hammer

Machine Learning Group, Bielefeld University, Bielefeld, Germany

Abstract

Recent progress in the �eld of deep neural networks produces increasingly powerful
models which are able to achieve human level and partially even super human performance
[4, 3]. However, these networks are growing in complexity making them increasingly
di�cult to comprehend and more vulnerable to adversarial attacks [5]. To increase the
understanding of a trained classi�cation model, such as a deep network, we present the
toolbox DeepView1 [2], which provides a visualization of the classi�cation function together
with a data set. This is in contrast to most of the present literature, which focusses on
explaining the investigated model with respect to individual data samples [1].

This toolbox is written in python and requires only a function that, given the classi�er
and a new data point, computes the prediction and a certainty of the latter. Based on this,
DeepView computes a discriminative dimensionality reduction of the given data that is
tuned for the classi�er at hand and embeds the decision function therein. We demonstrate
DeepView for deep networks with poisened data and for di�erent classi�ers.

References

[1] G. Montavon, W. Samek, and K.-R. MÃ¼ller. Methods for interpreting and under-
standing deep neural networks. Digital Signal Processing, 73:1 � 15, 2018.

[2] A. Schulz, F. Hinder, and B. Hammer. Deepview: Visualizing classi�cation boundaries
of deep neural networks as scatter plots using discriminative dimensionality reduc-
tion. In Proceedings of the Twenty-Ninth International Joint Conference on Arti�cial

Intelligence,{IJCAI-20}, 2020.
[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. nature, 529(7587):484, 2016.

[4] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking
machine learning algorithms for tra�c sign recognition. Neural Networks, 32:323 �
332, 2012. Selected Papers from IJCNN 2011.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus. Intriguing properties of neural networks. preprint arXiv:1312.6199, 2013.

1Code available at https://github.com/LucaHermes/DeepView

MiWoCI Workshop - 2020

Machine Learning Reports 7



Visualisation and knowledge discovery from interpretable
models

Sreejita Ghosh1, Peter Tino2, and Kerstin Bunte1

1Bernoulli Institute, University of Groningen
2School of Computer Science,University of Birmingham

Abstract

Increasing number of anthropocentric sectors are using Machine Learning (ML) tools.
Hence the need for understanding their working mechanism, evaluating their fairness in
decision-making, and ensuring their trustworthiness are becoming paramount, ushering
in the era of Explainable AI (XAI) [1, 2]. Recently we introduced a few intrinsically
interpretable models which provide visualisation of the classifier and decision boundaries,
in addition to extracting knowledge from the dataset and about the problem. They are
also capable of dealing with missing values: they are the angle based variants of Learning
Vector Quantization. We have demonstrated the algorithms on a synthetic dataset and a
real-world one (heart disease dataset from the UCI repository). The newly developed angle
LVQ variants helped in investigating the complexities of the UCI dataset as a multiclass
problem. The performance of the developed classifiers were comparable to those reported
in literature for this dataset, with additional value of interpretability, when the dataset
was treated as a binary class problem. [2]

References
[1] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and

challenges toward responsible AI, Arrieta, Alejandro Barredo and Díaz-Rodríguez,
Natalia and Del Ser, Javier and Bennetot, Adrien and Tabik, Siham and Barbado,
Alberto and García, Salvador and Gil-López, Sergio and Molina, Daniel and Ben-
jamins, Richard and others, Information Fusion, Volume 58, p82–115, 2020, Elsevier

[2] Visualisation and knowledge discovery from interpretable models, Ghosh, Sreejita and
Tino, Peter and Bunte, Kerstin, accepted at IJCNN 2020, 2020
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Document Embedding to Explain AI Components

Philip Kenneweg, Robert Feldhans, Sarah Schröder

Abstract

We analyze the performance of state of the art text embeddings on AI descriptions.
With the recent popularity of AI and data science, there are plenty of researchers and
providers for such solutions. These are met by the demand for automation and "in-
telligent" solutions in countless use cases. Identifying the proper solution for a certain
application is not trivial and far from automated. Not without reason there have been
many publications in the field of AutoML recently.
We address this issue from another perspective by examining the possibility to interpret
description texts for AI components in order to explain their functionality, find similar
solutions or match solutions with a user’s requirements. In this context, we compare the
performance of different text embeddings applied to descriptions from the scikit-learn[1]
and ROS[2] documentation.
Using different visualization and clustering methods, we aim to explain how well exist-
ing text embeddings represent these descriptions and whether it is possible to identify
functionally similar components.

References
[1] https://scikit-learn.org/

[2] https://wiki.ros.org/
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Understanding Sign Language: Is OpenPose Suitable?

Tina Geweniger, Sven Hellbach, Alejandro Oviedo, Martje Hansen

Westsächsische Hochschule Zwickau

Abstract

Teaching sign language is a time consuming task which requires constant interaction
with the students. During many training sessions the signs are repeated multiple times
and the teacher has to respond to each student individually. Up to now, there are no
technologies available which allow for distant self-reliant learning by students as known
from audio and video support for common spoken language study. Due to the three
dimensional features and the temporal aspect of the signs no training material for self-
study are available.

We want to develop a tool which allows students to practice sign language in an off-
classroom setting without intervention by a teacher. In a first step the signs should be
recognized and translated to spoken language. Next steps involve gradual sign recognition
(This sign could mean xyz, but it could also stand for abc.) and feedback to the learner
with hints for improvement (The sign for xyz is almost correct. The hand movement in the
end is not quite right.). For the analysis and evaluation of the data different algorithms
for clustering and classification will be used. We are still at the very beginning of our
research and are not sure yet, which algorithm will be the most suitable to perform this
kind of sign classification, since besides the movement data we also have to consider the
timing aspects.

Figure 1: Extracting movement features with Open Pose
based on body, hand, and face recognition.

For feature extraction from video sequences we plan to use Open Pose [1], which is
an open source software detecting body, hand, and face movements in video sequences
in real-time. First experiments performed on a small set of sequences indicate that this
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toolbox is suitable in our context to extract enough relevant movement data and timing
information of signers. Figure 1 depicts an example. The labelling of the data will be
provided by professional signers.

Experimental settings found in literature always include elaborate equipment like 3d-
cameras, kinect, or infra-red sensors. We want to keep it simple and affordable for students
and teachers relying on smartphone / tables or build in computer cameras only.

References
[1] Z. Cao, G. Hidalgo Martinez, T. Simon and S. Wei, and Y. A. Sheikh - OpenPose:

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields in IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2019.
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Automated Evaluation of Classi�cation Models for

Spectral Data with Discriminative Dimensionality

Reduction Methods

Gesa Marie Goette*, Andreas Herzog, Andreas Backhaus, and Udo Sei�ert

Biosystems Engineering, Fraunhofer Institute for Factory Operation and

Automation IFF, Magdeburg, Germany

Abstract

The usage of hyperspectral data for food inspection gained a lot of attention in the
past years due to the rather easy data collection in comparison to e.g. laboratory analy-
ses. Nevertheless, these analyses are only promising if the data contains the property of
interest and the model applied is capable of representing these properties. Due to measure-
ment biases, especially in �eld data, normalization techniques should be considered before
modelling. Common model choices are e.g. multi-layer perceptrons (MLP), convolutional
neural networks (CNN), or radial basis function networks (RBF). Accuracy of prediction
is commonly used to score these models in hope of achieving generalisation and therefore
predicting future data. While accuracy is good in providing a basic idea of the quality
of a model, it does not deliver any information about the speci�c representation of data
in di�erent models. For this purpose, techniques to visualise the decision boundaries of
models have been developed. One recently developed technique based on discriminative
dimensionality reduction is implemented in the package "Deepview" [1]. It embeds the
data in a space of features that are important for the model's predictions and visualises the
model's decisions in this feature space. We adapt this technique, which was developed and
evaluated on the base of image data, to spectral data classi�cation problems. Therefore,
we adjust the colouring of the model's decisions in the embedding space by normalising
it based on the entropy of the underlying model. Furthermore, the distribution of the
network's certainty and related quantities in the embedding space are summarised and
analysed to build a base for the evaluation and comparison of di�erent models. With this
approach, di�erent models with di�erent data normalisations are compared.

References

[1] Schulz, Alexander; Hinder, Fabian; Hammer, Barbara (2019). DeepView: Visualizing
the behavior of deep neural networks in a part of the data space.

*presenter
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Domain Invariant Representations

with Deep Spectral Alignment

Christoph Raab

University of applied Sciences Würzburg-Schweinfurt

Abstract

Similar as traditional algorithms, deep learning networks struggle in generalizing across

domain boundaries. A current solution is the simultaneous training of the classi�cation

model and the minimization of domain di�erences in the deep network. In this work, we

propose a new unsupervised deep domain adaptation architecture, which trains a classi�er

and minimizes the di�erence of spectral properties of the co-variance matrix of the data.

Evaluated against standard architectures and datasets, the approach shows an alignment

with respect to the data variance between related domains.
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Evaluation of the Potential of Machine Learning Methods
in Motion Analysis Using alaska/DYNAMICUS

Danny Möbius1, Marika Kaden2, and Thomas Villmann2

1 Institut für Mechatronik, Chemnitz, Germany
1 University of Applied Sciences Mittweida, SICIM, Germany

Abstract

The bio-mechanical human model alaska/DYNAMICUS, developed at the Institute of
Mechatronics e.V. in Chemnitz, is a multi-body dynamics-based simulation model of hu-
mans with individualization anthropometric properties [1]. The system processes recorded
motion data from (optical) motion capturing as well as force measurement systems. Re-
sults of the simulation are kinematic and dynamic quantities such as joint angles, speeds,
and forces (joint moments). DYNAMICUS is used in several areas, e. g. product and pro-
cess ergonomics in the automotive industry, sports, and human-technology interaction [2].
In a cooperation project1 with UAS Mittweida (SICIM) the potential of machine learn-
ing methods is analyzed. Thereby, learning approaches are evaluated with the already
existing statistical and rule-based models in di�erent aspects like performance, runtime
in the application phase, the e�ort to create the model and the robustness/stability of
the models. A �rst basic problem is the detection of simple movements (sitting, stand-
ing, sitting down) using kinematic quantities (joint angles and speeds). The challenge
here is that the labeling of the data is automatically done by the existing system and not
manually. This results in uncertainties in labeling, but also in di�culties in the evalua-
tion of the models. Furthermore, in the future not only individual movements should be
detected, but also overlapping movements. This type of problem can be transferred in
machine learning to so called multi-label classi�cation. Another promising application is
the prediction of the maximum strength of the leg stretching muscles during squats with
weights. The aim is to use the movement data, measured below the maximum range to
predict the maximum strength of the proband, i. e. the maximum weight with which it can
still perform the squat. The maximum force is an essential problem, especially in junior
top-class sport, and previous statistical methods provide only an imprecise results. A �rst
feasibility study showed promising results [3]. In the presentation the human model is
brie�y introduced and the two applications mentioned above are described. In addition,
questions and challenges for the application as well as for the machine learning models are
discussed.

1alaska/KIML is support by European Social Fund; This measure is co-�nanced by taxes on algae in the
budget adopted by the Saxon state parliament
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References

[1] H. Hermsdorf, N. Hofmann, and A. Keil: Chapter 16 - Alaska/dynamicus - human
movements in interplay with the environment. Academic Press, DHM and Posturog-
raphy, p. 187-198, 2019

[2] www.ifm-chemnitz.de

[3] N. Hofmann, J. Alhakeem, H. Hermsdorf, D. Möbius , S. Öhmichen, H. Schulz, M.
Kaden, and T. Villmann: Analysemethoden zur Abschätzung von Belastungsinten-
sitäten bei Kniebeugen unter Verwendung interpretierbare Modelle der Künstlichen
Intelligenz. Machine Learning Report 01, MLR-01-2020, 2020
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Sensors performance evaluation in classi�cation tasks
- ToF/Radar fusion system use case -

Feryel Zoghlami

Automation, Maintenance and Factory Integration In�neon Technologies Dresden

GmbH & Co KG, Germany

Abstract

This work is a part of my research topic, which is about applying sensor fusion in industry
for enhancing the human/robotic collaboration. The aim of this work �rst is to apply prototype-
based machine learning algorithms in creating a model for human classi�cation (classify whether
an image contains a human or not). Second, during the training, the algorithm learns several pa-
rameters, which re�ect the importance of the usage of each of the sensors for human classi�cation
purposes.

The dual functionality of the proposed approach is illustrated in the chart Figure 1. We
present an example where we collect images from 3 di�erent sensors and feed them separately
into a pre-trained network for features extraction. These features are normally used to train
prototypes (distances d) used later for new data classi�cation. However, in this approach,
distances are trained together with new parameters (new distance D). As an output from the
distance layer, we obtain a model with trained distances to each of the two classes as well as
an information about the contribution of each of the three sensors in the classi�cation task.
This information is relevant for making decision about which sensors should be fused for which
purpose.

The whole training and evaluation is running on a CPU and based on the Proto�ow package
and keras.

Figure 1: Illustration of the dual functionally
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From tiny ants to mighty Cosmic-web

Abolfazl Taghribi

Ph.D. student at the University of Groningen

Abstract

The preliminary step for many di�erent machine learning projects is dimensionality re-
duction or clustering. Nonetheless, the results of this step are highly sensitive to noise and
outliers. Many studies suggest solutions for detecting and removing few noise points close
to a manifold [1, 2] or merging them in the manifold [3]. However, in many applications
such as astronomical datasets, the density varies alongside manifolds that are buried in
a noisy background, and previous techniques cannot handle the amount of noise in these
datasets. We propose a denoising method based on the ideas of Ant colony optimization to
extract manifolds, which instead of seeking high-density structures, it captures the points
which are locally aligned with a manifold direction. Moreover, we empirically show that
the biologically inspired formulation of ant pheromone reinforces this behavior, enabling
the method to recover multiple manifolds embedded in extremely noisy data clouds. The
demonstration of the proposed method on the simulation of the Cosmic-web [4] is a valu-
able example of how this method can be advantageous for detecting many low dimensional
manifolds in the presence of noise.

References

[1] S. Deutsch and G. G. Medioni, "Intersecting Manifolds: Detection, Segmentation,
and Labeling", in IJCAI, (Buenos Aires, Argentina), 2015.

[2] D. Gong, X. Zhao, and G. G. Medioni, "Robust Multiple Manifold Structure Learn-
ing", in ICML, 2012.

[3] S. Wu, P. Bertholet, H. Huang, D. Cohen-Or, M. Gong, and M. Zwicker, "Structure-
Aware Data Consolidation", IEEE Transactions on PatternAnalysis and Machine
Intelligence, vol. 40, pp. 2529-2537, Oct. 2018.

[4] N. I. Libeskind, R. van de Weygaert, M. Cautun, B. Falck, E. Tempel,T. Abel, M.
Alpaslan, M. A. Aragn-Calvo, J. E. Forero-Romero, R. Gonzalez, S. Gottlber, O.
Hahn, W. A. Hellwing, Y. Ho�man, B. J. T. Jones, F. Kitaura, A. Knebe, S. Manti,
M. Neyrinck, S. E.Nuza, N. Padilla, E. Platen, N. Ramachandra, A. Robotham, E.
Saar, S. Shandarin, M. Steinmetz, R. S. Stoica, T. Sousbie, and G. Yepes, "Tracing
the cosmic web", Monthly Notices of the Royal Astronomical Society, vol. 473, pp.
1195-1217, Jan. 2018.
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An Application of Generalized Matrix Learning Vector

Quantization in Neuroimaging

Rick van Veen

Bernoulli Institute, University of Groningen

June 29, 2020

Abstract

We present an application of prototype-based Generalized Matrix Learning Vector
Quantization (GMLVQ) in combination with the scaled sub-pro�le model principal compo-
nent analysis (SSM/PCA) methodology as a novel approach to analyze [18F]�uorodeoxyglucose
positron emission tomography image data. Speci�cally, we show how to use GMLVQ to
produce an understandable low-dimensional discriminative representation of the image
data set. Furthermore, by exploiting the linearity of the SSM/PCA transformation in
combination with the prototypes and relevance matrix found by GMLVQ we are able to
produce and visualize disease typical residual activity pro�les within the original voxel
space. In other words, this analysis enables the identi�cation of speci�c subgroups in the
studied data set. To show this, we present a study including scans of patients su�ering
from Parkinson's disease collected from three di�erent neuroimaging centers. We conclude
that the approach shows promising results with respect to the better understanding of the
disease classi�cations and the inner workings of the GMLVQ model and therefore could
be a useful tool for medical specialists working within this domain.
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Analysis of SARS-CoV-2 RNA-Sequences by

Interpretable Machine Learning Models

Marika Kaden1, Katrin Sophie Bohnsack1, Mirko Weber1, Mateusz Kudla1,2,

Kaja Gutowska2,3,4, Jacek Blazewicz2,3,4, and Thomas Villmann1

1 University of Applied Sciences Mittweida, SICIM, Germany
2 Institute of Computing Science, Poznan University of Technology, Poland

3 Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
4 European Centre for Bioinformatics and Genomics,Poland

Abstract

We present in our talks our contribution of [1]. In this paper we investigate SARS-
CoV-2 virus sequences based on alignment-free methods for RNA sequence comparison.
In particular, we verify a given clustering result for the GISAID data set, which was
obtained analyzing the molecular di�erences in coronavirus populations by phylogenetic
trees. For this purpose, we use alignment-free dissimilarity measures for sequences and
combine them with learning vector quantization classi�ers for virus type discriminant
analysis and classi�cation. Those vector quantizers belong to the class of interpretable
machine learning methods, which, on the one hand side provide additional knowledge
about the classi�cation decisions like discriminant feature correlations, and on the other
hand can be equipped with a reject option. This option gives the model the property of self
controlled evidence if applied to new data, i. e. the models refuses to make a classi�cation
decision, if the model evidence for the presented data is not given. After training such a
classi�er for the GISAID data set, we apply the obtained classi�er model to another but
unlabeled SARS-CoV-2 virus data set. On the one hand side, this allows us to assign new
sequences to already known virus types and, on the other hand, the rejected sequences
allow speculations about new virus types with respect to nucleotide base mutations in the
viral sequences.

References

[1] Kaden, M., Bohnsack, K. S., Weber, M., Kudla, M., Gutowska, K., Blazewicz, J., and
Villmann, T.: Analysis of SARS-CoV-2 RNA-Sequences by Interpretable Machine
Learning Models. bioRxiv, 2020.05.15.097741, 2020
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Interactive Machine Learning und Process Mining

Dietlind Zühlke

Technische Hochschule Köln, Faculty of Computer Science and Engineering,
Institute for Data Science, Engineering, and Analytics

June 25, 2020

Abstract

Many real-world problems invoke remarkable complexity and still need to be under-
stood, evaluated, and maybe controlled by humans. Combining the best of human and
computational abilities can only be done using interactive and interpretable modeling. A
further property of real-world problems is their unfolding in time. Often they are neither
real snapshots nor straight time series. In contrast, we see several events emerging irregu-
larly in time. Here process mining comes into play (see e.g. [1]). It allows us e.g., to look
into the development of patients based on their visits to the doctor, the learning progress
of students based on tests and exams, or the ideal communication strategy to customers in
their sales life cycle based on singular communication events. Interactive process mining
has gained interest, especially in the last years [2, 3, 4]. But still, it offers a lot of open
questions. We will look into some of them.

References
[1] W. M. P. van der Aalst. Using process mining to generate accurate and interactive

business process maps. In Witold Abramowicz and Dominik Flejter, editors, Business
Information Systems Workshops, pages 1–14, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[2] Prabhakar Dixit, Humberto Garcia Caballero, Alberto Corvo, Bart Hompes, J. Buijs,
and Wil Aalst. Enabling interactive process analysis with process mining and visual
analytics. pages 573–584, 02 2017.

[3] Thomas Vogelgesang, Stefanie Rinderle-Ma, and H.-Jürgen Appelrath. A framework
for interactive multidimensional process mining. In Marlon Dumas and Marcelo Fanti-
nato, editors, Business Process Management Workshops, pages 23–35, Cham, 2017.
Springer International Publishing.

[4] Ismail Yürek, Derya Birant, and Kökten Birant. Interactive process miner: A new
approach for process mining. Turkish Journal of Electrical Engineering and Computer
Sciences, 26, 06 2018.
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Drift Detection Using Coresets Over Sliding Windows

Moritz Heusinger

University of Applied Sciences Würzburg - Schweinfurt

June 23, 2020

Abstract

The change of underlying data is one of the biggest challenges in non-stationary environ-
ments. While several algorithms have been proposed to detect these changes, substantial
problems remain in the case of higher dimensional data. Thus, we propose a novel Concept
Drift detector based on Minimum Enclosing Balls, with the capability to quickly process
higher dimensional data. Additionally a kernelized version of this detector is derived, to
process non-linear streaming data. We also propose a method to measure the performance
of drift detectors with a binary classification evaluation technique, the confusion matrix,
which enables calculating statistics like the F1 score.
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On-line learning in the presence of concept drift

Michiel Straat

Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, University of Groningen

Abstract

In numerous applications data is available in the form of streams and machine learning
models are adapted in an incremental fashion (on-line learning), as opposed to models
that are trained on fixed datasets (off-line learning). In these situations concept drift
may be present: The task at hand is subject to a statistical change in the input data,
known as virtual drift, and/or a change in the rule itself, referred to as real drift. Very
often in practical situations, a combination of the two types of drift is present. In one
of the model scenarios considered in [1], we study on-line gradient descent learning of a
regression scheme that exhibits real concept drift. The regression scheme is defined by
a teacher Soft Committee Machine (SCM) that models the drift by randomly changing
weight vectors. A student SCM learns the regression scheme from a stream of random and
independent examples of which the target outputs are provided by the drifting teacher
SCM. We have studied for both the ReLU-SCM and the Erf-SCM the sensitivity of the
learning performance to the strength of the drift and the effectiveness of introducing a
weight decay as a mechanism of forgetting. Results show significant differences between
the two types of SCM.

References
[1] Michiel Straat, Fthi Abadi, Zhuoyun Kan, Christina Göpfert, Barbara Hammer,

Michael Biehl. Supervised Learning in the Presence of Concept Drift: A modelling
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Online Learning with Imbalanced Data

Valerie Vaquet, Barbara Hammer

Machine Learning Group, Bielefeld University, 33501 Bielefeld, Germany

Abstract

Recently, machine learning techniques are often applied in real world scenarios where
learning signals are provided as a stream of data points. Models need to be adapted online
in this setting, and two issues have to be considered. First, a severe problem are changes
in the underlying data distribution which occur over time due to concept drift. Second,
the available data is often imbalanced since signals for rare classes are particularly sparse.

In the last years, a number of learning technologies, which can reliably learn in the
presence of drift, have been proposed. Non-parametric approaches such as the recent
model SAM-kNN [1] can deal particularly well with heterogeneous or priorly unknown
types of drift. However, these methods share the deficiencies of the underlying vanilla-
kNN classifier when dealing with imbalanced classes. In this contribution, we propose
intuitive extensions of SAM-kNN, which incorporate successful balancing techniques for
kNN, namely SMOTE-sampling [2] and kENN [3]. Besides, we propose a new method,
Informed Downsampling, for solving class imbalance in non-stationary settings with un-
derlying drift, and demonstrate its superiority in a number of benchmarks.
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Mirror, Mirror on the Wall - Are You Native or at All?

Julia Abel, Marika Kaden, Thomas Villmann

University of Applied Sciences Mittweida, Saxonian Institute for Computational
Intelligence and Machine Learning

Abstract

Proteins can have two conformations: the L-enantiomeric conformation and the D-
enantiomeric conformation. The first represents the natural form (further known as na-
tive) of a protein, whereas the latter represents an exact mirror-image of it [2, 5, 7, 9]. The
differentiation of native and mirror proteins is crucial for further analysis and research in
the fields of drug discovery and synthetic biology [6, 8]. Ramachandran plots (R-plots)
display the dihedral angles Φ and Ψ of a protein’s backbone to visualize their distribution
[3]. R-plots provide an easily inspectable tool to detect underlying properties of the sec-
ondary structure in that protein [1].
In this contribution the discrimination between native and mirror models of proteins ac-
cording to their chirality is tackled based on the structural protein information. This
information is contained in the R-plots of the protein models. We provide an approach to
classify those plots by means of an interpretable machine learning classifier - the General-
ized Matrix Learning Vector Quantizer [4]. Applying this tool, we are able to distinguish
with high accuracy between mirror and native structures just evaluating the R-plots. The
classifier model provides additional information regarding the importance of regions, e.g.
α-helices and β-strands, to discriminate the structures precisely. This importance weight-
ing differs for several considered protein classes.
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How to Compare RNA/DNA Sequences - a Systematic
Approach

K. S. Bohnsack and T. Villmann

University of Applied Sciences Mittweida,

Saxon Institute for Computational Intelligence and Machine Learning,

Mittweida, Germany

Abstract

The automatic comparison of RNA/DNA or rather nucleotide sequences in data min-
ing and data classi�cation is a complex task requiring careful design due to the computa-
tional complexity. While alignment-based models su�er from computational costs in time,
alignment-free models have to deal with appropriate data preprocessing and consistently
designed mathematical data comparison [8].

The proposed consideration deals with the latter strategy. In particular, a system-
atic categorization is suggested, which emphasizes two key concepts that have to be
combined for a successful comparison analysis: 1) the data transformation comprising
adequate mathematical sequence coding and feature extraction, and 2) the subsequent
(dis-)similarity evaluation of the transformed data by means of problem speci�c but math-
ematically consistent proximity measures.

Respective approaches of di�erent categories of the introduced scheme are examined
with regard to their suitability to distinguish natural RNA virus sequences from arti�cially
generated ones encompassing varying degrees of biological feature preservation [7]. The
challenge in this application is the limited additional biological information available, such
that the decision has to be made solely on the basis of the sequences and their inherent
structural characteristics.

To address this, the present work focuses on interpretable, dissimilarity based classi�-
cation models of machine learning, namely variants of Learning Vector Quantizers [5, 4].
These methods are known to be robust and highly interpretable, and therefore, allow to
evaluate the applied data transformations together with the chosen proximity measure
with respect to the given discrimination task. We will present preleminary results for the
above mentioned discrimination task for arti�cial and biological RNA virus sequences [1].

These �rst analysis results should be taken as a starting point for more in-depth anal-
ysis of this problem in the future research. In particular, a promising ansatz could be to
integrate statistical information into the proximity measure or into the probabilistic model
to achieve a more problem-speci�c classi�er [6]. Another perspective based on the system-
atic use of appropriate proximities could be to integrate them into a LVQ classi�er model,
which serves as a discriminator in a Generative Adversarial Network (GAN) [2, 3]. If the
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discriminator of the GAN would be able to make use of the interpretability of the LVQ
model this could lead to task speci�c and better interpretable generator networks within
the GAN providing more statistical and other inside information about the considered
DNA/RNA sequences.
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Evidence for tissue specific ribosomes in normal and
cancer samples: machine learning analysis of human

ribosomal protein levels

Michael Biehl

Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, University of Groningen, The Netherlands

Abstract
This contribution presents selected results obtained in an interdisciplinary collaboration

of physicists, computer scientists and biomedical researchers [1].
Ribosomes are molecular machines which perform translation, i.e. protein synthesis in

all living cells. They are composed of ribosomal RNA (rRNA) and structural ribosomal
proteins (RP). Traditionally, RPs are believed to be hightly constant and conserved across
tissues and external conditions. However, a growing body of recent work suggests ribosome
heterogeneity at several levels, see [1, 2] and references therein.

We present and discuss results from a detailed analysis of human ribosomal protein
(RP) levels in normal and cancer samples. Here, emphasis is on the application of a
variety of unsupervised and supervised machine learning techniques, including Learning
Vector Quantization (LVQ) and relevance learning, Self-Organizing-Maps (SOM), Uniform
Manifold Approximation and Projection (UMAP) and t-Distributed Stochastic Neighbor
Embedding (t-SNE).

We find highly consistent, tissue specific RP-mRNA signatures in normal and tumor
samples. Moreover, multiple RP-mRNA subtypes are found to exist in several cancers,
which display significantly different survival rates.

Our results suggest that heterogeneous RP levels play a significant functional role in
cellular physiology, in both normal and disease states.
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Recursive Tree Grammar Autoencoders

Benjamin Paaßen

The University of Sydney

Abstract
Machine learning for tree-structured data has made impressive progress in recent years

with advanced tree kernels [1], distances [2], and neural networks [3]. However, most
methods to date are limited to trees as input data and can not produce trees as output [4].
Yet, tree-structured output would be very helpful for interesting tasks such as molecule
design in chemistry [5] or hint provision in intelligent tutoring systems [6]. In this talk, we
will cover one way to elegantly enable trees both as input and output, namely autoencoders
for trees. The key ingredients for this approach are recursive neural networks [7] and
regular tree grammars [8]. In more detail, we encode trees to vectors using a tree parser
and decode vectors to trees using a tree grammar, both guided by a recursive neural
network. We also provide two training schemes. First, for small datasets, we suggest
to initialize the recursive nets as tree echo state networks [9] and only train the output
layer of the decoder via a linear SVM, thus achieving nontrivial results within seconds of
training. Second, for large datasets, we suggest to train the model end-to-end based on the
variational autoencoder loss [5] and backpropoagation. In this way, we achieve a proper
generative model for trees which can improve both the autoencoding error as well as the
optimization performance beyond state-of-the art models.

References
[1] Aiolli, F., Da San Martino, G., and Sperduti, A. (2015). An Efficient Topological

Distance-Based Tree Kernel. IEEE Transactions on Neural Networks and Learning
Systems, 26(5), 1115-1120. doi:10.1109/TNNLS.2014.2329331

[2] Paaßen, B., Gallicchio, C., Micheli, A., and Hammer, B. (2018). Tree Edit Distance
Learning via Adaptive Symbol Embeddings. Proceedings of the 35th International
Conference on Machine Learning (ICML 2018), 3973-3982. http://proceedings.
mlr.press/v80/paassen18a.html

[3] Kipf, T., and Welling, M. (2017). Semi-supervised classification with graph convolu-
tional networks. https://openreview.net/forum?id=SJU4ayYgl

[4] Paaßen, B., Gallicchio, C., Micheli, A., and Sperduti, A. (2019). Embeddings and
Representation Learning for Structured Data. Proceedings of the 27th European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN 2019), 85-94. http://www.elen.ucl.ac.be/Proceedings/esann/
esannpdf/es2019-4.pdf

MiWoCI Workshop - 2020

Machine Learning Reports 29



[5] Kusner, M., Paige, Hernández-Lobato, J. (2017). Grammar Variational Autoencoder.
Proceedings of the 34th International Conference on Machine Learning (ICML 2017),
1945-1954. http://proceedings.mlr.press/v70/kusner17a.html

[6] Paaßen, B., Hammer, B., Price, T., Barnes, T., Gross, S., and Pinkwart, N. (2018).
The Continuous Hint Factory - Providing Hints in Vast and Sparsely Populated Edit
Distance Spaces. Journal of Educational Datamining, 10(1), 1-35. https://jedm.
educationaldatamining.org/index.php/JEDM/article/view/158

[7] Sperduti, A., and Starita, A. (1997). Supervised neural networks for the clas-
sification of structures. IEEE Transactions on Neural Networks, 8(3), 714-735.
doi:10.1109/72.572108

[8] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Ti-
son, S., and Tommasi, M. (2008). Tree Automata Techniques and Applications. inria
gforge. http://tata.gforge.inria.fr/

[9] Gallicchio, C., and Micheli, C. (2013). Tree Echo State Networks. Neurocomputing,
101, 319-337. doi:10.1016/j.neucom.2012.08.017

MiWoCI Workshop - 2020

30 Machine Learning Reports



Quantum-Inspired Learning Vector Quantization � Basic

Concepts and Beyond

T. Villmann

University of Applied Sciences Mittweida,

Saxon Institute for Computational Intelligence and Machine Learning,

Mittweida, Germany

Abstract

Interpretable machine learning classi�ers like prototype based models are a promising
alternative to deep neural networks and regarding e�orts to make them explainable [1, 9].
Among those interpretable models the family of learning vector quantizers (LVQ) is one
of the most intuitive approaches realizing a simple scheme of attraction and repelling if
the Euclidean distance is used as the underlying data proximity measure [8]. Although
heuristically motivated, today mathematically well-de�ned variants based on cost functions
are available, which approximate the classi�cation error [10]. Remarkable extensions of the
basic scheme are the incorporation of metric adaptation schemes as well as the utilization
of more sophisticated proximity measures like divergences [5, 12, 19].

Otherwise, support vector machines (SVM) became powerful classi�er systems bene-
�ting from fast adaptation due to the convexity of the respective cost function formulated
as a constrained optimization problem [13]. Another key ingredient of SVMs is the kernel
trick: The data x ∈ X ⊆ Cn are implicitly mapped into a Reproducing Kernel Hilbert

space H (RKHS) by a generally non-linear map ΦH but the data evaluation is still done in
the data space using the kernel function κH. This non-linear mapping together with the
usually in�nite dimensionality of H provides a great �exibility of SVM which frequently
leads to excellent classi�cation performance. In some sense, SVMs also may be seen as
a prototype based approach, where the support vectors take over the role of prototypes
[17, 18]. The kernel, in fact, determines just an inner product in the RKHS H and, hence,
de�nes a kernel distance dH, which can be still evaluated in the original data space X.
Using this observation, kernel methods can also be plugged into LVQ to improve their
�exibility [20]. Thus, the prototypes in kernelized LVQ (KGLVQ) are implicitly adapted
in the RKHS adjusting their origins in the data space followed by the subsequent implicit
mapping by means of ΦH.

An interesting new perspective to this kernel approach is provided by quantum-inspired
computing. Suppose quantum state vectors q ∈ Qn ⊆ Qn where Qn = {|x〉} is the set of
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quantum bit vectors |x〉 = (|x1〉 , . . . , |xn〉)T with quantum bits (qubits)

|xk〉 = αk · |0〉+ βk · ei·φk · |1〉 (1)

where the amplitudes αk, βk ∈ R ful�ll the normalization condition

|αk|2 + |βk|2 = 1 (2)

and φk ∈ R gives the phase information. Hence, the qubits are elements of the Bloch-

sphere or, more mathematically, the Riemann-sphere [24]. The quantum space Qn is a
Hilbert space equipped with the inner product 〈x|w〉 [11].

Taking prototypes in LVQ as well as data just as qubit vectors |x〉 and |w〉, respectively,
prototype adaptation can be realized by means of stochastic gradient descent learning like
in generalized LVQ ([10], GLVQ) in terms of derivatives with respect to the amplitudes
and the phases of the qubits |wk〉 contained in a prototype vector |w〉 [21].

According to the postulates of quantum mechanics, the update of a quantum proto-
type, which is realized by the gradient of the local cost of GLVQ, has to be an unitary
transformation (Hermitean transformation). Note at this point that an arbitrary unitary
operator U ∈ C2×2 of a qubit |x〉 can be expressed as a linear combination

U =
3∑

k=0

zk · σk

where the coe�cients zk are obtained as

z0 =
u00 + u11

2
, z1 =

u01 + u10
2

, z2 = i
u01 − u10

2
, z3 =

u00 − u11
2

and, the matrices σk ∈ C2×2

σ0 =




1 0

0 1


 , σ1 =




0 1

1 0


 , σ2 =




0 −i

i 0


 , σ3 =




1 0

0 −1




are the Pauli matrices forming a basis B = {σ0,σ1,σ2,σ3} of the unitary group
SU (2) ⊂ C2×2 [11]. Consequently, the unitary transformations can be realized by respec-
tive quantum gates [16]. Moreover, C2×2 is an Hilbert space equipped with the Frobenius
inner product for matrices [22].

The main step to formulate an usual classi�cation task in terms of quantum-inspired
LVQ (Qu-GLVQ) is to transform the data appropriately by a suitable mapping ΦQn : x→
|x〉. For example, the generally complex components xk could be mapped non-linearly
onto the Riemann-sphere by means of a stereographic projection [22].

Comparing the QU-GLVQ with KGLVQ the similarities are striking: non-linear map-
pings transform the data into a Hilbert space where the prototype adjustments take place.
Whereas in KGLVQ (and SVM) these are done implicitly applying the kernel trick in Qu-
GLVQ the processing is explicitly done in the mapping space Qn. This observation was
�rst made in [15, 14] and, independently, in [21]. Further, an angle based GLVQ variant
was proposed in [2], which also should be considered in the context of QU-GLVQ.
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In the next research steps we will integrate the Grover's algorithm according to the
quantum nearest neighbor method to determine the best matching prototypes [3, 4, 23]
and consider, how the Qu-GLVQ could be related to known quantum k-means approaches
[7, 25]. Finally, quantum entanglement has to be integrated [26] and should be compared
with the entangled kernel approach [6].
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Comparing Activation Functions
Using A Statistical Physics Approach
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Abstract
One of the elements which determines the performance of an artificial neural network

is the activation function. Originally, the sigmoidal activation function was used in the
hidden units of such networks. Nowadays, the Rectified Linear Unit activation (ReLU)
is arguably the most popular choice, due to the function’s computational ease and higher
training rate compared to networks employing sigmoidal activation. Initially, claims about
its increased performance were mostly based on empirical evidence, but recently theoret-
ical arguments have been provided which confirm this idea. In the meanwhile, several
other activation functions have been proposed, all of which acclaimed to have a better
performance than its predecessors. A theoretical foundation that explains the fundamen-
tal differences between activation functions is lacking, however. In our study, which is
a continuation of [1], we have borrowed concepts from statistical physics to research the
learning behaviour of artificial neural networks in the context of off-line learning. We
compare five activation functions: sigmoidal activation, Rectified Linear Unit activation,
Leaky Rectified Linear Unit (LReLU) activation [2], Piecewise Linear Unit (PLU) activa-
tion [3], and a novel activation function, dubbed Bounded Rectified Linear Unit (BReLU).
The activation functions studied have been selected based on their comparability, in order
to give an answer to the question: what makes one activation function better than the
other? Specifically, we are interested in what characteristic determines the type of phase
transition, as this is a defining factor of the training speed.
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