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Abstract

Supervised and unsupervised vector quantization methods for classification and
clustering traditionally use dissimilarities, frequently taken as Euclidean distances.
In this article we investigate the applicability of divergences instead. We deduce the
mathematical fundamentals for its utilization in derivative based vector quantization
algorithms. It bears on the generalized derivatives known as Fréchet-derivatives.
We exemplary show the application of this methodology for widely applied su-
pervised and unsupervised vector quantization schemes including self-organizing
maps, neural gas, and learning vector quantization. Further we show principles for
hyperparameter optimization for parametrized divergences in the case of supervised
vector quantization to achieve an improved classification accuracy.
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Mathematical Aspects of Divergence Based Vector Quantization Using Fréchet-Derivatives

1 Introduction

Supervised and unsupervised vector quantization for classification and clustering
is strongly associated with the concept of dissimilarity usually judged in terms of
distances. The most common choice is the Euclidean metric. Yet, in the last years
alternative dissimilarity measures became attractive for advanced data processing.
Examples are functional metrics like Sobolev-distances or kernel based dissimilarity
measures [49],[29]. These metrics take the functional structure of the data into
account [28],[36],[39],[46].

Recently, information theory based approaches are proposed considering diver-
gences for clustering [2], [22],[30],[16]. For other data processing methods like multi-
dimensional scaling (MDS) [27], stochastic neighbor embedding [?], blind source
separation [34] or non-negative matrix factorization [6], also divergence based ap-
proaches are introduced. In prototype based classification, first approches utilizing
information theoretic approaches were recently proposed [11],[44],[48].

Yet, a systematic analysis of prototype based clustering and classification relying
on divergences is not given so far. Further, the respective existing approaches usu-
ally are carry out in the so-called batch mode for optimization but are not available
for online learning. The latter method requires the calculation of the derivatives of
the underlying metrics, i.e. divergences here.

In the present contribution we offer a systematic approach for divergence based
vector quantization using divergence derivatives. For this purpose, important but
general classes of divergences are identified, widely following and extending the
scheme introduced by CICHOCKI ET AL. in [7]. The mathematical framework for
functional derivatives of divergences is given by the functional-analytic generaliza-
tion of usual derivatives – the concept of Fréchet-derivatives [13],[23].

After characterization of the different classes of divergences and a short intro-
duction of Fréchet-derivatives we apply this framework to the several divergences
obtaining generalized derivatives, which can be used for online learning of diver-
gence based methods for supervised and unsupervised vector quantization as well
as other gradient based approaches. We explore explicitly for prominent exam-
ples the respective derivatives. Thereafter, we exemplarily consider some of the
most prominent approaches for unsupervised as well as supervised prototype based
vector quantization in the light of divergence based online learning using Fréchet-
derivatives. For the latter approaches we additionally provide a gradient learning
scheme, called hyperparameter adaptation, for optimization of parameters occuring
in parametrized divergences.
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2 Characterization of divergences

According to the classification given in CICHOCKI ET AL. [7] one can distinguish at
least three main classes of divergences, the Bregman-divergences, the Csiszár’s
f -divergences and the γ-divergences.

We emphasize at this point that we generally assume that p and ρ are positive
measure (densities), not necessarily be normalized. In case of normalized densities
we explicitly refer to these as probability densities.

2.1 Bregman divergences

Bregman divergences are defined by generating convex functions Φ in the following
way [5]:

Let Φ be a strictly convex real-valued function with the domain L (the Lebesgue-
integrable functions). Further, Φ is assumed to be twice continuously Fréchet-
differentiable [23]. A Bregman divergence is defined as DB

Φ : L × L −→ R+ with

DB
Φ (p||ρ) = Φ (p)− Φ (ρ)− δΦ (ρ)

δρ
(p− ρ) (2.1)

whereby δΦ(ρ)
δρ

is the Fréchet-derivative of Φ with respect to ρ (see sec. 3.1.1).
Examples

1. generalized Kullback-Leibler-divergence for non-normalized p and ρ [7]:

DGKL (p||ρ) =

∫
p (x) log

(
p (x)

ρ (x)

)
dx−

∫
p (x)− ρ (x) dx (2.2)

with the generating function

Φ (f) =

∫
f · log f − fdx .

If p and ρ are normalized densities (probability densities) DGKL (p||ρ) is re-
duced to the usual Kullback-Leibler-divergence [26],[24]:

DKL (p||ρ) =

∫
p (x) log

(
p (x)

ρ (x)

)
dx , (2.3)

which is related to the Shannon-entropy [42]

HS (p) = −
∫
p (x) log (p (x)) dx (2.4)

via
DKL (p||ρ) = VS (p, ρ)−HS (p)

where
VS (p, ρ) = −

∫
p (x) log (ρ (x)) dx

is Shannon’s cross entropy.
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2. Itakura-Saito-divergence [21]:

DIS (p||ρ) =

∫ [
p

ρ
− log

(
p

ρ

)
− 1

]
dx (2.5)

with the generating function

Φ (f) = −
∫

log (f) dx .

If we assume that p and ρ are general densities then an important subset of
Bregman divergences belong to the class of β−divergences [10], which are defined,
following CICHOCKI ET AL., as

Dβ (p||ρ) =

∫
p · p

β−1 − ρβ−1

β − 1
dx−

∫
pβ − ρβ

β
dx (2.6)

with β 6= 1 and β 6= 0. In the limit β → 1 the divergence Dβ (p, ρ) becomes the
generalized Kullback-Leibler-divergence (2.2)1. The limit β → 0 gives the Itakura-
Saito-divergence (2.5). Further, β−divergences are related to the density power
divergences D̂β introduced in [3] by

D̂β (p||ρ) =
1

(1 + β)
Dβ (p||ρ) .

2.2 Csiszár’s f -divergences

Given a convex function f : [0,∞) → R with f (1) = 0 (without loss of generality).
The f -divergences Df for general densities p and ρ are given by

Df (p||ρ) =

∫
ρ (x) · f

(
p (x)

ρ (x)

)
dx (2.7)

with the definitions 0·f
(

0
0

)
= 0, 0·f

(
a
0

)
= limx→0 x·f

(
a
x

)
= limu→∞ a· f(u)

u
[9],[31],[43].

It corresponds to a generalized f -entropy [7] of the form

Hf (p) = −
∫
f (p) dx . (2.8)

Yet, CICHOCKI ET AL. also suggested a generalization, we refer as generalized
f -divergence [7]. In that divergence, f has not longer to be convex. It is proposed
to be

DG
f (p||ρ) = cf

∫
p− ρdx+

∫
ρ (x) · f

(
p (x)

ρ (x)

)
dx (2.9)

with cf = f ′ (1) 6= 0. Hence, in case of p and ρ being probability densities, the first
term vanishes such that the usual form of f -divergences is obtained but without the

1We remark here that the relations pγ−ργ

γ −→
γ→0

log p
ρ and pγ−1

γ −→
γ→0

log p hold.
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convexity assumption on f . Thus, as a famous example the Hellinger divergence
[31],[43]:

DH (p||ρ) =

∫
(
√
p−√ρ)2 dx (2.10)

with the generating function f (u) = (
√
u− 1)

2 with u = p
ρ
. We remark, DH (p||ρ)

is not a f−divergence for general densities p and ρ because f is not convex in
that case, whereas for probability densities it is a f−divergence according to the
Cichocki-f -divergence properties [7].

As the β−divergences in case of Bregman divergences, one can identify here an
important subset of the f−divergences, the so-called α−divergences according to
the definition given in [7]:

Dα (p||ρ) =
1

α (α− 1)

∫ [
pαρ1−α − α · p+ (α− 1) ρ

]
dx (2.11)

with the generating f−function

f (u) = u
(uα−1 − 1)

α2 − α
+

1− u

α

and u = ρ
p
. In the limit α → 1 the generalized Kullback-Leibler-divergence DGKL

(2.2) is obtained. Further, in [7] is stated that the β-divergences can be generated
from the α-divergences applying the non-linear transforms

p→ pβ+2 and ρ→ ρβ+2 .

The α−divergences are closely related to the generalized Rényi-divergences
[1],[7]:

DGR
α (p||ρ) =

1

α− 1
log

(∫ [
pαρ1−α − α · p+ (α− 1) ρ+ 1

]
dx

)
(2.12)

for non-normalized ρ and p, whereas for normalized densities the usual Rényi-
divergence [37],[38]

DR
α (p||ρ) =

1

α− 1
log

(∫
pαρ1−αdx

)
(2.13)

is obtained2. The divergence DR
α (p||ρ) is based on the Rényi-entropy

Hα (p) = − 1

α− 1
log

(∫
pαdx

)
. (2.14)

2Notify that a careful transformation of the parameter α is required for exact transformations be-
tween both divergences. For details see [1] p.84ff and [7] p.104.
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2.3 γ-divergences

A class of very robust divergences with respect to outliers has been proposed by
FUJISAWA&EGUCHI [14]3. It is called γ-divergences defined for un-normalized ρ

and p as

Dγ (p||ρ) = log

(∫ pγ+1dx
) 1

γ(γ+1) ·
(∫

ργ+1dx
) 1

γ+1(∫
p · ργdx

) 1
γ

 (2.15)

=
1

γ + 1
log

[(∫
pγ+1dx

) 1
γ

·
(∫

ργ+1dx

)]
(2.16)

− log

[(∫
p · ργdx

) 1
γ

]
.

In the limit γ → 0 Dγ (ρ||p) becomes the usual Kullback-Leibler-divergence (2.3)
DKL (ρ̂||p̂) with normalized densities

ρ̂ =
ρ∫
ρdx

and p̂ =
p∫
pdx

.

For γ = 1 the γ-divergence becomes the Cauchy-Schwarz-divergence

DCS (p||ρ) =
1

2
log

(∫
ρ2 (x) dx·

∫
p2 (x) dx

)
− log (V (p, ρ)) (2.17)

with

V (p, ρ) =

∫
p (x) · ρ (x) dx (2.18)

being the cross correlation potential. The Cauchy-Schwarz-divergence DCS (p||ρ)
was introduced by J. PRINCIPE considering the Cauchy-Schwarz-inequality for
norms [35].

3 Derivatives of divergences – a functional analytic

approach

In this section we provide the mathematical formalism of generalized derivatives
for functionals p and ρ. It is known as Fréchet-derivatives or functional derivatives.
First, we briefly reconsider the theory of functional derivatives including Fréchet-
and Gâteaux-derivatives and its relation to directional derivatives. Thereafter we
investigate the above divergence classes within this framework. In particular, we
explain their Fréchet-derivatives.

3The divergence Dγ (p||ρ) is proposed to be robust for γ ∈ [0, 1] with existence of Dγ=0 in the limit
γ → 0. A detailed analysis of robustness is given in [14].
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3.1 Functional derivatives

3.1.1 Fréchet-derivatives and Fréchet-derivatives of a functional

Suppose, X and Y are Banach spaces, U ⊂ X is open and F : X → Y . F is
called Fréchet differentiable at x ∈ X, if if there exists a bounded linear operator
F [x]
δx

: X → Y , such that for h ∈ X the limit

lim
h→0

∥∥∥F (u+ h)− F (u)− F [u]
δu

[h]
∥∥∥

Y

‖h‖X

= 0 .

This general definition can be focussed for functional mapping: Let L be a func-
tional mapping from a linear, functional Banach-space B to R. Further, let B be
equipped with a norm ‖·‖, and f, h ∈ B are two functionals. The Fréchet-derivative
of L at point f is formally defined as

lim
ε→0

1

ε
(L [f + εh]− L [f ]) =:

L [f ]

δf
[h] .

The existence and continuity of the limes is equivalent to the existence and continuity
of the derivative. For a detailed introduction we refer to [23].

Yet, we recall two main properties of the Fréchet-derivative for functionals, which
are important in studying divergences: First, if L is linear then

L [f + εh]− L [f ] = εL [h]

and, hence, L[f ]
δf

[h] = L. Further, an analogon of the chain rule known from usual
differential calculus can be stated:

Let F : R → R be a continuously-differentiable mapping. We consider the func-
tional

L [f ] =

∫
F (f (x)) dx

Then the Fréchet-derivative is obtained as L[f ]
δf

= F ′ (f), which can be seen from

1

ε
(L [f + εh]− L [f ]) =

1

ε

∫
F (f (x) + εh (x))− F (f (x)) dx

=
1

ε

∫
F ′ (f (x)) · εh (x) +O

(
ε2h (x)2) dx

−→ ε→0

∫
F ′ (f (x)) · h (x) dx

and utilization of the linear property of the integral operator.
Last but not least we state the following important remark: The Fréchet derivative

in finite-dimensional spaces is the usual derivative. In particular, it is represented in
coordinates by the Jacobi matrix. Thus, the Fréchet derivative is a generalization of
the directional derivatives.
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3.1.2 Gâteaux-derivatives

Gâteaux-derivatives are also a generalization of the concept of directional deriva-
tives and can be seen in the middle between Fréchet-derivatives and usual deriva-
tives.

Suppose, X and Y are locally convex topological vector spaces (for example,
Banach spaces), U ⊂ X is open and F : X → Y . The Gâteaux-differential of F at
u ∈ U is in the direction υ ∈ X defined as

dF (u; υ) = lim
τ→0

F (u+ τ · υ)− F (u)

τ
= Tu (υ) ,

if the limit exists, and the operator Tu (υ) : X → Y is bounded, τ ∈ R. The value

Tu (υ) =
d

dτ
F (u+ τ · υ) |τ=0

is denoted as Gâteaux-derivative at u, if the limit exists for all υ ∈ X, and one says
that F is Gâteaux differentiable at u.

If F is Fréchet differentiable, then it is also Gâteaux differentiable, and its Fréchet
and Gâteaux derivatives are identical F [u]

δu
[υ] = Tu (υ) and, hence, Tu (υ) is linear.

The converse is clearly not true, since the Gâteaux derivative may fail to be linear or
continuous.4

3.2 Fréchet-derivatives for the different divergence classes

We are now ready to investigate functional derivatives of divergences. In particular
we focus on Fréchet-derivatives.

3.2.1 Bregman-divergences

We investigate the Fréchet-derivative for the Bregman-divergences (2.1) and for-
mally obtain

DB
Φ (p||ρ)
δρ

=
Φ (p)

δρ
− Φ (ρ)

δρ
−
δ
[

δΦ(ρ)
δρ

(p− ρ)
]

δρ
(3.1)

with
δ
[

δΦ(ρ)
δρ

(p− ρ)
]

δρ
=
δ2 [Φ (ρ)]

δρ2
(p− ρ)− δΦ (ρ)

δρ
.

In case of the generalized Kullback-Leibler-divergence (2.2) this reads as

DGKL (p||ρ)
δρ

= −p
ρ

+ 1 (3.2)

4In fact, it is even possible for the Gâteaux derivative to be linear and continuous but for the
Fréchet derivative to fail to exist.
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whereas for the usual Kullback-Leibler-divergence (2.3)

DGKL (p||ρ)
δρ

= −p
ρ

(3.3)

is obtained.
Further for the subset of β-divergences (2.6) we have

Dβ (p||ρ)
δρ

= −p · ρβ−2 + ρβ−1 . (3.4)

3.2.2 f -divergences

For f -divergences (2.7) the Fréchet-derivative is

Df (p||ρ)
δρ

= f

(
p (x)

ρ (x)

)
+ ρ (x)

∂f (u)

∂u

u

δρ

= f

(
p (x)

ρ (x)

)
+ ρ (x)

∂f (u)

∂u
· −p
ρ2

(3.5)

with u = p
ρ
. As a famous example we get for the Hellinger divergence (2.10)

DH (p||ρ)
δρ

= 1−
√
p

ρ
. (3.6)

The subset of α-divergences (2.11) can be handled by

Dα (p||ρ)
δρ

= − 1

α

(
pαρ−α.− 1

)
. (3.7)

The generalized Rényi-divergences (2.12) are treated according to

DGR
α (p||ρ)
δρ

= − pαρ−α − 1∫
[pαρ1−α − α · p+ (α− 1) ρ+ 1] dx

=
α∫

[pαρ1−α − α · p+ (α− 1) ρ+ 1] dx

Dα (p||ρ)
δρ

, (3.8)

which is reduced to
DR

α (p||ρ)
δρ

= − pαρ−α∫
pαρ1−αdx

(3.9)

in case of the usual Rényi-divergences (2.13).

3.2.3 γ-divergences

For the γ-divergences we rewrite (2.15) in the form

Dγ (p||ρ) =
1

γ + 1
lnF1 − lnF2

with F1 =
(∫

pγ+1dx
) 1

γ ·
(∫

ργ+1dx
)

and F2 =
(∫

p · ργdx
) 1

γ . Then we get

Machine Learning Reports 9



Mathematical Aspects of Divergence Based Vector Quantization Using Fréchet-Derivatives

Dγ (p||ρ)
δρ

=
1

γ + 1

1

F1

F1

δρ
− 1

F2

F2

δρ

with

F1

δρ
=

(∫
pγ+1dx

) 1
γ

(∫
ργ+1dx

)
δρ

=

(∫
pγ+1dx

) 1
γ

(γ + 1) ργ

and

F2

δρ
=

1

γ

(∫
p · ργdx

) 1
γ
−1
p · ργ

δρ

=

(∫
p · ργdx

) 1
γ
−1

pργ−1 ,

such that Dγ(p||ρ)

δρ
finally yields

Dγ (p||ρ)
δρ

=
ργ(∫
ργ+1dx

) − pργ−1(∫
p · ργdx

) . (3.10)

Again as an important special case with γ = 1, the Fréchet-derivative of the Cauchy-
Schwarz-divergence (2.17) is derived as

DCS (p||ρ)
δρ

=
ρ(∫
ρ2dx

) − p

V (p, ρ)
. (3.11)

4 Divergence based Vector Quantization using

Fréchet-derivatives

Supervised and unsupervised vector quantization frequently are described in terms
of dissimilarities or distances. Suppose, data are given as data vectors v ∈ Rn. We
further assume that the vectors are discrete representations of continuous positive
valued functions p (x) with vi = p (xi), i = 1 . . . n.

We now focus on prototype based vector quantization, i.e. data processing (clus-
tering or classification) is realized using prototypes w ∈ Rn as representatives,
whereby the dissimilarity between data points as well as between data and pro-
totypes are determined by dissimilarity measures ξ (not necessarily fulfilling triangle
inequality or symmetry restrictions).

Frequently, such algorithms optimize a somewhat cost function E depending on
the dissimilarity between the data points and the prototypes, i.e. usually one has
E = E (ξ (vi,wk)) and i = 1 . . . N the number of data and k = 1 . . . C the number

10 Machine Learning Reports
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of prototypes. This cost function can be a variant of the usual classification error in
supervised learning or modified mean squared error of the dissimilarities ξ (vi,wk).

If E = E (ξ (vi,wk)) is differentiable with respect to ξ, and ξ differentiable with
respect to the prototype w, then a stochastic gradient minimization is a widely used
optimization scheme for E. This methodology implies the calculation of the deriva-
tives ∂ξ

∂wk
, which has now to be considered in the light of the above functional analytic

investigations for divergence measures.
If we identify the prototypes as discrete realizations of a function ρ (x) and further

require that p and ρ are positive functions (measures), the dissimilarity measure ξ

can be chosen as a discrete variant of a divergence. The derivative ∂ξ
∂w

has to be
replaced in this scenario by the Fréchet-derivative ξ

δρ
in the continuous case, which

reduces to usual derivatives in the discrete case (see remark in sec. 3.1.1). This
is formally achieved by replacing p and ρ by their vectorial counterparts v and w in
the formulae of the divergences provided in sec. 3.2 and further translating integrals
into sums.

In the following we give prominent examples of unsupervised and supervised
vector quantization, which can be optimized by gradient methods using the above
introduced frame work.

4.1 Unsupervised Vector Quantization

4.1.1 Basic Vector Quantization

Unsupervised vector quantization is a class of algorithm for distributing prototypes
W = {wk}A, wk∈ Rn such that data points v ∈ V ⊆ Rn are faithfully represented in
terms of a dissimilarity measure ξ. Thereby, C = card (A) is the cardinality of the
index set A. More formally, the data point v is represented by this prototype ws(v)

minimizing the dissimilarity ξ (v,wk), i.e.

v 7→ s (v) = argmin
k∈A

ξ (v,wk) . (4.1)

The aim of the algorithm is to distribute the prototypes in such a way that the quan-
tization error

EVQ =
1

2

∫
P (v) ξ

(
v,ws(v)

)
dv (4.2)

is minimized. In its simplest form basic vector quantization (VQ) leads to a (stochas-
tic) gradient decsent on EV Q with

4ws(v) = −ε ·
∂ξ
(
v,ws(v)

)
∂ws(v)

(4.3)

for prototype update of the winning prototype ws(v) according to (4.1), also known
as the online variant of LBG-algorithm (C–means) [32],[52]. Here, ε is a small pos-
itive value called learning rate. As we see, the update (4.3) take into account the

Machine Learning Reports 11
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derivative of the dissimilarity measure ξ with respect to the prototype. Beside the
common choice of ξ being the squared Euclidean distance, the choice is given to
the user with the restriction of differentiability. Hence, we are here allowed to apply
divergences using its derivatives in the sense of Fréchet-derivatives.

4.1.2 Self-Organizing Maps and Neural Gas

There exist several variants of the basic vector quantization scheme to avoid local
minima or to realize a projective mapping. For example, the latter can be obtained
introducing an topological structure in A, usually a regular grid structure. The result-
ing vector quantization scheme is the Self-Organizing Map (SOM) introduced by T.
KOHONEN [25]. The respective cost function (in the variant of Heskes, [17]) is

ESOM =
1

2K(σ)

∫
P (v)

∑
r∈A

δs(v)
r

∑
r′∈A

hSOM
σ (r, r′)ξ( v,wr′)dv (4.4)

with the so-called neighborhood function

hSOM
σ (r, r′) = exp

(
−‖r− r′‖A

2σ2

)
and ‖r− r′‖A is the distance in A according to the topological structure. K(σ) is a
normalization constant depending on the neighborhood range σ. For this SOM, the
mapping rule (4.1) is modified to

v 7→ s (v) = argmin
r∈A

∑
r′∈A

hSOM
σ (r, r′) · ξ (v,wr′) (4.5)

which yields in the limit σ → 0 the original mapping (4.1). The prototype update for
all prototypes then is given as [17]:

4wr = −εhSOM
σ (r, s(v))

∂ξ (v,wr)

∂wr

. (4.6)

As above, the utilization of divergence based update is straightforward also for SOM.
If the aspect of projective mapping can be ignored while keeping the neighbor-

hood cooperativeness aspect to avoid local minima in vector quantization, then the
Neural Gas algorithm (NG) is an alternative to SOM presented by T. MARTINETZ

[33]. The cost function of NG to be minimized writes as

ENG =
1

2C (σ)

∑
j∈A

∫
P (v)hNG

σ (v,W, j) ξ
(
v,wj

)
dv (4.7)

with

hNG
σ (v,W, i) = exp

(
−ki (v,W )

σ

)
, (4.8)
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with the rank function

ki (v,W ) =
∑

j

θ
(
ξ (v,wi)− ξ

(
v,wj

))
. (4.9)

The mapping is realized as in basic VQ (4.1) and the prototype update for all proto-
types is similar to that of SOM

4wi = −εhNG
σ (v,W, i)

∂ξ (v,wi)

∂wi

. (4.10)

Again, the incorporation of divergences is obvious also for NG.

4.1.3 Further vector quantization approaches

There exist a long list of other vector quantization approaches, like kernelized SOMs
[18],[20],[19], Generative Topographic Mapping (GTM) [4], Soft Topographic Map-
ping [15] etc. to name just a few. Most of them utilize the Euclidean metric and the
respective derivatives for adaptation. Thus, the idea of divergence based processing
can be transferred to these in a similar manner.

Yet, recently, a somewhat reverse SOM has been proposed for embedding data
into an embedding space S, called Exploration Machine (XOM) [51]. This XOM can
be seen as a projective structure preserving mapping of the input data into the em-
bedding space and shows, therefore, similarities to MDS. In the XOM approach the
data points vk ∈ V ⊆ Rn, k = 1, . . . , N are uniquely associated with prototypes
wk∈S in the embedding space S and W = {wk}N

k=1. The dissimilarity ξS in the
embedding space usually is chosen to be the quadratic Euclidean metric. Further,
a hypothesis about the topological structure of the data vk to be embedded is for-
mulated for the embedding space S by defining a probability distribution PS (s) for
so-called sampling vectors s ∈S. The cost function of XOM is defined as

EXOM =
1

2K(σ)

∫
S
PS(s)

N∑
k=1

·δk∗(s)
k

N∑
j=1

hXOM
σ (vk,vj) · ξS( s,wj)ds (4.11)

with the mapping rule

k∗(s) = argmin
i=1,...,N

N∑
j=1

hXOM
σ (vk,vj) · ξS( s,wj). (4.12)

As in usual SOMs the neighborhood cooperativeness is given by a Gaussian

hXOM
σ (vk,vj) = exp

(
−
ξV
(
vk,vj

)
2σ2

)

with the data dissimilarity ξV
(
vk,vj

)
defined as Euclidean distance in the original

XOM. The update of the prototypes in the embedding space is obtained in complete

Machine Learning Reports 13



Mathematical Aspects of Divergence Based Vector Quantization Using Fréchet-Derivatives

analogy to SOM as

4wi = −εhXOM
σ

(
vi,vk∗(s)

) ∂ξS (s,wi)

∂wi

. (4.13)

As one can see, we can apply divergences to both ξV and ξS . In case of the latter
one, the prototype update (4.13) has to be changed accordingly using the respective
Fréchet-derivatives.

4.2 Learning Vector Quantization

Learning Vector Quantization (LVQ) is the supervised counterpart of basic VQ. Now
the data v ∈ V ⊆ Rn to be learned are equipped with class information cv. Suppose,
we have K classes, we define cv ∈ [0, 1]K . If

∑K
k=1 ci = 1 the labeling is probabilistic

and possibilistic otherwise. In case of a probabilistic labeling with cv ∈ {0, 1}K the
labeling is called crisp.

We now briefly explore, how divergences can be used also for supervised learn-
ing. Again we start with the widely applied basic LVQ-approaches and outline af-
terwards the procedure for some more sophisticated methods without any claim of
completeness.

4.2.1 Basic LVQ algorithms

The basic LVQ-schemes are invented by T. KOHONEN [25]. For standard LVQ a
crisp data labeling is assumed. Further, the prototypes wj with labels yj correspond
to the K classes in such a way that at least one prototype is assigned to each class.
For simplicity, we take exactly one prototype for each class now. The task is to
distribute the prototypes in such a manner that the classification error is reduced.
The respective algorithms LVQ1...LVQ3 are heuristically motivated.

As in the unsupervised vector quantization, the similarity between data and pro-
totypes for LVQs are judged by a dissimilarity measure ξ

(
v,wj

)
. Beside some small

modifications the basic LVQ-schemes LVQ1...LVQ3 mainly consist in determination
of the most proximate prototype(s) ws(v) for given v according to the mapping rule
(4.1) and subsequent adaptation. Depending on the agreement of cv and ys(v) the
adaptation of the prototype(s) takes place according to

4ws(v) = α · ε ·
∂ξ
(
v,ws(v)

)
∂ws(v)

(4.14)

and α = 1 iff cv = ys(v), and α = −1 otherwise.
A popular generalization of these standard algorithms is the generalized LVQ

(GLVQ) introduced by SATO&YAMADA [40]. In GLVQ the classification error is re-
placed by a dissimilarity based cost function, which is, of course, closely related to
the classification error but not identical.
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For a given data point v with class label cv the two best matching prototypes
with respect to the data metric ξ, usually the quadratic Euclidian, are determined:
ws+(v) has minimum distance ξ+ = ξ

(
v,ws+(v)

)
under the constraint that the class

labels are identically: ys+(v) = cv. The other best prototype ws−(v) has has minimum
distance ξ− = ξ

(
v,ws−(v)

)
supposing the class labels are different: ys−(v) = cv.

Then the classifier function µ (v) is defined as

µ (v) =
ξ+ − ξ−

ξ+ + ξ−
(4.15)

being negative in case of a correct classification. The value ξ+ − ξ− yields the
hypothesis margin of the classifier [8]. Then the generalized LVQ (GLVQ) is derived
as gradient descent on the cost function

EGLVQ =
∑
v

µ (v) (4.16)

with respect to the prototypes. In each learning step, for a given data point, both
ws+(v) and ws−(v) are adapted in parallel. Taking the derivatives ∂EGLVQ

∂ws+(v)
and ∂EGLVQ

∂ws−(v)

we get for the updates

4ws+(v) = ε+ · θ+ ·
∂ξ
(
v,ws+(v)

)
∂ws+(v)

(4.17)

and

4ws−(v) = −ε− · θ− ·
∂ξ
(
v,ws−(v)

)
∂ws−(v)

(4.18)

with the scaling factors

θ+ =
2 · ξ−

(ξ+ + ξ−)2
and θ− =

2 · ξ+

(ξ+ + ξ−)2
. (4.19)

The values ε+ and ε− ∈ (0, 1) are the learning rates.
Obviously, the distance measure ξ could be replaced for all these LVQ schemes

by one of the introduced divergences. This offers a new possibility for informa-
tion theoretic learning in classification schemes, which differs from the previous ap-
proaches significantly. These earlier approaches stress the information optimum
class representation whereas here the expected information loss in terms of the
applied divergence measure is optimized [45],[44],[48].

4.2.2 Advanced Learning Vector Quantization

Apart from the basic LVQ schemes, many more sophisticated prototype based learn-
ing schemes are proposed for classification learning. Here we will only restrict our-
self to such approaches which can deal with probabilistic or possibilistic labeled
training data (uncertain decisions), and which are additionally related to the basic
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unsupervised and supervised vector quantization algorithms mentioned in this paper
so far.

In particular, we focus on the Fuzzy-labeled SOM (FLSOM) and the very similar
Fuzzy-labeled NG (FLNG) [50],[47]. Both approaches extend the cost function of its
unsupervised counterpart in the following shorthand manner

EFLSOM/FLNG = (1− β)ESOM/NG + βEFL

where EFL measures the classification accuracy . The factor β ∈ [0, 1] is a factor
balancing unsupervised and supervised learning. The classification accuracy term
EFL is defined as

EFL =
1

2

∫
P (v)

∑
r

gγ (v,wr)ψ (cv,yr) dv (4.20)

where gγ (v,wr) is a Gaussian kernel describing a neighborhood range in the data
space

gγ (v,wr) = exp

(
−ξ (v,wr)

2γ2

)
. (4.21)

using the dissimilarity ξ (v,wr) in the data space. ψ (cv,yr) judges the dissimilarities
between label vectors of data and prototypes. ψ (cv,yr) is originally suggested to be
the quadratic Euclidean distance.

Note that EFL depends on the dissimilarity in the data space ξ (v,wr) via
gγ (v,wr). Hence, prototype adaptation in FLSOM/FLNG is influenced by the classi-
fication accuracy:

∂EFLSOM/NG

∂wr

=
∂ESOM/NG

∂wr

+
∂EFL

∂wr

(4.22)

which yields

4wr = −ε(1− β) · hSOM/NG
σ (r, s(v))

∂ξ (v,wr)

∂wr

(4.23)

+εβ
1

4γ2
· gγ (v,wr)

∂ξ (v,wr)

∂wr

ψ (cv,yr) .

The label adaptation is only influenced by the second part EFL. The derivative ∂EFL

∂yr

yields

4 yr = εlβ · gγ (v,wr)
∂ψ (cv,yr)

∂yr

(4.24)

with learning rate εl > 0 [50],[47]. This label learning leads to a weighted average yr

of the fuzzy labels cv of those data v, which are close to the associated prototypes
according to ξ (v,wr).

It should be noted at this point that a similar approach can easily be installed also
for XOM in an analog manner yielding FLXOM.
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Clearly, beside the possibility of choosing a divergence measure for ξ (v,wr) as
in the unsupervised case, there is no contradiction to do so also for the label dissim-
ilarity ψ (cv,yr) in these FL-methods. As before, the simple plugin of the respective
discrete divergence variants and their Fréchet-derivatives modifies the algorithms
such that a semi-supervised learning can be proceeded relying on divergences for
both variants.

4.2.3 Hyperparameter learning for α-, β-, and γ-divergences

Considering the parametrized divergence families of γ-, α-, and β-divergences, one
could further think about the optimal choice of the so-called hyperparameters γ, α,
and β as suggested in a similar manner for other parametrized LVQ-algorithms [41].
In case of supervised learning schemes for classification based on differentiable
cost functions, the optimization can be handled as an object of a gradient descent
based adaptation procedure. Thus, the parameter is optimized in dependence of
the classification task at hand.

Suppose, the classification accuracy for a certain approach is given as

E = E (ξη,W )

depending on a parametrized divergence ξη with parameter η. If E and ξη are both
differentiable with respect to η according to

∂E (ξη,W )

∂η
=
∂E

∂ξη
· ∂ξη
∂η

,

a gradient based optimization is derived by

4η = −ε∂E (ξη,W )

∂η
= −ε∂E

∂ξη
· ∂ξη
∂η

depending on the derivative ∂ξη

∂η
for a certain choice of the divergence ξη.

We assume in the following that the the (positive) measures p and ρ are countin-
uously differentiable. Than, considering derivatives of parametrized divergences ∂ξη

∂η

with repect to the parameter η, it is allowed to interchange integration and differen-
tiation, if the resulting integral exists [12]. Hence, we can differentiate parametrized
divergences with respect to their hyperparameter in that case. For the several α-
, β-, and γ-divergences characterized in sec. 2 we obtain after some elementary
calculations (see Appendix):

• β-divergence Dβ (p||ρ) from (2.6)

∂Dβ (p||ρ)
∂β

=
1

β − 1

∫
p

(
pβ−1 ln p− ρβ−1 ln ρ−

(
pβ−1 − ρβ−1

)
(β − 1)

)
dx

−
∫ (

pβ ln p− ρβ ln ρ
) 1

β
− 1

β2

(
pβ − ρβ

)
dx
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• α-divergence Dα (p||ρ) from (2.11)

∂Dα (p||ρ)
∂α

= − (2α− 1)

α2 (α− 1)2

∫ [
pαρ1−α − α · p+ (α− 1) ρ

]
dx

+
1

α (α− 1)

∫
pαρ1−α (ln p− ln ρ)− p+ ρdx

• generalized Rényi-divergence DGR
α (p||ρ) from (2.12)

∂DGR
α (p||ρ)
∂α

= − 1

(α− 1)2 log

(∫ [
pαρ1−α − α · p+ (α− 1) ρ+ 1

]
dx

)
+

1

α− 1

∫
pαρ1−α (ln p− ln ρ)− p+ ρdx∫

[pαρ1−α − α · p+ (α− 1) ρ+ 1] dx

• Rényi-divergence DR
α (p||ρ) from (2.13)

∂DGR
α (p||ρ)
∂α

= − 1

(α− 1)2 log

(∫
pαρ1−αdx

)
+

1

α− 1

∫
pαρ1−α (ln p− ln ρ) dx∫

pαρ1−αdx

• γ-divergence Dγ (p||ρ) from (2.15)

∂Dγ (p||ρ)
∂γ

= − (2γ + 1)

γ2 (γ + 1)2 ln

(∫
pγ+1dx

)
+

∫
pγ+1 ln pdx

(γ + 1) γ
∫
pγ+1dx

− 1

(γ + 1)2 ln

(∫
ργ+1dx

)
+

∫
ργ+1 ln ρdx

(γ + 1)
∫
ργ+1dx

+
1

γ2
ln

(∫
p · ργdx

)
−
∫
pργ ln ρdx

γ
∫
p · ργdx

5 Conclusion

In this article we provide the mathematical foundation for divergence based super-
vised and unsupervised vector quantization bearing on the derivatives of the applied
divergences. For this purpose, we first characterized the main sub-classes of diver-
gences, Bregman-, α-, β-, γ-, and f -divergences following [7]. The mathematical
framework of Fréchet-derivatives is then used to calculate the functional divergence
derivatives.

We examplary show the utilization of this methodology for famous examples of
supervised and unsupervised vector quantization including SOM, NG, and GLVQ. In
particular, we explained that the divergences can be taken as suitable dissimilarity
measures for data, which leads to the usage of the respective Fréchet-derivatives
in the online learning schemes. Further, we declare, how a parameter adaptation
could be integrated in supervised learning to achieve improved classification results
in case of the parametrized α-, β-, and γ-divergences.
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6 Appendix – Calculation of the derivatives of the

parametrized divergences with repect to the hyper-

parameters

We assume for the differetiation of the divergences with respect to their hyperpa-
rameters that the (positive) measures p and ρ are countinuously differentiable. Than,
considering derivatives of divergences, it is allowed to interchange integration and
differentiation, if the resulting integral exists [12].

6.1 β-divergence

The β-divergence is according to (2.6)

Dβ (p||ρ) =

∫
p · p

β−1 − ρβ−1

β − 1
dx−

∫
pβ − ρβ

β
dx

= I1 (β)− I2 (β)

We treat both integrals independently.

∂I1 (β)

∂β
=

∫ ∂
[
p · pβ−1−ρβ−1

β−1

]
∂β

dx

=

∫
p

(
∂
[
pβ−1 − ρβ−1

]
∂β

1

β − 1
−
(
pβ−1 − ρβ−1

)
(β − 1)2

)
dx

=
1

β − 1

∫
p

(
pβ−1 ln p− ρβ−1 ln ρ−

(
pβ−1 − ρβ−1

)
(β − 1)

)
dx

∂I2 (β)

∂β
=

∫ ∂
[

pβ−ρβ

β

]
∂β

dx

=

∫
∂
[
pβ − ρβ

]
∂β

1

β
− 1

β2

(
pβ − ρβ

)
dx

=

∫ (
pβ ln p− ρβ ln ρ

) 1

β
− 1

β2

(
pβ − ρβ

)
dx

Thus

∂Dβ (p||ρ)
∂β

=
1

β − 1

∫
p

(
pβ−1 ln p− ρβ−1 ln ρ−

(
pβ−1 − ρβ−1

)
(β − 1)

)
dx

−
∫ (

pβ ln p− ρβ ln ρ
) 1

β
− 1

β2

(
pβ − ρβ

)
dx

if the integral exists for an appropriate choice of β.
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6.2 α-divergences

We consider the α-divergence (2.11)

Dα (p||ρ) =
1

α (α− 1)

∫ [
pαρ1−α − α · p+ (α− 1) ρ

]
dx.

=
1

α (α− 1)
I (α)

We have

∂Dα (p||ρ)
∂α

=
∂
[

1
α(α−1)

]
∂α

I (α) +
1

α (α− 1)

∂I (α)

∂α

= − (2α− 1)

α2 (α− 1)2 I (α) +
1

α (α− 1)

∂I (α)

∂α

The derivative ∂I(α)
∂α

yields

∂I (α)

∂α
=

∫
∂ [pαρ1−α − α · p+ (α− 1) ρ]

∂α
dx

=

∫
pαρ1−α (ln p− ln ρ)− p+ ρdx

and, finally we get

∂Dα (p||ρ)
∂α

= − (2α− 1)

α2 (α− 1)2

∫ [
pαρ1−α − α · p+ (α− 1) ρ

]
dx

+
1

α (α− 1)

∫
pαρ1−α (ln p− ln ρ)− p+ ρdx

6.3 Rényi-divergences

Considering the generalized Rényi-divergence DGR
α (p||ρ) from (2.12)

DGR
α (p||ρ) =

1

α− 1
log

(∫ [
pαρ1−α − α · p+ (α− 1) ρ+ 1

]
dx

)
=

1

α− 1
log I (α)

we get:
∂DGR

α (p||ρ)
∂α

= − 1

(α− 1)2 log I (α) +
1

α− 1

1

I (α)

∂I (α)

∂α

with

∂I (α)

∂α
=

∫
∂ [pαρ1−α − α · p+ (α− 1) ρ+ 1]

∂α
dx

=

∫
pαρ1−α (ln p− ln ρ)− p+ ρdx
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Summarizing the differentiation yields

∂DGR
α (p||ρ)
∂α

= − 1

(α− 1)2 log

(∫ [
pαρ1−α − α · p+ (α− 1) ρ+ 1

]
dx

)
+

1

α− 1

∫
pαρ1−α (ln p− ln ρ)− p+ ρdx∫

[pαρ1−α − α · p+ (α− 1) ρ+ 1] dx

We now turn to the usual Rényi-divergence DR
α (p||ρ) from (2.13)

DGR
α (p||ρ) =

1

α− 1
log

(∫
pαρ1−αdx

)
We analogously achieve

∂DGR
α (p||ρ)
∂α

= − 1

(α− 1)2 log

(∫
pαρ1−αdx

)
+

1

α− 1

∫
pαρ1−α (ln p− ln ρ) dx∫

pαρ1−αdx

6.4 γ-divergences

The remaining divergences are the γ-divergences (2.15):

Dγ (p||ρ) =
1

γ + 1
ln

[(∫
pγ+1dx

) 1
γ

·
(∫

ργ+1dx

)]
− ln

[(∫
p · ργdx

) 1
γ

]

=
1

γ + 1
ln

[(∫
pγ+1dx

) 1
γ

]
+

1

γ + 1
ln

[(∫
ργ+1dx

)]
− ln

[(∫
p · ργdx

) 1
γ

]
=

1

(γ + 1) γ
ln I1 (γ) +

1

γ + 1
ln I2 (γ)− 1

γ
ln I3 (γ)

The derivative is obtained according to

∂Dγ (p||ρ)
∂γ

= − (2γ + 1)

γ2 (γ + 1)2 ln I1 (γ) +
1

(γ + 1) γI1 (γ)

∂I1 (γ)

∂γ

− 1

(γ + 1)2 ln I2 (γ) +
1

(γ + 1) I2 (γ)

∂I2 (γ)

∂γ

+
1

γ2
ln I3 (γ)− 1

γI3 (γ)

∂I3 (γ)

∂γ

Next, we calculate the derivatives ∂I1(γ)
∂γ

, ∂I2(γ)
∂γ

and ∂I3(γ)
∂γ

:

∂I1 (γ)

∂γ
=

∫
∂ (pγ+1)

∂γ
dx

=

∫
pγ+1 ln pdx

∂I2 (γ)

∂γ
=

∫
∂ (ργ+1)

∂γ
dx

=

∫
ργ+1 ln ρdx
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∂I3 (γ)

∂γ
=

∫
∂ (p · ργ)

∂γ
dx

=

∫
pργ ln ρdx

Collecting all intermediate results we finally have

∂Dγ (p||ρ)
∂γ

= − (2γ + 1)

γ2 (γ + 1)2 ln

(∫
pγ+1dx

)
+

∫
pγ+1 ln pdx

(γ + 1) γ
∫
pγ+1dx

− 1

(γ + 1)2 ln

(∫
ργ+1dx

)
+

∫
ργ+1 ln ρdx

(γ + 1)
∫
ργ+1dx

+
1

γ2
ln

(∫
p · ργdx

)
−
∫
pργ ln ρdx

γ
∫
p · ργdx

.

References

[1] S.-I. Amari. Differential-Geometrical Methods in Statistics. Springer, 1985.

[2] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with bregman
divergences. Journal of Machine Learning Research, 6:1705–1749, 2005.

[3] A. Basu, I. Harris, N. Hjort, and M. Jones. Robust and efficient estimation by
minimising a density power divergence. Biometrika, 85(3):549–559, 1998.

[4] C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: The generative topo-
graphic mapping. Neural Computation, 10:215–234, 1998.

[5] L. Bregman. The relaxation method of finding the common point of convex sets
and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics, 7(3):200–217, 1967.

[6] A. Cichocki, H. Lee, Y.-D. Kim, and S. Choi. Non-negative matrix factorization
with α-divergence. Pattern Recognition Letters, 2008.

[7] A. Cichocki, R. Zdunek, A. Phan, and S.-I. Amari. Nonnegative Matrix and
Tensor Factorizations. Wiley, Chichester, 2009.

[8] K. Crammer, R. Gilad-Bachrach, A.Navot, and A.Tishby. Margin
analysis of the LVQ algorithm. In Proc. NIPS 2002, http://www-
2.cs.cmu.edu/Groups/NIPS/NIPS2002/NIPS2002preproceedings/index.html,
2002.

[9] I. Csiszár. Information-type measures of differences of probability distributions
and indirect observations. Studia Sci. Math. Hungaria, 2:299–318, 1967.

22 Machine Learning Reports



Mathematical Aspects of Divergence Based Vector Quantization Using Fréchet-Derivatives
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