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Abstract

Processing large proximity data such as kernel matrices often includes approxima-
tion techniques like the Nyström approximation. Thereby the distance calculations are
done on an approximated kernel matrix. This operation is based on the calculation
of a pseudo-inverse matrix which itself can become costly for larger data sets. Re-
cent work in this field extended the original Nyström approximation by a randomized
subspace technique making large scale problems accessible for positive semi-definite
proximity data. Domain specific proximity measures, employed e.g. in alignment al-
gorithms in bio-informatics, are often used to compare complex data objects and to
cover domain specific data properties. Lacking an underlying vector space, data are
given as pairwise (dis-)similarities and the obtained proximity matrices are typically
non-metric. In this contribution we analyse the large scale Nyström approximation for
non-psd proximity data including dissimilarities and how it can be used to convert sim-
ilarities to dissimilarities and vice versa. We provide an approach to explicit control the
eigenvalue correction on the approximated matrices.
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Figure 1: Left: Traveling in similarity and dissimilarity spaces at linear costs using the
approach of [18]. The standard approach has in general a of complexityO(N2)−O(N3).

1 Introduction

In many application areas such as bioinformatics, different technical systems, or the
web, electronic data is getting larger and more complex in size and representation,
using domain specific (dis-)similarity measures as a replacement or complement to
Euclidean measures. Many classical machine learning techniques, have been pro-
posed for Euclidean vectorial data. However, modern data are often associated to
dedicated structures which make a representation in terms of Euclidean vectors dif-
ficult: biological sequence data, text files, XML data, trees, graphs, or time series
[15, 12, 1] are of this type. These data are inherently compositional and a feature
representation leads to information loss. As an alternative, a dedicated dissimilarity
measure such as pairwise alignment, or kernels for structures can be used as the in-
terface to the data. In such cases, machine learning techniques which can deal with
pairwise similarities or dissimilarities have to be used [16]. Native methods for the
analysis of dissimilarity data have been proposed in [16, 9, 8], but are widely based
on non-convex optimization schemes and with quadratic to linear memory and runtime
complexity. The analysis of proximity matrices can either be based on a similarity rep-
resentation (or a kernel) or a dissimilarity representation (distances). It is possible to
convert the one into the other representation and vice versa by either using a distance
calculation based on similarities or a double centering to convert dissimilarities into its
alternative representation of similarities. Since most analysis methods rely on metric
input data of the underlying similarities, different preprocessing approaches have been
analyzed to correct non-metric or non psd similarity matrices [1], typically based on
eigenvalue corrections. The transformation between the different representations as
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well as the correction approaches have typically quadratic or cubic costs. In [18] the
author proposed a method for the transformation between the different representations
including such an eigenvalue correction with linear costs see Figure 1. This approach
was based on the Nyström approximation [20]. This transformation represents a given
matrix by a small number of so called landmark points and their relation to the remain-
ing data points, as detailed later on. As an inherent step a quadratic matrix of these
landmark proximities is used. The number of landmarks and their specific selection
from the data has been discussed in [21]. Basically the selection strategy is not so
important as long as a sufficiently large number of landmarks can be drawn i.i.d. from
the data. This can become very costly for larger datasets, where either the accuracy of
the approximation suffers, due to a to small number of landmarks, or the approximation
costs raise if a sufficiently large number of landmarks is used. In [14] a new approach
for the calculation of the Nyström approximation for psd matrices was proposed using
a random projection technique. As shown in [14] this strategy is very effective to keep
high accuracy of the matrix approximations also for very large data sets. Motivated by
these promising results we will derive an extension of our former approach published in
[18] using similar strategies. Our objective is to provide a method of linear complexity
to tranform similarities into dissimilarities and vice versa including potential eigenvalue
corrections to make the problem psd. Especially for metric dissimilarities the approach
keeps the known guarantees like generalization bounds (see e.g. [3]) while for non-
psd data corresponding proofs are still open, but our experiments are promising. The
paper is organized as follows. First we give a short review of previous work of the au-
thor proposed in [18]. Then we review the subspace Nyström approximation proposed
in [14] and how it can be linked to our former work. Experimental results show the
effectiveness of the proposed approach.

2 Transformation techniques for dissimilarity data

Let vj ∈ V be a set of objects defined in some data space, with |V| = N . We as-
sume, there exists a dissimilarity measure such that D ∈ RN×N is a dissimilarity matrix
measuring the pairwise dissimilarities Dij = d(vi,vj) between all pairs (vi,vj) ∈ V.
Any reasonable (possibly non-metric) distance measure is sufficient. We assume zero
diagonal d(vi,vi) = 0 for all i and symmetry d(vi,vj) = d(vj,vi) for all i, j.

2.1 Analyzing dissimilarities by means of similarities for small N

For every dissimilarity matrix D, an associated similarity matrix S is induced by a pro-
cess referred to as double centering with costs of O(N2)[16]:

S = −JDJ/2 (1)
J = (I− 11>/N) (2)

with identity matrix I and vector of ones 1. D is Euclidean if and only if S is posi-
tive semi-definite (psd). This means, we do not observe negative eigenvalues in the
eigenspectrum of the matrix S associated to D.

Many classification techniques have been proposed to deal with such psd kernel
matrices S implicitly such as the support vector machine (SVM). In this case, prepro-
cessing is required to guarantee psd. In [1] different strategies were analyzed to obtain
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valid kernel matrices for a given similarity matrix S, most popular are: clipping, flip-
ping, shift correction, vector-representation. The underlying idea is to remove negative
eigenvalues in the eigenspectrum of the matrix S .

Assuming we have a symmetric similarity matrix S, it has an eigenvalue decom-
position S = UΛU>, with orthonormal matrix U and diagonal matrix Λ collecting the
eigenvalues. In general, p eigenvectors of S have positive eigenvalues and q have
negative eigenvalues, (p, q,N − p− q) is referred to as the signature.

The clip-operation sets all negative eigenvalues to zero, the flip-operation takes the
absolute values, the shift-operation increases all eigenvalues by the absolute value of
the minimal eigenvalue.

The corrected matrix S∗ is obtained as S∗ = UΛ∗U>, with Λ∗ as the modified
eigenvalue matrix using one of the above operations. The obtained matrix S∗ can now
be considered as a psd kernel matrix K suitable e.g. as an input for a kernel clustering
or classifier. In [11] an alternative of a classifier directly based on a dissimilarity matrix
D was proposed. The main model parameters are so called prototypes w (similar
to cluster centers) which are points constructed as a linar combination of the original
data. The basic idea is an implicit computation of distances d(·, ·) during the model
calculation based on the dissimilarity matrix D using weights α:

d(vi,wj) = [D · αj]i −
1

2
· α>j Dαj (3)

This approach avoids the need for an accessible vector space, similar like the kernel
trick in the context of kernel machines. A more detailed discussion, including alternative
approaches is given in [18]. A schematic view of the relations between S and D and
its transformations 1 using strategies as proposed in [18] and discussed in more detail
in the following is shown in Figure 1.

The methods discussed before are suitable for data analysis based on similarity
or dissimilarity data where the number of samples N is rather small, e.g. scales by
some thousand samples. For larger N only for metric, similarity data (valid kernels)
efficient approaches have been proposed before, e.g. low-rank linearized SVM [22] or
the Core-Vector Machine (CVM) [19].

Now we briefly review concepts already proposed by the author in [8, 18] how po-
tentially non-metric similarities and dissimilarities can be approximated by the Nyström
approximation and a coupling with double centering for dissimilarity data.

3 Nyström approximation

The aforementioned methods depend on the similarity matrix S or dissimilarity matrix
D, respectively. For kernel methods and more recently for prototype based learning
the usage of the Nyström approximation is a well known technique to approximate
both types of matrices to obtain effective learning algorithms [20, 8].

3.1 Nyström approximation for similarities

The Nyström approximation technique has been proposed in the context of kernel
methods in [20] with related proofs and bounds given in [3]. Here, we give a short

1Transformation equations are given also in the following sections.
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review of this technique. One well known way to approximate a N ×N Gram matrix, is
to use a low-rank approximation. This can be done by computing the eigendecompo-
sition of the kernel K = UΛU>, where U is a matrix, whose columns are orthonormal
eigenvectors, and Λ is a diagonal matrix consisting of eigenvalues Λ11 ≥ Λ22 ≥ ... ≥ 0,
and keeping only the m eigenspaces which correspond to the m largest eigenvalues
of the matrix. The approximation is K ≈ UN,mΛm,mUm,N , where the indices refer to
the size of the corresponding submatrix. The Nyström method approximates a kernel
in a similar way, without computing the eigendecomposition of the whole matrix, which
otherwise is an O(N3) operation.

By the Mercer theorem kernels k(x,y) can be expanded by orthonormal eigenfunc-
tions ψi and non negative eigenvalues λi in the form

k(x,y) =
∞∑
i=1

λiψi(x)ψi(y).

The eigenfunctions and eigenvalues of a kernel are defined as the solution of the inte-
gral equation ∫

k(y,x)ψi(x)p(x)dx = λiψi(y),

where p(x) is the probability density of x. This integral can be approximated based on
the Nyström technique by sampling xk i.i.d. according to p(x):

1

m

m∑
k=1

k(y,xk)ψi(x
k) ≈ λiψi(y).

Using this approximation and the matrix eigenproblem equation

K(m)U(m) = U(m)Λ(m)

of the corresponding m ×m Gram sub-matrix K(m) we can derive the approximations
for the eigenfunctions and eigenvalues of the kernel k

λi ≈
λ
(m)
i

m
, ψi(y) ≈

√
m

λ
(m)
i

kyu
(m)
i , (4)

where u
(m)
i is the ith column of U(m). Thus, we can approximate ψi at an arbitrary point

y as long as we know the vector ky = (k(x1,y), ..., k(xm,y))>.
For a given N × N Gram matrix K we randomly choose m rows and respective

columns. The corresponding indices’s are also called landmarks, and should be cho-
sen such that the data distribution is sufficiently covered. A specific analysis about
selection strategies was recently discussed in [21]. We denote these rows by Km,N .
Using the formulas (4) we obtain K̃ =

∑m
i=1 1/λ

(m)
i ·K>m,Nu

(m)
i (u

(m)
i )>Km,N , where λ(m)

i

and u
(m)
i correspond to the m × m eigenproblem. Thus we get, K−1m,m denoting the

Moore-Penrose pseudoinverse, an approximation of K as

K̃ = K>m,NK−1m,mKm,N . (5)

This approximation is exact, if Km,m has the same rank as K.
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3.2 Nyström approximation for dissimilarity data

The subsequent part follows widely prior work given in [7] and [18]. According to the
spectral theorem, a symmetric dissimilarity matrix D can be diagonalized D = UΛU>

with U being a unitary matrix whose column vectors are the orthonormal eigenvectors
of D and Λ a diagonal matrix with the corresponding eigenvalues of D, Therefore the
dissimilarity matrix can be seen as an operator

d(x,y) =
N∑
i=1

λiψi(x)ψi(y)

where λi ∈ R correspond to the diagonal elements of Λ and ψi denote the eigenfunc-
tions. The only difference to an expansion of a kernel is that the eigenvalues can be
negative. All further mathematical manipulations can be applied in the same way and
we can write in an analogy to Equation (5)

D̂ = DN,mD−1m,mD>N,m.

It allows to approximate dissimilarities between a point wk represented by a coeffi-
cient vector αk and a data point xi, as discussed within Eq (3), in the way

d(xi,wk) ≈
[
D>m,N

(
D−1m,m (Dm,Nαk)

)]
i

−1

2
·
(
α>k D>m,N

)
·(

D−1m,m (Dm,Nαk)
)

with a linear submatrix of m rows and a low rank matrix Dm,m. Performing these matrix
multiplications from right to left, this computation is O(m2N) instead of O(N2), i.e. it is
linear in the number of data points N , assuming fixed approximation m.

A benefit of the Nyström technique is that it can be decided priorly which linear parts
of the dissimilarity matrix will be used in training. Therefore, it is sufficient to compute
only a linear part of the full dissimilarity matrix D to use these methods. A drawback
of the Nyström approximation is that a good approximation can only be achieved if the
rank of D is kept as much as possible, i.e. the chosen subset should be representative.
The specific selection of the m landmark points has been recently analyzed in [21]. It
was found that best results can be obtained by choosing the potential cluster centers
of the data distribution as landmarks, rather a random subset, to be able to keep m
smallest at lowest representation error. However the determination of these centers
can become complicated for large data sets, since it can be obviously not be based on
a Nyström approximated set. However the effect is not such severe as long as m is not
too small. We will come back to this point in a later section.

4 Transformations of (dis-)similarities with linear costs

For metric similarity data, kernel methods can be applied directly, or in case of large
N , the Nyström approximation can be used. Following [18] we will now briefly discuss
almost metric dissimilarity data D and consider non-metric data later on. Especially
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we review a linear cost transformation of D to S using the Nyström approximation, for
small m which gives access to efficient kernel methods2.

4.1 Transformation of dissimilarities to similarities

Instead of applying double centering, followed by the Nyström approximation we first
approximate the matrix D and then transform it by double centering, which yields the
approximated similarity matrix Ŝ. As mentioned before double centering of a matrix D
is defined as:

S = −JDJ/2

where J = (I − 11>/N) with identity matrix I and vector of ones 1. S is positive semi-
definite (psd) if and only if D is Euclidean.

Lets start with a dissimilarity matrix D where we apply double centering, subse-
quently we approximate the obtained S by integrating the Nyström approximation to
the matrix D.

S = −1

2
JDJ

= −1

2

((
I− 1

N
11>

)
D

(
I− 1

N
11>

))
= −1

2

(
IDI− 1

N
11>DI− ID

1

N
11> +

1

N
11>D

1

N
11>

)
= −1

2

(
D− 1

N
D11> − 1

N
11>D +

1

N2
11>D11>

)

S
Ny
≈ Ŝ = −1

2

[
DN,m ·D−1m,m ·Dm,N −

1

N
DN,m (6)

·(D−1m,m · (Dm,N1))1> − 1

N
1((1>DN,m) ·D−1m,m)

·Dm,N +
1

N2
1((1>DN,m) ·D−1m,m · (Dm,N1))1>

]
This equation can be rewritten for each entry of the matrix Ŝ

Ŝij = −1

2

[
Di,m ·D−1m,m ·Dm,j −

1

N

∑
k

Dk,m ·D−1m,m ·Dm,j

− 1

N

∑
k

Di,m ·D−1m,m ·Dm,k

+
1

N2

∑
kl

Dk,m ·D−1m,m ·Dm,l

]
,

2This approach has a weak connection to Landmark MDS, but also substantial differences as dis-
cussed in detail in [18]
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as well as for the sub-matrices Ŝm,m and ŜN,m, in which we are interested for the
Nyström approximation. These two matrices are also interesting later on when we
replace the standard Nyström approximation by the proposed extension including the
Nyström approximation for large scale problems:

Ŝm,m = −1

2

[
Dm,m −

1

N
1 ·
∑
k

Dk,m

− 1

N

∑
k

Dm,k · 1>

+
1

N2
1 ·
∑
kl

Dk,m ·D−1m,m ·Dm,l · 1>
]

ŜN,m = −1

2

[
DN,m −

1

N
1 ·
∑
k

Dk,m (7)

− 1

N

∑
k

DN,m ·D−1m,m ·Dm,k · 1>

+
1

N2
1 ·
∑
kl

Dk,m ·D−1m,m ·Dm,l · 1>
]
.

It should be noted that Ŝ is only a valid kernel if D̂ is metric. The information loss
obtained by the approximation is 0 if m corresponds to the rank of S and increases for
smaller m.

4.2 Non-metric (dis-)similarities

In case of a non-metric D the transformation shown in equation 6 can still be used,
but the obtained matrix Ŝ is not a valid kernel. A strategy to obtain a valid kernel
matrix Ŝ is to apply an eigenvalue correction as discussed above. This however can
be prohibitive for large matrices, since to correct the whole eigenvalue spectrum, the
whole eigenvalue decomposition is needed, which hasO(N3) complexity. The Nyström
approximation can again decrease computational costs dramatically. Since we now can
apply the approximation on an arbitrary symmetric matrix, we can make the correction
afterward. To correct an already approximated similarity matrix Ŝ it is sufficient to
correct the eigenvalues of Sm,m. Altogether we get O(m2N) complexity.

We can write for the approximated matrix Ŝ its eigenvalue decomposition as

Ŝ = SN,mS−1m,mS>N,m = SN,mUΛ−1U>S>N,m,

where we can correct the eigenvalues Λ by some technique as discussed in section
2.1 to Λ∗. The corrected approximated matrix Ŝ∗ is then simply

Ŝ∗ = SN,mU (Λ∗)−1 U>S>N,m. (8)

This approach can also be used to correct dissimilarity matrices D by first approx-
imating them, converting to similarities Ŝ using equation 6 and then correcting the
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similarities. If it is desirable to work with the corrected dissimilarities, then we should
note, that it is possible to transform the similarity matrix S to a dissimilarity matrix D:

D2
ij = Sii + Sjj − 2Sij. (9)

This obviously applies as well to the approximated and corrected matrices Ŝ∗ and D̂∗

and we get by substitution:

D̂∗ = D∗N,m

(
D∗m,m

)−1
D∗>N,m. (10)

Usually the algorithms are learned on a so called training set and we expect them to
perform well on the new unseen data, or the test set. In such cases we need to provide
an out of sample extension, i.e. a way to compute the algorithm on the new data. This
might be a problem for the techniques dealing with (dis)similarities. If the matrices are
corrected, we need to correct the new (dis)similarities as well to get consistent results.
Fortunately, it is quite easy in the Nyström framework. By examining Eq. (8) and Eq.
(10) we see, that we simply need to extend the matrices DN,m or SN,m, respectively,
by uncorrected (dis)similarities between the new points and the landmarks to obtain
the full approximated and corrected (dis)similarity matrices, which then can be used
by the algorithms to compute the out of sample extension. A more detailed discussion
including experiments is available in [18].

5 Large scale Nyström approximation for non-metric
dissimilarities

In [14] a new approach for the calculation of the Nyström approximation for large psd
matrices was proposed, we will denote this approach as LSNA and our proposal as
extended LSNA (e-LSNA). As one can see in Eq. (5) the Nyström approximation is
based on the calculation of a pseudo-inverse of a matrix based on m rows and m
columns. The optimal landmarks specifying these columns and rows are the cluster
centers of the considered data set, which are hard to identify in advance. Accordingly,
m is often chosen to be sufficiently large such that the landmarks are likely to cover
enough information of the data distribution. For large data sets, containing e.g. million
of points the number of landmarks is also getting large e.g. m = 1000 and the calcu-
lation of the pseudo-inverse may dominate the remaining calculation costs due to the
cubic complexity. The idea, presented in [14] is to use a randomized singular value
decomposition (SVD) [10] on the landmark matrix to obtain an accurate m ×m matrix
in the Nyström approximation at low costs, see Alg. 1.

Thereby the data are represented on a lower dimensional subspace e.g. in k di-
mensions with k � m such that the obtained singular value matrix L can be inverted
with low costs of O(k3). The final Nyström approximation of the original kernel or (as
we will see soon) dissimilarity matrix can be obtained by subsequent matrix multiplica-
tions leading to a similar formulation as before. The basic algorithm taken from [14] is
shown in Alg. 2. Here, p is an over-sampling parameter (typically set to 5 or 10) such
that the rank of Q is slightly larger than the desired rank(k), and q is the number of
steps of a power iteration (typically set to 1 or 2) which is used to speed up the decay
of the singular values of W [14].
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Algorithm 1 Randomized SVD [10]
1: init: m×m matrix W , scalars k, p, q
2: Output: U,Λ
3: Ω← m× (k + p) standard gaussian random matrix
4: Z ← WΩ, Y ← W q−1Z,
5: find orthonormal Q such that Y = QQ>Y
6: B(Q>Q) = Q>Z
7: [V, L] = svd(B)
8: U ← QV

Algorithm 2 The large scale Nyström approximation [14]
1: init: psd matrix K ∈ RN×N , number of landmarks m, rank k, over-sampling

parameter p, power parameter q
2: Output: K̂, an approximation of K
3: C ← m columns of K sampled uniformly at random without replacement
4: W ← m×m landmark matrix
5: [Ũ , Λ̂]← ranksvd(W,k, p, q) using Alg. 1
6: U ← CŨΛ−1

7: K̂ ←
(√

m
N
U
) (

m
N

Λ
) (√

m
N
U>
)

If the given proximity data are psd similarities, algorithm 2 can be used directly. For
non-psd similarities the SVD used in algorithm 2 implicitly flips negative eigenvalues.
Due to the random projection step it may obviously also happen that smaller absolute
eigenvalues are removed. While this appears to be a nice feature it is not always
clear if flipping is a good strategy as dicussed e.g. in [18, 1]. For example the negativ
eigenvalue contributions may account for noise and a clipping may be more desirable.
As argued in [17] it may even be desirable to keep also negative eigenvalues, given the
subsequent algorithm, used to analyze the data can handle non-psd matrices.

If the data are metric dissimilarities the approach of [14] can be directly applied with
the same argumentation as for the standard Nyström approximation on dissimilarities
discussed before. For non-metric dissimilarities additional corrections are necessary.
In the following we will discuss how Algorithm 1,2 can be used for non-metric similarities
and dissimilarities and how this is linked to section 4.

5.1 Non-metric similarities

The LSNA approach performs an implicite flipping of negative eigenvalues in the SVD
step, to get more control about the handling of negative eigenvalues we will introduce
an explicite step to correct the eigenvalue but in the low dimensional projection space
avoiding high computational costs. The modified LSNA algorithm is shown in Algorithm
3 and 4.

The new formulation accounts for an explicite eigenvalue correction in Algorithm 3.
Note that both unitary matrices V and V ′ are used. To make the out of sample exten-
sion more obvious, it is also convenient to modify the reconstruction of the proximity
matrix as shown in Alg. 4, line 6. Now it can be directly seen how to extended the
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Algorithm 3 Randomized SVD with eigenvalue correction
1: init: m×m matrix W , scalars k, p, q
2: Output: U,Λ, V
3: Ω← m× (k + p) standard gaussian random matrix
4: Z ← WΩ, Y ← W q−1Z,
5: find orthonormal Q such that Y = QQ>Y
6: B(Q>Q) = Q>Z
7: [Eb, Vb] = eig(B)
8: V ∗b ← flip—clip—shift(Vb)
9: B∗ = Eb · V ∗b · E>b

10: [V, L, V ′] = svd(B∗)
11: U ← QV ′

matrix K by l items. One only needs to calculate the corresponding m similarities to
the m landmark points which can become part of an extended matrix C.

Algorithm 4 The large scale Nyström approximation with eigenvalue corrected simi-
larities

1: init: psd matrix K ∈ RN×N , number of landmarks m, rank k, over-sampling
parameter p, power parameter q

2: Output: K̂, an approximation of K
3: C ← m columns of K sampled uniformly at random without replacement
4: W ← m×m landmark matrix
5: [Ũ , Λ̂, V ]← ranksvd(W,k, p, q) using Alg. 3
6: K̂ ←

(√
m
N
C
) (

m
N
V (ŨΛ−1)>

) (√
m
N
C>
)

Equation (8) can be modified to integrate Algorithm 4 straight forward by replacing SN,m

with
√

m
N
C and U (Λ∗)−1 U> with

(
m
N
V (ŨΛ−1)>

)
.

5.2 Non-metric dissimilarities

For non-metric dissimilarities we use Algorithm 4, but now for dissimilarities and without
an eigenvalue correction. One samples a landmark matrix Dm,m from D which is used
as input of Algorithm 3 in line 5 of Algorithm 4. Based on this LSNA model for the
dissimilarities of D we calculate the double centered and LSNA approximated similarity
matrix C and W using Eq. (1) or Eq. (7). It should be noted that the pre-factors√

m
N

and N
m

cancel out. The approximated C and W are used as input of Algorithm 2
starting at line 5 which may also include eigenvalue corrections. Using this strategy the
computational costs are O(m2k + k3) for the LSNA approximation of the dissimilarity
matrix, costs ofO(mN) for the double centering only based on the LSNA approximation
and additional costs of O(m2k+ 2k3) for the randomized SVD on the similarity matrices
and a potential eigenvalue correction to obtain a corrected and approximated similarity
matrix Ŝ∗. The matrix Ŝ∗ can now be transfered back to a corrected dissimilarity matrix
D̂∗ using Eq. (9) with costs of O(Nm).
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The complete costs of this operations are O(Nmk + k3) which has still the same
complexity as the original LSNA algorithm. We are now able to process potentially
non-metric similarities and dissimilarities at large scale.

6 Experiments

We apply the priorly derived approach to three non-metric dissimilarity and similar-
ity data and show the effectiveness for a classification task. The considered data
are (1) the SwissProt similarity data as described in [12] (DS1, 10988 samples, 30
classes, imbalanced, signature: [8488, 2500, 0]) (2) the chromosome dissimilarity data
taken from [15] (DS2, 4200 samples, 21 classes, balanced, signature: [2258, 1899, 43])
and the prodom dissimilarity data set [4], restricted to classes with at least 10 entries
(DS3, 2518 samples, 33 classes, imbalanced, signature: [717, 1512, 289]). All datasets
are non-metric, multiclass and contain multiple thousand objects, such that a regular
eigenvalue correction with a prior double-centering for dissimilarity data, as discussed
before, is already very costly. While the approach presented in [18] is still sufficient
for these data, approximations with larger m can become unreliable. Due to the low
rank approximation small (negative) eigenvalues are potentially removed such that a
low value of k in the extended LSNA approach may already lead to a clipping effect in
the data. The same applies for small values of m where only major eigenvalues are
kept. Larger k and larger m both will likely lead to an improved approximation, but on
the other hand can also increase the influence of negative eigenvalues which may lead
to sub-optimal results for the chosen learning algorithms. Note again, that for large
dissimilarity matrices the access to kernel methods can only be achieved using the ap-
proach in [18] or by using the presented extended LSNA approach and an eigenvalue
correction is often necessary.

The data are analyzed in two ways, employing either the clipping or flipping strategy
as an eigenvalue correction, or by not-correcting the eigenvalues3. To be effective for
the large number of object we also apply the Nyström approximation as discussed
before using a sample rate of m = 1%, 10%, 30%4, by selecting random landmarks from
the data, with k = 100, p = 5, q = 2. Other sampling strategies have been discussed in
[21, 6], also the impact of the Nyström approximation with respect to kernel methods
has been discussed recently in [2], but this is out of the focus of this paper.

To get comparable experiments, the same randomly drawn landmarks are used in
each of the corresponding sub-experiments (along a column in the table). New land-
marks are only drawn for different Nyström approximations and sample sizes. Classifi-
cation rates are calculated in a 10-fold crossvalidation using the Core-Vector-Machine
(CVM) (see [19]). The crossvalidation does not include a new draw of the landmarks,
to cancel out the selection bias of the Nyström approximation, accordingly CVM use
the same kernel matrices. However, our objective is not maximum classification per-
formance (which is only one possible application) but to demonstrate the effectiveness
of our approach for dissimilarity data of larger scale. The classification results are
summarized in Table 1-2 for the different Nyström approximations 1%, 10% and 30%.

First one observes that the eigenvalue correction has a positive effect on the classi-
fication performance, it is however less pronounced as in former findings [1, 18]. This

3 Shift correction was found to have a negative impact on the model as already discussed in [1].
4A larger sample size did not lead to further substantial improvements in the results.
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Table 1: Average test set accuracy for SwissProt (DS1), Chromosome (DS2), Proteom
(DS3) using a Nyström approximation of 1% and 10% and no , clip or flip eigenvalue
correction. Kernel matrices have been Nyström approximated either, as proposed dur-
ing the eigenvalue correction, or later on, like in the standard approach. The signatures
are based on the approximated kernel matrices.

DS11% DS21% DS31% DS110% DS210% DS310%

Signature [106,0,10882] [42,1,4157] [26,1,2491] [105,0,10883 ] [98,7,4095] [105,0,2413]

CVM-No 93.60± 0.73 94.74± 1.19 85.31± 1.95 96.91± 0.50 93.29± 0.73 99.68± 0.31
Signature [106,0,10882] [42,0,4159] [26,0,2492] [105,0,10883 ] [105,0,4095] [105,0,2413]

CVM-Flip 93.53± 0.80 94.74± 1.19 85.31± 1.95 96.74± 0.51 96.64± 0.78 99.76± 0.28
Signature [106,0,10882] [42,0,4158] [26,0,2492] [105,0,10883] [101,0,4099] [105,0,2413]

CVM-Clip 93.57± 0.74 94.74± 1.11 85.31± 1.95 97.05± 0.56 96.71± 0.92 99.64± 0.28

Table 2: Average test set accuracy for SwissProt (DS1), Chromosome (DS2), Proteom
(DS3) using a Nyström approximation of 30% and no, clip or flip eigenvalue correction.
Kernel matrices have been Nyström approximated (with L = 30% · N ) either, as pro-
posed during the eigenvalue correction, or later on, like in the standard approach. The
signatures are based on the approximated kernel matrices.

DS1 DS2 DS3
Signature [105,0,10883] [101,4,4095] [105,0,2413]

CVM-No 96.92± 0.52 96.64± 0.81 99.92± 0.17
Signature [105,0,10883] [105,0,4095] [105,0,2413]

CVM-Flip 97.23± 0.45 96.86± 0.98 99.92± 0.16
Signature [105,0,10883] [101,0,4099] [105,0,2413]

CVM-Clip 97.34± 0.50 96.81± 0.80 99.92± 0.16

is explained by the low rank approximation used in the SVD which also in case of Algo-
rithm 4 without an eigenvalue correction in line 5 removes smaller absolute eigenvalues
in the approximation step. This can be also seen in the signatures for the different data
sets without an explicit eigenvalue correction. The majority of the eigenvalues are 0
in contrast to the original signature of the full, unapproximated data set. This effect
is mainly caused due to the approximation. Also without an eigenvalue correction the
results are quite good, in contrast to earlier findings in [18] using the classical Nyström
approximation. Obviously the smoothing due to the sub-space approximation has a
similar effect like a clipping eigenvalue correction. Only when a substantial amount of
negative eigenvalues is kept (see e.g for chromosoms with m = 10%) a clear degener-
ation of the classification accuracy was found.

Regarding the parameter q some small experiments, not shown here, indicate that 2
is a reasonable value to avoid numerical approximation errors in the qr decomposition.
For q = 1 numerical instabilties can be observed in parts leading to strong errors in
the subsequent Nyström approximation due to an ill-conditioned pseudo inverse of the
matrix Λ in line 6 of algorithm 4.

In a second experiment we analyze the influence of the parameter m and k for a
small artificial ball data set originally proposed in [5]. It is an artificial dataset based on
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Figure 2: Ball data set with clipping and flipping using different parameters of k and m.
The classification accuracy is indicated by color (blue / dark = low prediction accuracy).

the surface distances of randomly positioned balls of two classes having a slightly dif-
ferent radius. The dataset is non-euclidean with substantial information encoded in the
negative part of the eigenspectrum. It is however simple enough to be analyzed also
with the extended LSNA. We generated the data with 100 samples per class leading to
a dissimilarity matrix D = N ×N , with N = 200. Now the data have been processed by
the extended LSNA to obtain a valid kernel matrix S with different parameters m and
k and by flipping or clipping the negative eigenvalues. The crossvalidation results are
shown in Figure 25

As expected flipping performed better than clipping because the dataset contains
discriminative information in the negative eigenvalues by construction. For large m and
k the accuracy is in general quite high but the optimal values are obtained for slightly
smaller k to avoid numerical instabilities in the projection step of the randomized SVD.

5For this data set a SVM did not converge on the uncorrected kernel matrix.
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Very small m and k are oversimplifying the problem leading to a smooth eigenspectrum
such that smaller but relevant eigenvalues are lost. With very few exceptions a perfect
discrimination (no error on the test set) could only be obtained by flipping.

In a third experiment we address the influence of the parameter k controlling the
dimensionality of the sub-space projection for a real data set. Smaller k lead to a
stronger approximation such that small absolute eigenvalues are neglected while larger
values of k (with k ≤ m) can keep also smaller absolute eigenvalues. Depending on
the importance of small eigenvalues for the considered problem a kind of denoising can
be expected but for small k, it may also happen that relevant information in the data
space is removed. We analyze the effect by measuring the classification error and the
spearman rank correlation of the original vs the approximated matrix. The results with
m = 0.1×N and varying k are depicted in Figure 3.

One can clearly identify an optimal k with respect to the rank preservation and the
cross validation accuracy. With a Nyström approximation of m = 10% a reasonable k
should be substantial smaller than 420. As we can see from Figure 3 an increase of k
close to m leads to a degeneration of the rank accuracy. With respect to the different
eigenvalue normalization (no - Fig. 3(a), clip - Fig. 3(b), flip - Fig.3(c)) it is obvious
that an eigenvalue correction is beneficial for this data set. Without a correction and
for larger k see Fig. 3(a) and Fig. 3(d) the matrix is less accurate reconstructed,
with respect to the proximity relations as well as with respect to the accuracy on test
data. Also the flipping procedure is less effective for larger k because the negative
eigenvalues are kept in the data representation. Only the clipping operation was found
to be widely stable and effective also for larger k. For small k the eigenvalue spectrum
is implicitely clipped with respect to smaller absolute eigenvalues.

7 Outlook and Conclusions

In this paper we discussed the relation between similarity and dissimilarity data and
effective ways to move across the different representations in a systematic way also for
very large data sets where a standard Nyström approximation gets to its limits or can
not any longer be applied. We extended LSNA such that non-metric similarities and
dissimilarities can be processed. Using the presented approach, effective and accurate
transformations are possible as summarized in Figure 1. Kernel approaches but also
dissimilarity learners are now accessible for both types of data at large scale. While the
parametrization of the Nyström approximation is already studied in [13, 21] there are
still different open issues. In future work we will analyze our approach in the context
of unsupervised problems. A further point is the overall question whether eigenvalues
correction should be done. As argued in [17] for some dedicated data formats such a
correction should be avoided and dedicated methods for non-metric data are of inter-
est. In contrast to LSNA the extended approach permits more control on this process,
although due to the inherent approximation by LSNA smaller eigenvalues are typically
removed by purpose. If a dataset contains larger negative eigenvalues, which are not
relevant for the problem, our approach can be used to remove these eigenvalues in a
systematic ways also for extended LSNA with larger values on m and k which is not
possible using the original LSNA.

For non-psd data the error introduced by the Nyström approximation is not yet fully
understood and bounds similar as proposed in [3] are still an open issue. In our ex-
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Figure 3: LSNA analyzed with varying k for the Chromosom dataset.
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periments we observed that flipping was an effective approach to keep the relevant
structure of the data but these are only heuristic findings and not yet completely under-
stood, we will address this in future work.
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