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Abstract

In this paper we propose the generalization of the recently introduced Neighbor Embed-
ding Exploratory Observation Machine (NE-XOM) for dimension reduction and visual-
ization. We provide a general mathematical framework called Self Organized Neighbor
Embedding (SONE). It treats the components, like data similarity measures and neigh-
borhood functions, independently and easily changeable. And it enables the utilization
of different divergences, based on the theory of Fréchet derivatives. In this way we pro-
pose a new dimension reduction and visualization algorithm, which can easily adapted
to the user specific request and the actual problem.

1 Introduction

Various dimension reduction techniques have been introduced based on different prop-
erties of the original data to be preserved. The spectrum ranges from linear projec-
tions of original data, such as in Principal Component Analysis (PCA) or classical
Multidimensional Scaling (MDS) [29] to a wide range of locally linear and non-linear
approaches, such as Isomap [41, 17], Locally Linear Embedding (LLE) [39], Local
Linear Coordination (LLC) [43], or charting [8, 40]. Stochastic Neighbor Embedding
(SNE) [24] approximates the probability distribution in the high-dimensional space, de-
fined by neighboring points, with their probability distribution in a lower-dimensional
space. In [42] the authors proposed a technique called t-SNE, which is a variation of
SNE considering another statistical model assumption for data distributions.

Other methods aim at the preservation of the classification accuracy in lower dimen-
sions and incorporate the available label information for the embedding, e. g. Linear
Discriminant Analysis (LDA) [22] and generalizations thereof [6], extensions of the Self
Organizing Map (SOM) [28] incorporating class labels [47], and Limited Rank Matrix
Learning Vector Quantization (LiRaM LVQ) [13, 12]. For a comprehensive review on
nonlinear dimensionality reduction methods, we refer to [31].

Recently, the idea of fast and efficient online learning was combined with the high-
quality of divergence based optimization, resulting in a new dimension reduction al-
gorithm called Neighbor Embedding XOM (NE-XOM) [10]. The authors connected a
computational approach to topology learning, the Exploration Observation Machine
(XOM) as intruduced by Wismüller [48, 49], with the divergence optimization of SNE.

In this contribution, we extend the approach proposed in [10], with a mathematical
foundation for the generalization of the principle to arbitrary divergences based on
Fréchet derivatives. This generalized framework is called Self Organized Neighbor
Embedding (SONE) in the following. In this way we propose a new dimension reduction
and visualization algorithm, which can easily adapted to the user specific request and
the actual problem.

We will describe the XOM algorithm and its NE-XOM extension in section 2.1 and
section 2.2, describe the new generalized framework SONE in section 3, show the
extension for some famous families of divergences and conclude in section 5.
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2 The basic Algorithms

In this chapter we briefly explain the recently introduced combination of direct diver-
gence optimization, inspired by Stochastic Neighbor Embedding (SNE) [24], and fast
online learning, using the Exploration Observation Machine (XOM) [48, 49, 50]. The
SNE is a recently proposed powerful method, which yields high quality embeddings
measured by, e. g., trustworthiness and continuity. It aims at minimizing differences of
the pairwise probability distribution of points in the data and embedding space mea-
sured by the Kullback-Leibler (KL) Divergence. Like many other dimension reduction
techniques, SNE has a computational and memory complexity, which is quadratic in
the number of points. The complexity of the XOM algorithm on the other hand can be
easily controlled by the structure hypothesis and its complexity is linear with the num-
ber of points. It embeds low-dimensional image vectors driven by the topology of the
data points in the high-dimensional space. In the following we will briefly review the
XOM and its combination with the ideas of SNE, which results in the new algorithm
called Neighbor Embedding XOM (NE-XOM) introduced in [11].

2.1 The Exploration Observation Machine (XOM)

XOM maps a finite number of high-dimensional data points xi ∈ X in the observa-
tion space X to low-dimensional image vectors yi ∈ E in the embedding space E .
The embedding space is associated with a structure hypothesis, given by a number of
sampling vectors s ∈ E , which corresponds to the final structure in which the data is
embedded. These can be seen as a generalization of the prototypes as included in
the Self Organizing Map (SOM). Reasonable choices for the sampling vectors s are:
the location on a regular lattice structure in E , discrete positions in E as representation
of a finite number of class centers, drawn from a mixture of Gaussian to represent a
finite number of clusters, or uniformly sampled in a region of E to indicate that the visu-
alization of the data should occupy the full projection space. Unlike SOM, XOM does
not project the sampling vectors s to the data space, rather it projects the data to the
embedding space:
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The image vectors y can be initialized arbitrarily, e. g. randomly or by means of a
PCA. The XOM algorithm follows than three main steps:

1. Present a sampling vector s from the structure hypothesis,

2. find the best matching input vector

Ψ(s) = xi for which dE(s,yi) is minimum. (2.1)

Here, dE(s,y) : E × E → IR denotes an arbitrary dissimilarity measure used in
the embedding space.

3. Perform the update of all image vectors with the adaptation rule:

yk → yk − τ · hσ(dX (Ψ(s),xk))
∂dE(s,y

k)

∂yk
, (2.2)

where dX (xj,xl) : X × X → IR denotes the dissimilarity measure used in
the observation space X , τ defines a learning rate with 0 < τ ≤ 1 and
hσ(dX (xi,xj)) or for short hijσ defines the neighborhood cooperation in the ob-
servation space. It constitutes the topology of the data, which is tried to be
preserved also in the low-dimensional space E . It might be chosen according
to a distribution with variance σ, e. g. a Gaussian:

hijσ = exp

(
−dX (xi,xj)

2σ2

)
with σ > 0 . (2.3)

The steps 1-3 are repeated until a stopping criteria is met, e. g. the maximal number
of iterations is reached.

In this way the projections y are arranged around the a priori chosen structure elements
s, such that image vectors are close to the same sampling vector if their corresponding
data points x are neighbors in the data space.
The XOM algorithm in its original form does not correspond to a cost function. However,
a variation following Heskes [23] by replacing the best match input data vector by

Ψ(s) = xi where
∑
j

hσ(dX (xi,xj)) dE(s,y
j) is minimum, (2.4)

leads to the cost function:

EXOM ∼
∫ ∑

i

δΨ(s),xi ·
∑
j

hσ(dX (xi,xj)) dE(s,y
j) p(s)ds . (2.5)

The XOM learning rule corresponds to a stochastic gradient descent procedure with
respect to this cost function.

2.2 The Neighbor Embedding XOM (NE-XOM)

In this section we review the combination of direct divergence inspired by SNE with
fast sequential online learning resulting in a new algorithm called Neighbor Embedding
XOM (NE-XOM) introduced in [11].
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Let hσ(dX (ΨGKL(s),xk)) and gς(dE(s,yk))
(

abbreviated by hΨGKL(s)
σ (k) and gs

ς (k)
)

be
any positive integrable measures denoting the neighborhood cooperation in the obser-
vation and the embedding space respectively. Following the ideas of SNE, NE-XOM
tries to minimize the difference between these two neighborhood functions measured
by the Kullback-Leibler (KL) divergence. Note, that in contrast to SNE, which is origi-
nally defined for probability densities p(r) with scalar r, the constraint

∫
p(r) dr = 1 is

not imposed here.
The neighborhood function hΨGKL(s)

σ of the observation space X might be a Gaussian
like hσ in Eq. (2.3). Depending on the choice for the neighborhood cooperation gς in the
embedding space with variance ς the learning rule and thus the final embedding may
vary a lot. We will provide in the following the learning rules for the case of a Gaussian
neighborhood cooperation:

gs
ς (k) = exp

(
−dE(s,yk)

2ς2

)
(2.6)

with the derivative
∂gs

ς (k)

∂yk
=

(
−
gs
ς (k)

2ς2

)
∂dE(s,y

k)

∂yk
(2.7)

and a t-Distribution-like cooperation function:

gs
ς (k) = (1 + dE(s,y

k)/ς)(−
ς+1

2 ) (2.8)

with the derivative
∂gs

ς (k)

∂yk
=

(
−ς + 1

2ς

)
gs
ς (k)

(1 + dE(s,yk)/ς)

∂dE(s,y
k)

∂yk
. (2.9)

For positive measures p and q the Generalized KL (GKL) divergence:

DGKL(p‖q) =

∫
p(r) ln

(
p(r)

q(r)

)
dr −

∫
[p(r)− q(r)] dr (2.10)

is used. In analogy with the XOM cost function EXOM Eq. (2.5) we are able to define
a cost function using the neighborhood functions from the original and the embedding
space and the GKL divergence DGKL Eq. (2.10):

ENEXOM ∼
∫ ∑

i

δΨGKL(s),xi ·
∑
j

[
hΨGKL(s)
σ (j) ln

(
h

ΨGKL(s)
σ (j)

gs
ς (j)

)
− hΨGKL(s)

σ (j) + gs
ς (j)

]
p(s)ds ,

(2.11)
where hΨGKL(s)

σ = hσ(dX (ΨGKL(s),xk)) and the best match data point ΨGKL(s) for a given
sampling vector s is given by

ΨGKL(s) = xi such that
∑
j

[
hΨGKL(s)
σ (j) ln

(
h

ΨGKL(s)
σ (j)

gs
ς (j)

)
− hΨGKL(s)

σ (j) + gs
ς (j)

]
is minimum.

(2.12)
This results in the learning rule for the NE-XOM:

yk = yk − τ
∂gs

ς (k)

∂yk

(
1− h

ΨGKL(s)
σ (k)

gs
ς (k)

)
, (2.13)

4 Machine Learning Reports



Mathematical Foundations of Self Organized Neighbor Embedding (SONE) for Dimension
Reduction and Visualization

In case of a Gaussian gkς the learning rule reads:

yk = yk − τ

2ς2

(
hΨGKL(s)
σ (k)− gs

ς (k)
) ∂dE(s,yk)

∂yk
, (2.14)

and with a t-distributed gkς defined in Eq. (2.8) it leads to:

yk = yk − ς + 1

2ς

τ

(1 + dE(s,yk)/ς)

(
hΨGKL(s)
σ (k)− gs

ς (k)
) ∂dE(s,yk)

∂yk
. (2.15)

In the following sections we will generalize this concept for arbitrary divergences.

3 A Generalized Framework for Dimension Reduction

In [45] the authors discuss the use of divergences in different supervised and unsuper-
vised Vector Quantization schemes. They show that divergences can be an alternative
to the most frequently used Euclidean distance and may lead to improved classification
accuracy. Furthermore divergences can be applied in the field of dimension reduction:
for example in Stochastic Neighbor Embedding (SNE), t-distributed SNE (t-SNE) and
Multidimensional Scaling (MDS) [24, 42, 30]. In [46] the mathematical foundation to
extend SNE and t-SNE for use with arbitrary divergences is given. We will use this
concept to generalize the algorithm explained in section 2.2. In the following we will
briefly review the concept of divergences and Fréchet derivatives and we will define
the mathematical framework for Self Organized Neighbor embedding (SONE) using
arbitrary divergences.

3.1 Divergences

Divergences are functionals D(p‖q) designed as dissimilarity measures between two
nonnegative integrable functions p and q [14]. In practice, usually p corresponds to the
observed data and q denotes the estimated or expected data. We call p and q positive
measures defined on r in the domain V . The weight of the functional p is defined as

W (p) =

∫
V

p(r) dr . (3.1)

Positive measures with the additional constraint W (p) = 1 are denoted as probability
density functions. Generally speaking, divergences measure a quasi-distance or di-
rected difference, while we are mostly interested in separable measures, which satisfy
the condition

D(p‖q)

{
> 0 for p 6= q

= 0 iff p ≡ q .
(3.2)

In contrast to a metric, a divergence must not be symmetric in the sense D(p‖q) =
D(q‖p) and does not necessarily satisfy the triangular inequality D(p‖q) ≤ D(p‖z) +
D(z‖q). Note, that the definition of the considered divergences for non-normalized pos-
itive measures has an important property. It allows the analysis of patterns of different
size to be weighted differently, e. g. images with different size or documents of variable
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length. Following [14] one can distinguish at least three main families of divergences
with the same consistent properties: Bregman-divergences, Csiszár’s f -divergences
and γ-divergences. Note that all these families contain the Kullback-Leibler (KL) diver-
gence as special case, so the KL-divergence can be seen as the non empty intersec-
tion between these sets of divergences.

3.2 The Fréchet Derivative

Suppose V and W are Banach spaces and U ⊂ V is an open subset of V . The function
f : U → W is called Fréchet differentiable at x ∈ U , if there exists a bounded linear
operator Ax : V → W , such that for h ∈ U

lim
h→0

‖f(x+ h)− f(x)− Ax(h)‖W
‖h‖V

= 0 . (3.3)

This general definition can be used for functions L : B → IR, defined as mappings
from a functional Banach space B to IR. Further let B be equipped with a norm ‖·‖
and f, h ∈ B are two functionals. The Fréchet derivative δL[f ]

δf
of L at point f (i. e. in a

function f ) in the direction h is formally defined as:

lim
ε→0

1

ε
(L[f + εh]− L[f ]) =:

δL[f ]

δf
[h] . (3.4)

This concept will be used for the generalization of the definition given in Eq. (2.13).

3.3 Self Organized Neighbor Embedding (SONE)

We define a cost function for arbitrary Divergences D(p‖q):

ESONE =

∫ ∑
i

δΨD(s),xi ·
∑
j

D
(
hΨD(s)
σ (j)

∥∥gs
ς (j)

)
p(s)ds , (3.5)

where the best matching data point ΨD(s) for s is defined as:

ΨD(s) = xi such that
∑
j

D
(
hΨD(s)
σ (j)

∥∥gs
ς (j)

)
is minimum. (3.6)

Let V be a Banach space and U ⊂ V an open subset of V . The divergence D : U →
IR is defined as a mapping from U to IR. Further D uses a bounded linear operator:
the integral

∫
: V → IR. So the derivative of the cost function (3.5) with respect to the

image vectors yk can be done using the Fréchet derivative Eq. (3.4):

∂ESONE

∂yk
=

∫ δD
(
h

ΨD(s)
σ

∥∥gs
ς

)
δgs

ς

[l] ·
∂gs

ς

∂yk

 dl (3.7)

=

∫ δD
(
h

ΨD(s)
σ

∥∥gs
ς

)
δgs

ς


l

· δl,k ·
∂gs

ς

∂yk

 dl (3.8)

=
δD
(
h

ΨD(s)
σ

∥∥gs
ς

)
δgs

ς


k

·
∂gs

ς (k)

∂yk
. (3.9)
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This yields the online learning update rule for a given sampling vector s and learning
rate τ :

yk = yk − τ∆yk

∆yk =
δD
(
h

ΨD(s)
σ

∥∥gs
ς

)
δgs

ς


k

·
∂gs

ς (k)

∂yk
(3.10)

4 SONE Gradients for Positive Measures

In the following we formulate the learning rules for general positive measures p and q,
for which the constraint

∫
p(r) dr = 1 is not imposed. Thus we demand the neighbor-

hood function to fulfill 0 ≤ hσ, gς ≤ 1.

4.1 Bregman divergences

A very famous class of divergences are the Bregman divergences, which are widely
used in optimization and clustering [3, 9, 18, 19, 36]. A Bregman divergence is defined
as a pseudo-distance between two positive measures p and q: DB(p‖q) : L × L →
IR+. Let φ be a strictly convex real-valued function with the domain of the Lebesgue-
integrable functions L and twice continuously Fréchet-differentiable [33]. Then the
Bregman divergence can be defined by

Dφ
B(p‖q) = φ(p)− φ(q)− δφ(q)

δq
[p− q] , (4.1)

where δφ(q)
δq

is the Fréchet derivative of φ with respect to q [45].
The Bregman divergence includes many prominent dissimilarity measures like the

Euclidean distance (with generating function φ(p) = p2), the generalized Kullback-
Leibler (or I-) divergence, the Itakura-Saito divergence and the β-divergence [14, 45,
20].

Well known fundamental properties of the Bregman divergences are [14]:

1. Convexity: A Bregman divergence is always convex in its first argument but not
necessarily in its second.

2. Non-negativity: Dφ
B(p‖q) ≥ 0 and Dφ

B(p‖q) = 0 iff p ≡ q

3. Linearity: Any positive linear combination of Bregman divergences is also a
Bregman divergence:

Dc1φ1+c2φ2

B (p‖q) = c1Dφ1

B (p‖q) + c2Dφ2

B (p‖q) with c1, c2 > 0 (4.2)

4. Invariance: A Bregman divergence is invariant under affine transformations.
Thus, DΓ

B(p‖q) = Dφ
B(p‖q) is valid for any affine transformation

Γ(q) = φ(q) + Ψp[q] + c (4.3)

with linear operator Ψp[q] =
δΓ(p)

δp
· q − δφ(p)

δp
· q (4.4)

for positive measures p and q and scalar c.
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5. Three-point property: For any triple p, q, ρ of positive measures the property
holds:

Dφ
B(p‖ρ) = Dφ

B(p‖q) +Dφ
B(q‖ρ) + (p− q)

(
δφ(q)

δq
− δφ(ρ)

δρ

)
(4.5)

6. Generalized Pythagorean theorem: Let PΩ(q) = arg min
ω∈Ω

Dφ
B(ω‖q) be the Breg-

man projection onto the convex set Ω and p ∈ Ω. The inequality

Dφ
B(p‖q) ≥ Dφ

B(p‖PΩ(q)) + Dφ
B(PΩ(q)‖q) (4.6)

is known as generalized Pythagorean theorem. If Ω is an affine set it holds with
equality.

7. Optimality: In [4] an optimality property is stated. Given a set S of positive
measures p with mean µ = E[S] and µ ∈ S the unique minimizer Ep∈S[D(p‖q)]
is minimum for q = µ if D is a Bregman divergence. This property favors the
Bregman divergences for clustering problems.

The Fréchet-derivative of Dφ
B with respect to q is formally given by

δDφ
B(p‖q)
δq

=
δφ(p)

δq
− δφ(q)

δq
−
δ
[
δφ(q)
δq

(p− q)
]

δq
(4.7)

with

δ
[
δφ(q)
δq

(p− q)
]

δq
=
δ2[φ(q)]

δq2
(p− q)− δφ(q)

δq
.

In the following we will provide detailed information and the Fréchet derivatives for
some special cases and subsets of the Bregman divergences.

4.1.1 Generalized Kullback-Leibler Divergence (I-Divergence):

A famous example for Bregman divergence [45] is the generalized Kullback-Leibler
divergence:

DGKL(p‖q) =

∫
p(r) ln

(
p(r)

q(r)

)
dr −

∫
[p(r)− q(r)] dr (4.8)

with the generating function

φ(p) =

∫
p ln p− p dr . (4.9)

The Fréchet-derivative of DGKL with respect to q is given by

δDGKL(p‖q)
δq

= 1− p

q
. (4.10)

So the learning rule for SONE with the generalized KL divergence equals the NE-XOM
given by Eq. (2.13).
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4.1.2 Itakura-Saito:

The Itakura-Saito (IS) divergence:

DIS(p‖q) =

∫ (
p

q
− ln

(
p

q

)
− 1

)
dr (4.11)

was derived in 1968 from the maximum likelihood (ML) estimation of short-time speech
spectra [25]. This divergence is a Bregman divergence based on the Burg entropy

HB(p) = −
∫

ln(p) dr (4.12)

which also serves as the generating function

φ(p) = HB(p) . (4.13)

Due to the good perceptual properties of the reconstructed signals this divergence
became a standard measure in speech processing. Besides the properties that the IS
divergence inherits from the Bregman divergences, it is scale invariant DIS(c · p‖c · q) =
DIS(p‖q), meaning that low energy components of p bear the same relative importance
as high energy ones. As a consequence the Itakura-Saito divergence is frequently
applied in image and sound processing [7].

The Fréchet-derivative of DIS with respect to q is given by

δDIS(p‖q)
δq

=
1

q
− p

q2
. (4.14)

The learning rules for SONE with Itakura-Saito divergence are

in case of a Gaussian g:

yk = yk − τ 1

2ς2

(
h

ΨIS(s)
σ (k)

gs
ς (k)

− 1

)
∂dE(s,y

k)

∂yk
(4.15)

and in case of a t-Distribution g:

yk = yk − τ ς + 1

2ς

1

(1 + dE(s,yk)/ς)

(
h

ΨIS(s)
σ (k)

gs
ς (k)

− 1

)
∂dE(s,y

k)

∂yk
(4.16)

4.1.3 Beta-Divergences:

The β-divergence was introduced as density power divergences by Basu [5], Mihoko
and Eguchi [20, 34]. It is not invariant under a change of the dominating measure and
not invariance monotone for summarization, except for the special case β = 1 which
gives the KL-divergence. The β-divergence for positive measures p and q is defined
as:

Dβ(p‖q) =

∫
p · p

β−1 − qβ−1

β − 1
dr −

∫
pβ − qβ

β
dr with

{
β 6= 1

β 6= 0
(4.17)

=

∫
pβ
(

1

β − 1
− 1

β

)
− qβ−1

(
p

β − 1
− q

β

)
dr . (4.18)

Machine Learning Reports 9
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In the case of β = 2 we obtain the standard squared Euclidean distance, while the limit
β → 1 leads to the generalized Kullback-Leibler divergence (I-divergence) and the limit
β → 0 gives the Itakura-Saito distance.
The Fréchet-derivative of Dβ with respect to q is given by

δDβ(p‖q)
δq

= −p · qβ−2 + qβ−1 = qβ−2(q − p) . (4.19)

So the learning rules for SONE with the β-divergence are

in case of a Gaussian g:

yk = yk − τ

2ς2
· gs

ς (k)(β−1)
(
h

Ψβ(s)
σ (k)− gs

ς (k)
) ∂dE(s,yk)

∂yk
(4.20)

and in case of a t-Distribution g:

yk = yk − ς + 1

2ς

τ

(1 + dE(s,yk)/ς)
· gs

ς (k)(β−1)
(
h

Ψβ(s)
σ (k)− gs

ς (k)
) ∂dE(s,yk)

∂yk
(4.21)

4.2 Generalized Csizár f-divergence:

We denote by F the class of convex functions satisfying f(1) = 1, f ′(1) = 0, and
f ′′(1) = 1. For a convex function f ∈ F the Csizár f -divergence is given by:

Df (p‖q) =

∫
q f

(
p

q

)
dr (4.22)

with the definitions 0 · f
(

0
0

)
= 0 and 0 · f

(
a
0

)
= lim

x→0
x · f(a

x
) = lim

u→∞
a · f(u)

u
[15, 16, 2]. The

f -divergence can be interpreted as an average of the likelihood ratio p
q

describing the
change rate of p with respect to q weighted by the determining function f . For a general
f , which does not have to be convex, with f ′(1) = cf 6= 0, this form is not invariant and
we need to use

Df (p‖q) = cf

∫
(p− q) dr +

∫
q f

(
p

q

)
dr . (4.23)

Some basic properties of the Csiszár f -divergence are [37, 14]:

1. Non-negativity: Df (p‖q) ≥ 0 and equals zero iff p ≡ q follows from the Jensens
inequality,

2. Generalized entropy: It corresponds to a generalized f -entropy if the form

Hf (p) = −
∫
f(p(r)) dr . (4.24)

3. Strict convexity: The f -divergence is convex in both arguments p and q:

Df (tp1+(1−t)p2‖tq1+(1−t)q2) ≤ tDf (p̃1‖q̃1)+(1−t)Df (p2‖q2) ∀t ∈ [0, 1] (4.25)
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4. Scalability: cDf (p‖q) = Dcf (p‖q) for any positive constant c > 0.

5. Invariance: Df (p‖q) is invariant with respect to a linear shift regarding the func-
tion f : e. g. Df (p‖q) = Df̃ (p‖q) iff f̃(u) = f(u) + c · (u − 1) for any constant
c ∈ IR.

6. Symmetry: For f, f ∗ ∈ F , where f ∗(u) = u · f( 1
u
) denotes the conjugate function

of f , the relation Df (p‖q) = Df∗(q‖p) is valid. It is possible to construct a symmet-
ric Csizár f -divergence with fsym(u) = f(u) + f ∗(u) as determining function.

7. Upper bound: The f -divergence is bounded by

0 ≤ Df (p‖q) ≤ lim
u→0+
{f(u) + f ∗(u)} with u =

p

q
. (4.26)

The existence of this limit for probability densities p and q was shown by Liese
and Vajda in [32]. Villmann and Haase showed that these bound still holds for
positive measures p and q [44].

8. Monotonicity: The f -divergence is monotonic with respect to the coarse-graining
of the underlying domain D of the positive measures p and q, which is similar to
the monotonicity of the Fisher metric [2].

The Fréchet derivative for the f -divergence is given by [45]:

δDf (p‖q)
δq

= f

(
p

q

)
+ q

∂f(u)

∂u

∂u

∂q
with u =

p

q
(4.27)

= f

(
p

q

)
+ q

∂f(u)

∂u
· −p
q2

(4.28)

4.2.1 Alpha-Divergence:

The α-divergences can be derived from the Csiszár f -divergences as well as from the
Bregman divergence. It is a special case of Csizár f -divergences associated to any
function f(u) which is convex over (0,∞) and satisfies f(1) = 0. Indeed the generating
function f(u) = (uα − αu + α − 1)/(α2 − α) inserted in Df (p‖q) Eq. (4.22) yields the
basic, asymmetric α-divergence:

Dα(p‖q) =
1

α(α− 1)

∫
[pαq1−α − αp+ (α− 1) q] dr, α ∈ IR (4.29)

=
1

α(α− 1)

∫ [
q

(
pα

qα
+ (α− 1)

)
− αp

]
dr . (4.30)

where p and q not need to be normalized. With the parameter α this divergence con-
nects the I-divergence DGKL(p‖q) (limiting case: lim

α→1
Dα(p‖q)) with the dual I-divergence

DGKL(q‖p) (limiting case: lim
α→0

Dα(p‖q)). Further β-divergences can be generated from

the α-divergences, by applying a non-linear transformation: p→ pβ+2 and q → qβ+2 with
α = 1/(β + 1) [14]. Moreover, the α-divergences are closely related to the generalized
Rényi-divergence [14, 1]:

Dα
GR(p‖q) =

1

α− 1
ln

(∫ [
pαq1−α − αp+ (α− 1) q

]
dr + 1

)
. (4.31)
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The family of α-divergences can be converted to a wide range of divergences defined
for probability densities, like the Hellinger, Pearson Chi-squared, Neyman Chi-squared
(or inverse Pearson), Rényi and Tsallis divergence. Since we are dealing with positive
measures here the interested reader is referred to [45, 14] for details. In practice a
regularized version of the α-divergence with an additional penalty term on the right
hand side:

Dα(p‖q) =
1

α(α− 1)

∫
p 6=0

[pαq1−α − αp+ (α− 1) q] dr +
1

α

∫
p=0

q dr (4.32)

often improves performance and robustness of estimators.
In addition to the general properties of the f -divergences stated above, the α-

divergences exhibit specific characteristics:

1. Continuity: The α-divergence is a continuous function of the real variable α in
the whole range including singularities.

2. Duality: D(α)(p‖q) = D(1−α)(p‖q)

3. Properties depending on the Hyper-parameter: [35]

α→ −∞ : the estimation q may exclude modes of the target p. So the minimization
of Dα(p‖q) with respect to q will force the mass of q lying within p.

α ≤ 0 : the estimation is zero-forcing, i. e. p(r) = 0 forces q(r) = 0.
α ≥ 1 : the estimation is zero-avoiding, i. e. q(r) > 0 implies q(r) > 0.

α→∞ : the α-divergence is inclusive, i. e. q covers p completely.

The Fréchet derivatives of the subset of α-divergences and the generalized Rényi-
divergence are [45]:

δDα(p‖q)
δq

=
1

α

(
1− pα

qα

)
(4.33)

δDGR(p‖q)
δq

=
1− pαq−α∫

[pαq1−α − αp+ (α− 1) q + 1] dr
. (4.34)

Hence the learning rules for SONE with the α-divergence are:

in case of a Gaussian g:

yk = yk − τ 1

2ς2
·
gs
ς (k)

α

((
h

Ψα(s)
σ (k)

gs
ς (k)

)α

− 1

)
∂dE(s,y

k)

∂yk
(4.35)

and in case of a t-Distribution g:

yk = yk − τ ς + 1

2ς

1

(1 + dE(s,yk)/ς)
·
gs
ς (k)

α

((
h

Ψα(s)
σ (k)

gs
ς (k)

)α

− 1

)
∂dE(s,y

k)

∂yk
. (4.36)
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4.3 Gamma-Divergence:

The γ-divergence is a very robust dissimilarity measure with respect to outliers [21]
proposed by Fujisawa and Eguchi:

Dγ(p‖q) = ln

(∫ pγ+1 dr
) 1
γ(γ+1) ·

(∫
qγ+1 dr

) 1
γ+1(∫

p · qγ dr
) 1
γ

 (4.37)

It is robust for γ ∈ [0, 1] with existence of Dγ=0 in the limit γ → 0. In the limit γ → 0 the γ-
divergence becomes the Kullback-Leibler-divergence DKL(p‖q) for probability densities.
And for γ = 1 it becomes the Cauchy-Schwarz divergence DCS(p‖q), which is based
on the quadratic Rényi-entropy and is frequently applied for Parzen window estimation,
especially suitable for spectral clustering as well as related graph cut problems [38, 26,
27, 45].

The γ-divergence displays some nice properties [45]:

1. Invariance: Dγ(p‖q) is invariant under scalar multiplication with positive con-
stants

Dγ(p‖q) = Dγ(c1 · p‖c2 · q) ∀c1, c2 > 0 . (4.38)

In case of positive measures the equation Dγ(p‖q) = 0 holds only if p = c · q with
c > 0. For probability densities c = 1 is required.

2. Pythagorean relation: As for Bregman divergences a modified Pythagorean
relation between positive measures can be stated for special choices of p, q, ρ.
Let p be a distortion of q defined as convex combination with a positive distortion
measure φ(r)

pε(r) = (1− ε) · q(r) + ε · φ(r) . (4.39)

A positive measure g is denoted as φ-consistant if νg =
(∫

φ(r)g(r)α dr
) 1
α is suf-

ficiently small for large α > 0. If two positive measures q and ρ are φ-consistant
according to a distortion measure φ, then the Pythagorean relation approximately
holds for q, ρ and the distortion pε of q:

∆(pε, q, ρ) = Dγ(pε‖ρ)−Dγ(pε‖q)−Dγ(q‖ρ) = O(ενγ) with ν = max{νq, νρ} .
(4.40)

This property implies the robustness of Dγ according to distortions.

The Fréchet derivative of Dγ with respect to q yields [45]:

δDγ(p‖q)
δq

= qγ−1

[
q∫

qγ+1 dr
− p∫

p · qγ dr

]
(4.41)

The gradients for SONE with the γ-divergence and winner definition

Ψγ(s) = xi such that
∑
j

Dγ

(
hΨγ(s)
σ (j)

∥∥gs
ς (j)

)
is minimum, (4.42)
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leads the following learning rules. In case of a Gaussian neighborhood function g:

∆yk =
[
gs
ς (k)

]γ−1

[
gs
ς (k)∑

j

[
gs
ς (j)

]γ+1 −
h

Ψγ(s)
σ (k)∑

j h
Ψγ(s)
σ (j) ·

[
gs
ς (j)

]γ
](
−
gs
ς (k)

2ς2

)
∂dE(s,y

k)

∂yk

(4.43)

= −
[
gs
ς (k)

]γ
2ς2

[
gs
ς (k)∑

j

[
gs
ς (j)

]γ+1 −
h

Ψγ(s)
σ (k)∑

j h
Ψγ(s)
σ (j) ·

[
gs
ς (j)

]γ
]
∂dE(s,y

k)

∂yk
(4.44)

and in case of t-Distribution:

∆yk = −
(
ς + 1

2

) [
gs
ς (k)

]γ
ς + dE(s,yk)

[
gs
ς (k)∑

j

[
gs
ς (j)

]γ+1 −
h

Ψγ(s)
σ (k)∑

j h
Ψγ(s)
σ (j) ·

[
gs
ς (j)

]γ
]
∂dE(s,y

k)

∂yk
.

(4.45)

4.3.1 Cauchy-Schwarz-Divergence:

The Cauchy-Schwarz-divergence

DCS(p‖q) =
1

2
ln

(∫
q2 dr ·

∫
p2 dr

)
− ln

(∫
p · q dr

)
(4.46)

was introduced by J. Principe considering the Cauchy-Schwarz-inequality for norms
[38]. It follows as the special case of γ = 1 in the γ-divergence explained above and it
is based on the quadratic Rényi-entropy. This divergence is frequently used for Parzen
window estimation and particularly suitable for spectral clustering as well as for related
graph cut problems [27].

The Fréchet-derivative of the Cauchy-Schwarz-divergence is derived [44]:

δDCS(p‖q)
δq

=
q∫
q2 dr

− p∫
p · q dr

. (4.47)

The gradients for SONE with the Cauchy-Schwarz-divergence and winner definition

ΨCS(s) = xi such that
∑
j

DCS
(
hΨCS(s)
σ (j)

∥∥gs
ς (j)

)
is minimum, (4.48)

leads the following learning rules. In case of a Gaussian neighborhood function g:

∆yk =

[
gs
ς (k)∑

j

[
gs
ς (j)

]2 − h
ΨCS(s)
σ (k)∑

j h
ΨCS(s)
σ (j) · gs

ς (j)

](
−
gs
ς (k)

2ς2

)
∂dE(s,y

k)

∂yk
(4.49)

and in case of t-Distribution:

∆yk = −
(
ς + 1

2

)
gs
ς (k)

ς + dE(s,yk)

[
gs
ς (k)∑

j

[
gs
ς (j)

]2 − h
ΨCS(s)
σ (k)∑

j h
ΨCS(s)
σ (j) · gs

ς (j)

]
∂dE(s,y

k)

∂yk
.

(4.50)
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4.4 Summary

This section is a summary and collection of equations for all the divergences, their
derivatives and learning rules for the SONE algorithm. The generalized SONE learning
rule is defined as:

yk = yk − τ∆yk

∆yk =
δD
(
h

ΨD(s)
σ

∥∥gs
ς

)
δgs

ς


k

·
∂gs

ς (k)

∂yk

with the winner definition

ΨD(s) = xi such that
∑
j

D
(
hΨD(s)
σ (j)

∥∥gs
ς (j)

)
is minimum.

The explicit formulas for the special learning rules in case of Gaussian (Eq. (2.6),(2.7))
and t-distribution (Eq. (2.8),(2.9)) and different divergences can be found in table 1.

Machine Learning Reports 15



Mathematical Foundations of Self Organized Neighbor Embedding (SONE) for Dimension
Reduction and Visualization

Ta
bl

e
1:

S
um

m
ar

y
of

th
e

di
ve

rg
en

ce
s

fo
r

po
si

tiv
e

m
ea

su
re

s
an

d
th

e
S

O
N

E
le

ar
ni

ng
ru

le
s.

D
iv

er
ge

nc
e

Fo
rm

ul
a

/F
ré
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5 Conclusion

In this article we provide the mathematical foundation for a generalization of Self Orga-
nized Neighbor Embedding (SONE) which can be applied in dimension reduction and
visualization tasks. The framework allows for the use of a very broad class of diver-
gences as costfunction. In this context, we first present a general formulation of SONE
as a gradient based optimization scheme. The use of a particular dissimilarity measure
requires the availability of its Fréchet-derivative, which we present for a wide class of
divergences. These results are summarized in table 1.

In forthcoming publications we will provide experimental results, evaluation and
comparison with other dimension reduction and visualization techniques. We will ex-
amine the role of the different divergence families and their advantages for some data
domains.
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