
MACHINE LEARNING REPORTS

Workshop New Challenges in Neural
Computation 2015

Report 03/2015
Submitted: 01.10.2015
Published: 10.10.2015

Barbara Hammer1, Thomas Martinetz2, Thomas Villmann3 (Eds.)
(1) CITEC - Centre of Excellence, University of Bielefeld, Germany

(2) Institute for Neuro- and Bioinformatics, University of Lübeck, Germany
(3) Faculty of Mathematics / Natural and Computer Sciences, University of Applied Sciences

Mittweida, Germany

Machine Learning Reports
http://www.techfak.uni-bielefeld.de/∼fschleif/mlr/mlr.html

Table of contents

New Challenges in Neural Computation - NC2 2015
(B. Hammer, T. Martinetz, T. Villmann)...5

Keynote Talk: Representation Learning for Control
(J. Boedecker)...6

Keynote Talk: Machine Learning Meets Image Analysis: From looking inside ourselves to gazing
at the stars
(C. Igel)...7

Archetypal Analysis as an Autoencoder
(C. Bauckhage, K. Kersting, F. Hoppe, C. Thurau)..8

Learning Transformation Invariance from Global to Local
(J. Hocke, T. Martinetz)..16

Polynomial approximation of spectral data in LVQ and Relevance Learning
(F. Melchert, U. Seiffert, M. Biehl)..25

Dissimilarity Extraction in a Median Variant of Learning Vector Quantization
(D. Nebel, M. Kaden)...33

Towards Dimensionality Reduction for Smart Home Sensor Data
(B. Mokbel, A. Schulz)...41

Workshop New Challenges in Neural Computation 2015

2 Machine Learning Reports

Impact of Regularization on the Model Space for Time Series Classification
(W. Aswolinskiy, R. F. Reinhart, J. Steil)...49

Ensembles of Neural Oscillators
(D. Koryakin, F. Schrodt, M. V. Butz)..57

Ensemble Methods and Active Learning in HCI
(P. Thiam, M. Kächele, F. Schwenker, G.Palm)...65

Predictable Feature Analysis
(S. Richthofer, L. Wiskott)...68

Incremental learning of action models as HMMs over qualitative trajectory representations
(M. Panzner, P. Cimiano)..76

On the Applicability of Recurrent Neural Networks for Pattern Recognition in
Electroencephalography Signals
(M. Binz, S. Otte, A. Zell)..85

Population Monte Carlo Meets Contrastive Divergence Learning
(O. Krause, A. Fischer, C. Igel)..93

CAPTCHA Recognition with Active Deep Learning
(F. Stark, C. Hazırbaş, R. Triebel, D. Cremers)..95

Intrinsic Plasticity: A Simple Mechanism to Stabilize Hebbian Learning in Multilayer Neural
Networks
(M. Teichmann, F. H. Hamker)...103

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 3

Identifying bank stress by deep learning of news
(S. Rönnqvist, P. Sarlin)..112

Visualisation of heterogeneous data with simultaneous feature saliency using Generalised
Generative Topographic Mapping
(S. Mumtaz, M. F. Randrianandrasana, G.Bassi, I. T. Nabney)..114

Incremental Class Learning and Novel Class Detection of Gestures Using Ensemble
(H. Al-Behadili, A. Grumpe, C. Dopp, C. Wöhler)..122

Attention as cognitive, holistic control of the visual system
(F. Beuth, F. H. Hamker)..133

Learning Conditional Mappings between Population-Coded Modalities
(F. Schrodt, M. V. Butz)..141

Nyström approximation toolbox
(A. Gisbrecht, F.-M. Schleif)..149

Workshop New Challenges in Neural Computation 2015

4 Machine Learning Reports

New Challenges in Neural Computation

NC2 – 2015

Barbara Hammer1, Thomas Martinetz2, and Thomas Villmann3

1 – Cognitive Interaction Technology – Center of Excellence,
Bielefeld University, Germany

2 – Institute for Neuro- and Bioinformatics, University of Lübeck, Germany

3 – Faculty of Mathematics / Natural and Computer Sciences,
University of Applied Sciences Mittweida, Germany

The workshop New Challenges in Neural Computation, NC2, takes place
for the sixth time, accompanying the prestigious GCPR conference. This year,
GCPR is collocated with the VMV conference in Aachen, Germany. The town’s
history dates back to the Neolithic, and it is well known by its rich cultural,
archeological, and architectural heritage. Its main cathedral has been the first
German cultural monument (the second cultural monument worldwide) to be-
come part of UNESCO’s world heritage site. The workshop itself centres around
challenges and novel developments of neural systems and machine learning, cov-
ering recent research in theoretical advances as well as practical applications.
This year, twenty contributions from international participants have been ac-
cepted as regular contributions, spanning the range from deep learning, dimen-
sionality reduction, information transfer and representation learning to models
for time series data and sensor streams. In addition, we welcome two interna-
tionally renowned researchers as guest speakers, Prof. Dr. Christian Igel from
Copenhagen University, Denmark, talks about ‘Machine Learning Meets Image
Analysis: From looking inside ourselves to gazing at the stars’ and Dr. Joschka
Boedecker from University of Freiburg, Germany, presents his work on ‘Represen-
tation Learning for Control’. The workshop is supported by the German Neural
Network Society (GNNS), and by the CITEC centre of excellence from Bielefeld
University, Germany. Within the workshop, a meeting of the GI Fachgruppe on
Neural Networks takes place.

We would like to thank our international program committee for their work
in reviewing the contributions in a short period of time, the organizers of GCPR
for their excellent support, as well as all participants for their stimulating con-
tributions to the workshop.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 5

Keynote talk: Representation Learning for Control

Joschka Boedecker, University of Freiburg, Germany

Abstract:

Defining features for control learning tasks with high-dimensional inputs is chal-

lenging. A balance needs to be found between compressing the state-dimensionality

for fast convergence of the learning algorithm on the one hand, and retaining

enough information about the full state of the system on the other. Learning

features for these tasks automatically from data has received increasing interest

lately. In this talk, I will review some of these approaches, highlighting our recent

”Embed to Control” method which learns a latent representation and a locally

linear transition model that facilitates optimal control by design.

Workshop New Challenges in Neural Computation 2015

6 Machine Learning Reports

Keynote talk: Machine Learning Meets Image Analysis:

From looking inside ourselves to gazing at the stars

Christian Igel, University of Copenhagen, Denmark

Abstract:

Machine learning (ML) plays an increasing role in image analysis. This talk
presents recent examples from medical imaging and astronomy, ranging from ap-
plying standard ML algorithms to hand-crafted image features, over supervised
feature learning using deep neural networks, to unsupervised image categorisa-
tion.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 7

Archetypal Analysis as an Autoencoder

C. Bauckhage1, K. Kersting2, F. Hoppe3, and C. Thurau3

1 Fraunhofer IAIS, St. Augustin, Germany
2 TU Dortmund, Dortmund, Germany

3 Twenty Billion Neurons GmbH, Berlin, Germany

Abstract. We present an efficient approach to archetypal analysis where
we use sub-gradient algorithms for optimization over the simplex to de-
termine archetypes and reconstruction coefficients. Runtime evaluations
reveal our approach to be notably more efficient than previous tech-
niques. As an practical application, we consider archetypal analysis for
autoencoding.

1 Introduction

Archetypal analysis is a matrix factorization method specifically conceived for
latent factor analysis [8]. Since it allows for dimensionality reduction and sparse
coding alike, it is applicable to feature extraction, clustering, or classification [3].

Contrary to related approaches, latent factors or archetypes found through
archetypal analysis characterize extremes rather than averages. Archetypes do
not rely on implicit density assumptions such as, for example, eigenvectors or
cluster centroids which are tailored towards globally or locally Gaussian data.
Rather, archetypal analysis introduces a form of symmetry into latent factor
modeling: archetypes are convex combinations of data points and data points are
explained as of convex combinations of archetypes.

It is therefore faithful to the nature of data. For instance, archetypes of
non-negative data will be non-negative, too. Also, since archetypes are convex
combinations of actual data, they closely resemble certain data points and thus
do not require reification when interpreted. These properties are appealing in
the sciences [5, 16, 23, 24] as well as in computer vision [2, 6, 19, 21, 25, 30].

However, computing optimal archetypes is an NP hard problem [1] and even
though efficient approximations have become available [3, 10, 20, 22, 26], consid-
erable computational costs still hamper the broader use of the method.

In this paper, we address this issue and propose a novel, highly efficient al-
gorithm for archetypal analysis. Applying sub-gradient procedures for quadratic
optimization over the simplex we observe clear runtime gains over previous meth-
ods so that archetypal analysis becomes applicable to very large data sets. As a
corresponding practical application, we present and discuss first experiments on
archetypal analysis as an autoencoder for joint feature learning in image analysis.

Workshop New Challenges in Neural Computation 2015

8 Machine Learning Reports

2 Archetypal Analysis, Properties, and Algorithms

The basic setting for archetypal analysis is as follows: Given an m × n data
matrix X = [x1,x2, . . . ,xn] and an integer k ≤ min{m,n}, determine a column
stochastic n × k matrix B and a column stochastic k × n matrix A such that
X ≈XBA = ZA.

The columns zj of the m× k matrix Z are called the archetypes of the data.
Since the column vectors bj of B are stochastic, the entries of B obey

bij ≥ 0 ∧
n∑

i=1

bij = 1 (1)

and each archetype zj = Xbj is a convex combination of the data vectors in X.
As the column vectors ai of A are stochastic, too, the entries of A obey

aji ≥ 0 ∧
k∑

j=1

aji = 1 (2)

and we realize that archetypal analysis approximates each data vector xi ≈ Zai

as a convex combination of the archetypes in Z.
The problem of computing archetypal analysis can be cast as the following

constrained quadratic optimization objective

min
A,B

E =
∥∥X −XBA

∥∥2 (3)

subject to the constraints in (1) and (2)

which is an NP-hard Euclidean sum of square clustering problem [1]. While E is
convex in either A or B, it is not convex in their product AB and typically has
numerous local minima. Known solution strategies therefore randomly initialize
both factor matrices and update them iteratively; we shall briefly discuss these
algorithms below but first review some of the properties of archetypal analysis.

2.1 Properties of Archetypal Analysis

In [8], Cutler and Breiman prove that, if k = 1, the only archetype coincides with
the sample mean; for k > 1, archetypes necessarily reside on the data convex
hull and increasing the number of archetypes improves the approximation of the
data convex hull (see Fig. 1).

Once suitable archetypes have been determined, each data point xi can either
be reconstructed exactly or approximated as a convex combination of the zj

(see Fig. 2). As the corresponding coefficient vector ai is stochastic, it can be
interpreted as a distribution over the archetypes and thus be embedded in a
simplex spanned by the archetypes (see Fig. 2). This allows for soft clustering or
classification since the coefficients aji correspond to probabilities p(xi|zj) which
indicate membership to classes or concepts represented by the archetypes zk.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 9

(a) 100 data points xi ∈ R2

and their convex hull
(b) k = 3 archetypes and re-
spective archetypal hull

(c) k = 5 archetypes and re-
spective archetypal hull

Fig. 1: Archetypal analysis approximates the convex hull of a set of multivariate
data. Increasing the number k of archetypes improves the approximation.

2.2 Traditional Algorithms for Archetypal Analysis

Cutler and Breiman [8] proposed an alternating least squares approach where
they randomly initialize B and solve (3) for A. Given A, they solve (3) for B
and repeat. This procedure provably converges towards a local minimum and can
be implemented using common solvers for quadratic programming. For better
efficiency, Bauckhage and Thurau [3] suggested intelligent initialization strategies
and an active set algorithm and thus achieved significant accelerations.

Morup and Hansen [20] proposed an alternating projected gradient approach.
Observing that

E =
∥∥X −XBA

∥∥2 = tr
[
XTX − 2XTXBA + ATBTXTXBA

]
(4)

we have ∇AE = 2
[
ZTZA − ZTX

]
and ∇B E = 2

[
XTXBAAT −XTXAT

]
so that archetypal analysis can also be computed by means alternating updates
A← A− ηA∇A and B ← B− ηB∇B where ηA and ηB are step size parameters.
Since the gradient steps may lead out of the constraint sets, updated columns
of A and B might not be stochastic and need to be projected back into their
feasible regions which are the standard k and standard n simplex, respectively.
Morup and Hansen, too, consider intelligent initializations for which they resort
to the FASTMAP heuristic [11].

The methods in [3, 20] run much faster than the original one [8]. Still, they
invoke rather costly quadratic optimization routines or require costly projections
of gradients onto a feasible set. Next, we propose an approach to archetypal
analysis that avoids such overhead.

Workshop New Challenges in Neural Computation 2015

10 Machine Learning Reports

z1

z2

z3

z1

z2 z3

(a) visualization of the residual sum of
squares (3) and simplicial embedding of
coefficient vectors for k = 3

z1

z2
z3

z4

z1

z2

z3

z4

(b) visualization of the residual sum of
squares (3) and simplicial embedding of
coefficient vectors for k = 4

Fig. 2: While data inside an archetypal hull can accurately be expressed as convex
combinations of archetypes, the constraints in (2) cause data on the outside to
be mapped to the nearest point on the hull. For data point xi, the coefficient
vector ai is stochastic and thus resides in a simplex whose vertices correspond
to the archetypes zj .

Algorithm 1 greedy Frank-Wolfe procedure to compute matrix A whose
columns reside in the simplex ∆k−1

Require: data matrix X, matrix of archetypes Z, and parameter tmax ∈ N
A← [e1, e1, . . . , e1] where e1 = [1, 0, . . . , 0]T ∈ Rk // initialize k × n matrix A
t← 0
repeat

G = ∇A E = 2
[
ZTZA−ZTX

]
// compute gradient matrix

for i ∈ {1, . . . , n} do // update columns ai of A
j = argminl Gil

ai ← ai + 2/(t + 2) · (ej − ai)

t← t + 1
until updates “become small” or t = tmax

3 Rapid Archetypal Analysis

Our main observation w.r.t. the problem of efficient archetypal analysis is that
the columns ai of A and the columns bj of B reside in the standard simplices
∆k−1 and ∆n−1, respectively. In other words, the columns of either factor matrix
are elements of a convex set. Furthermore, if the factor matrices are determined
in an alternating manner, that is in a manner where we assume Z = XB
to be given in order to update our current estimate of A and then fix A to
update our current estimate of B, the objective function in (3) becomes convex
in either A or B. This, however, is to say that both update steps constitute a
convex minimization problem over a convex set and can thus be tackled using
the efficient Frank-Wolfe procedure [12].

Our idea is thus to refrain from using elaborate quadratic programming but
to harness the efficiency of computing gradients ∇AE and ∇B E while avoiding
costly back projections into the feasible set. This can be accomplished if sub-

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 11

Algorithm 2 greedy Frank-Wolfe procedure to compute matrix B whose
columns reside in the simplex ∆n−1

Require: data matrix X, matrix of coefficients A, and parameter tmax ∈ N
B ← [e1, e1, . . . , e1] where e1 = [1, 0, . . . , 0]T ∈ RN // initialize n× k matrix B
t← 0
repeat

G = ∇B E = 2
[
XTXBAAT −XTXAT

]
// compute gradient matrix

for j ∈ {1, . . . , k} do // update columns bj of B
i = argminl Gjl

bj ← bj + 2/(t + 2) · (ei − bj)

t← t + 1
until updates “become small” or t = tmax

gradient updates are performed along affine directions ej−ai and ei−bj within
the simplices ∆k−1 and ∆n−1, respectively. In a nutshell, this idea leads to the
update algorithms 1 and 2 which are variants of a recent algorithm by Clarkson
[7] which itself is a variant of the celebrated Frank-Wolfe procedure. A detailed
analysis of this algorithm is beyond the scope of this paper but we point out that
it quickly achieves ε-approximations of the optimal solution that are provably
sparse. For a recent excellent survey of projection-free convex optimization, we
refer to [17].

In extensive runtime evaluations (whose details we omit due to lack of space),
we examined the behavior of this new algorithm under various choices of the
number n of data, the dimensionality m of data, and the number k of archetypes
to be determined and found our approach to be two to three orders of magnitude
faster than the previous methods in [3, 20].

4 Application: Archetypal Analysis as an Autoencoder

In this section, we consider a practical application of archetypal analysis in the
context of feature learning. Given that our new algorithm is much faster than
previous methods, it now appears practical to apply archetypal analysis not only
to sets of images [25] but to considerably larger sets of image patches.

Our application example is motivated by the observation that neural net-
works are back with a vengeance! Owing to the recent success of deep learning
architectures in computer vision, speech recognition, or automatic translation [9,
13–15, 18, 27–29], research in these fields currently undergoes a paradigm shift.
At the heart of many deep learning architectures especially for image analysis is
the idea of using autoencoders for feature learning.

Looking at the overall objective of archetypal analysis, namely to find factor
matrices such that X ≈XBA, we realize that it is indeed an autoencoder that
maps X onto itself and the preliminary experiments in this section are intended
to fathom the potential of archetypal analysis for joint feature learning.

Figure 3(a) shows four images from which we extracted a total of 3844 patches
of size 16 × 16 pixels which we represent in terms of data vectors xi ∈ R256.

Workshop New Challenges in Neural Computation 2015

12 Machine Learning Reports

(a) training (b) test

Fig. 3: Image patches (16× 16 pixels) for archetypal autoencoding experiments.

(a) k = 4 archetypes (b) k = 9 archetypes (c) k = 16 archetypes

(d) k = 64 archetypes (e) k = 256 archetypes (f) k = 1024 archetypes

Fig. 4: Results of archetypal autoencoding using a growing number of archetypes.
Note that the images on the left of each panel visualize archetypal image patches
of size 16× 16 in each case.

Greedy archetype computation on this data set runs in mere fractions of a second
and, for k ∈ {4, 9, 16, 64, 256, 1024} it determines the archetypes shown to the
left of each panel in Fig. 4. Interestingly, especially for growing k, archetypes
appear to be natural realizations (i.e. actual parts of images) of edge filters and
the propensity of autoencoders to learn edge features is sometimes heralded as
a special characteristic of deep learning approaches [18, 27]. Seen from the point
of view of archetypal analysis, however, archetypal image patches are extreme
in that they consist of very dark and very bright pixels, a condition typical for
edges. This has already been noted in [3] and confirms early observations on
neural feature learning [4].

Figure 3(b) shows a test image which we also subdivided into patches of size
16 × 16 and tried to reconstruct in terms of the archetypes determined from
the training images. The corresponding results can be seen on the right of each
panel in Fig. 4. As one would expect, for a growing number of archetypes, the
reconstructions become better and we note that the reconstruction in Fig. 4(f)
is actually an instance of sparse coding where the number of archetypes (1024)
far exceeds the dimension of the data (256). Still, our algorithm did compute
this reconstruction in less than a second. Overall, these results suggest that
archetypal analysis indeed allows for joint feature learning for image representa-
tion. Archetypes were determined on training images independent from the test
image, indicate edges like structures, and allow for reasonable reconstructions

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 13

of the test image. Given the favorable runtime characteristics of the algorithm
proposed in this paper, these results therefore point at new directions for feature
learning.

5 Conclusion

In this paper, we addressed the problem of efficient archetypal analysis for data
matrix factorization. We proposed a novel algorithm which is based on greedy
sub-gradient computations derived from the Frank-Wolfe algorithm.

As a practical application of our novel algorithm, we considered the use of
archetypal analysis as an autoencoder for joint image feature learning. Archetypes
were determined from a set of training images, were observed to represent edges
or contours, and allowed for convincing reconstructions of test images. Running
on the CPU of a single computer rather than on graphics hardware, our algo-
rithm processed thousands of images patches in less than a second. Our results
thus hint at possible applications of archetypal analysis in machine learning. In
ongoing work, we are currently exploring the use of hierarchies of archetypal au-
toencoders where features learned on a lower level of the hierarchy are combined
and form the input for the autoencoder on the next level so as to learn semantic
representations of image content that are similar in spirit to those obtained from
deep learning architectures.

References

1. Aloise, D., Deshapande, A., Hansen, P., Popat, P.: NP-Hardness of Euclidean Sum-
of-Squares Clustering. Machine Learning 75(2), 245–248 (2009)

2. Asbach, M., Mauruschat, D., Plinke, B.: Understanding Multi-spectral Images of
Wood Particles with Matrix Factorization. In: OCM. pp. 191–202. KIT Scientific
Publishing, Karlsruhe (2013)

3. Bauckhage, C., Thurau, C.: Making Archetypal Analysis Practical. In: Denzler,
J., Notni, G. (eds.) DAGM. LNCS, vol. 5748, pp. 272–281. Springer, Heidelberg
(2009)

4. Bell, A., Sejnowski, T.: The Indepoendent Components of Natural Images are Edge
Filters. Vision Research 37(23), 3327–3338 (1997)

5. Chan, B., Mitchell, D., Cram, L.: Archetypal Analysis of Galaxy Spectra. Monthly
Notices of the Royal Astronomical Society 338(3), 790–795 (2003)

6. Cheema, M., Eweiwi, A., Thurau, C., Bauckhage, C.: Action Recognition by Learn-
ing Discriminative Key Poses. In: ICCV (ICCV Workshops). pp. 1302–1309. IEEE
Press, New York (2011)

7. Clarkson, K.: Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algo-
rithm. ACM Trans. on Algorithms 6(4), 63:1–63:30 (2010)

8. Cutler, A., Breiman, L.: Archetypal Analysis. Technometrics 36(4), 338–347 (1994)
9. Deng, L., Hinton, G., Kingsbury, B.: New Types of Deep Neural Network Learning

for Speech Recognition and Related Applications: An Overview. In: ICASSP. pp.
8599–8603. IEEE Press, New York (2013)

10. Eugster, M., Leisch, F.: Weighted and Robust Archetypal Analysis. Computational
Statistics & Data Analysis 55(3), 1215–1225 (2011)

Workshop New Challenges in Neural Computation 2015

14 Machine Learning Reports

11. Faloutsos, C., Lin, K.I.: FastMap: A Fast Algorithm for Indexing, Data-mining
and Visualization of Traditional and Multimedia Datasets. In: Proc. SIGMOD.
pp. 163–174. ACM (1995)

12. Frank, M., Wolfe, P.: An Algorithm for Quadratic Programming. Naval Research
Logistics Quarterly 3(1–2), 95–110 (1956)

13. Gao, J., X. He, W.Y., Deng, L.: Learning Continuous Phrase Representations for
Translation Modeling. In: Proc. ACL (2014)

14. Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger,
R., Satheesh, S., Sengupta, S., Coates, A., Ng, A.: Deep Speech: Scaling up End-
to-End Speech Recognition. arXiv:1412.5567 [cs.CL] (2014)

15. He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. arXiv:1502.01852 [cs.CV]
(2015)

16. Huggins, P., Pachter, L., Sturmfels, B.: Toward the Human Genotope. Bulletin of
Mathematical Biology 69(8), 2723–2735 (2007)

17. Jaggi, M.: Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
J. of Machine Learning Research 28(1), 427–435 (2013)

18. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet Classification with Deep Con-
volutional Neural Networks. In: Proc. NIPS (2012)

19. Marinetti, S., Finesso, L., Marsilio, E.: Matrix factorization methods: application
to Thermal NDT/E. In: Proc. Int. Workshop Advances in Signal Processing for
Non Destructive Evaluation of Materials (2005)

20. Morup, M., Hansen, L.: Archetypal Analysis for Machine Learning and Data Min-
ing. Neurocomputing 80, 54–63 (2012)

21. Prabhakaran, S., Raman, S., Vogt, J., Roth, V.: Automatic Model Selection in
Archetype Analysis. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM.
LNCS, vol. 7476, pp. 458–467. Springer, Heidelberg (2012)

22. Seth, S., Eugster, M.: Probabilistic Archetypal Analysis. arXiv:1312.7604v2
[stat.ML] (2014)

23. Stone, E., Cutler, A.: Exploring Archetypal Dynamics of Pattern Formation in
Cellular Flames. Physica D 161(3–4), 163–186 (2002)

24. Thogersen, J., Morup, M., Damkiaer, S., Molin, S., Jelsbak, L.: Archetypal Analysis
of Diverse Pseudomonas Aeruginosa Transcriptomes Reveals Adaptation in Cystic
Fibrosis Airways. BMC Bioinformatics 14(1), 279 (2013)

25. Thurau, C., Bauckhage, C.: Archetypal Images in Large Photo Collections. In:
ICSC. pp. 129–136. IEEE Press, New York (2009)

26. Thurau, C., Kersting, K., Wahabzada, M., Bauckhage, C.: Convex Non-negative
Matrix Factorization for Massive Datasets. Knowledge and Information Systems
29(2), 457–478 (2011)

27. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient Object Lo-
calization Using Convolutional Networks. In: CVPR. IEEE Press, New York (2015)

28. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and Tell: A Neural Image
Caption Generator. arXiv:1411.4555 [cs.CV] (2014)

29. Wiesler, S., Richard, A., Schlüter, R., Ney, H.: Mean-Normalized Stochastic Gra-
dient for Large-Scale Deep Learning. In: ICASSP. pp. 180–184. IEEE Press, New
York (2014)

30. Xiong, Y., Liu, W., Zhao, D., Tang, X.: Face Recognition via Archetypal Hull
Ranking. In: ICCV. pp. 585–592. IEEE Press, New York (2013)

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 15

Learning Transformation Invariance from Global
to Local

Jens Hocke, Thomas Martinetz

Institute for Neuro- and Bioinformatics, University of Lübeck

Abstract. Learning representations invariant to image transformations
is fundamental to improving object recognition. We explore the connec-
tions between i-theory, Toroidal Subspace Analysis and slow subspace
learning. All these methods can only achieve invariance to one transfor-
mation. Motivated by this limitation of these global methods we adapt
the slow subspace approach to a local convolutional setting. Experimen-
tally we show invariance to multiple transformations, and test object
recognition performance.

1 Introduction

Changes of an object’s pose are one of the big challenges in visual object recog-
nition. The pixel representation of an object can change dramatically when the
object’s pose changes. Often this problem is met by presenting many training
examples of the object in different poses. However, to achieve human like capa-
bility to learn from few samples it seems mandatory to separate the invariance
learning from the object recognition problem.

Convolutional neural networks [1, 2] are an early example of an architecture
that helps coping with shift invariance. Theses convolutional networks do not
come with an objective function to learn invariance. Their main goal is classifi-
cation, and invariance is learned as part of classification.

A well suited objective to achieve an invariant representation is slowness [3–
5]. The main assumption of slowness is, that there is some slowly changing signal
contained in a temporal stream of data. By optimizing for a slowly changing
signal in the representation, invariance to the transformations contained in that
temporal stream is achieved.

Pairs of filters coupled by their energy, so called subspaces, have shown to be
a very useful architecture. The subspaces have been introduced in the domain of
self organizing maps [6], and have been transferred to the representation learning
domain in form of the Independent Subspace Analysis (ISA) [7]. Soon slowness
and subspace architectures were combined in [8], minimizing the energy change
of the subspaces over time. Newer approaches [9–11] also include sparsity [12].

An approach derived from group theory is the Toroidal Subspace Analysis
(TSA) [13]. The resulting representation also uses subspaces. In contrast to the
slowness based subspace approaches, the energy of the subspaces is fixed for pairs
of transformed image patches, and the error for encoding one patch in terms of

Workshop New Challenges in Neural Computation 2015

16 Machine Learning Reports

the other is minimized. Similar to TSA, gated models [14] minimize the encoding
distance between pairs of transformed images. However, there products of filters
are used to encode the transformations.

An explanation of how invariance could emerge in the ventral stream is offered
in the i-theory [15]. From these theoretical insights on invariance, implications
for the network structure can be derived.

After explaining the connections between i-theory, TSA and slow subspace
learning methods and their drawbacks, we adapt the local subspace learning
method by W. Zou et al. [9, 10] to convolutional learning and test this method
for invariance and unique representation.

2 Transformation Groups and Invariance

Orbits can be used to achieve invariance to a group G of transformations. This
is the core observation of the i-theory [15] as well as integral invariants. The
group elements g are transformations of images x ∈ RD. We denote the group’s
actions on an image by g(x). The orbit Ox = {gi(x)|gi ∈ G} of some image x is
induced by applying all transformations gi ∈ G to x. This orbit is invariant to
the transformations in G and unique for the object in x. But it is a very high
dimensional representation.

The high dimensionality can be handled by one dimensional projections
〈gi(x),pn〉, where pn, n = 1, . . . D are arbitrary projection vectors. If there are
enough different projection vectors, a unique representation can be achieved.
Besides reducing the dimensionality, this helps to avoid transforming the input
image x by applying the inverse transformation to the projection vectors instead

〈gi(x),pn〉 = 〈x, g−1i (pn)〉. (1)

So now we have projected orbits of images. In the i-theory probability distri-
butions over these vectors are used to obtain an invariant representation. This
helps analyzing the invariance problem. However, we found it hard to learn good
representations using this probabilistic framework [16]. Therefore, we stay in the
deterministic domain.

If we assume that the transformations gr have only one parameter r (e.g.
degree for rotation) and they are ordered by this parameter, we can assemble a
matrix W . This matrix W = (g−1r1 (p), g−1r2 (p), . . . , g−1rN (p)) is composed of column
vectors wr = g−1r (p). The parameters ri for the transformations are uniformly
distributed ri = N/I · (i− 1) with I being the maximum transformation param-
eter. In the following line of thinking, we assume one projection vector p. Here,
we abbreviate gri by gi and wri by wi. The representation y of the image vector
x is obtained by

y =W>x. (2)

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 17

For the transformed image gj(x) we obtain y′. If we observe a single entry yi of
y while applying transformation gj

yi =w>i x (3)

=gj(wi)
>gj(x) (4)

=w>i+jgj(x) = y′i+j , (5)

we see that the entries of the representation vector shift indices. Only the first
or last elements of y′, depending on the direction of the transformation, may
not be related to y. By restricting the applicable transformations G to the set of
toroidal group transformations, a relation to all entries in y can be established.

These toroidal group transformations are turned into circular shifts in the
representation vector y. So via the Fourier transform of y amplitudes invariant
to toroidal group transformations can be found, while the phases encode the
transformation parameter. Via the n-dimensional Fourier transform an extension
to n parameters is possible.

2.1 Relationship of Invariance Learning Methods

In case the transformation group is not known or the transformation is hard
to model, it is beneficial to learn W . Let x(t) = g(x(t − 1)) at time t be a
transformed version of an image x(t−1) in a sequence. From above we know that
the Fourier amplitudes will not change. Only the phase will change according to
the Fourier shift theorem. Thus, we can reconstruct x(t)

x(t) =W−1F−1R(φ)FWx(t− 1) (6)

if the phase shift φ encoded in a diagonal matrix R(φ) is known. This can be
turned in a learning algorithm, where this autoencoder like energy term

E =
∑
t

||x(t)−W−1F−1R(φ)FWx(t− 1)||, (7)

and R(φ) are optimized in an alternating manner. Since the Fourier transforma-
tion is just an unitary transformation, it can be absorbed into W

E =
∑
t

||x(t)−W>R(φ)Wx(t− 1)||. (8)

This is the essence of TSA [13], where usually the complex unit vectors on the
diagonal of R(φ) are not coupled.

Related to TSA are slow subspace approaches. They have two main ingre-
dients. They encourage a representation that allows reconstruction of x(t) from
W>x(t), which can be achieved via an orthogonal basis W , an autoencoder
term or sparse coding. In order to find an invariant representation changes in
the subspace energies

ei(t) =

K−1∑
k=0

(w>iK+kx(t))2 (9)

Workshop New Challenges in Neural Computation 2015

18 Machine Learning Reports

of K-dimensional subspaces indexed by i are penalized. This is done either by
minimizing their distance in consecutive samples or by minimizing their vari-
ance1, which also indirectly minimizes the subspace energy of samples following
each other. In the following we assume K = 2.

The relation of subspace methods to TSA and the i-theory can be seen if all
energy terms are zero for any pair of group transformed images. Then subspace
methods have found a basis Wslow, that can reconstruct all sample pairs x(t)
and x(t−1) from a sequence, while e(t) does not change for consecutive samples.
Only the pairs of activations w>i2x(t) and w>i2+1x(t) can change over time. This
change can be interpreted as an angle change in polar coordinates, which is
the only change TSA allows to reconstruct x(t) from x(t − 1). From that, we
see, any input image can be group transformed using Wslow and some matrix
R(φ) for the angle change. Therefore, Wslow is also an optimal solution for the
TSA model. The other way round, an optimal basis WTSA learned by TSA, will
always have a fixed e(t), and perfect self-reconstruction is guaranteed via not
transformed pairs x(t) and x(t− 1). Thus, WTSA is also an optimal solution for
the subspace model.

2.2 A Slow Subspace Autoencoder Model

The model we chose to build on is a slow subspace autoencoder model [10], that
has been applied successfully in object recognition tasks. It follows the scheme
mentioned above. There is a reconstruction and a slowness term, and in addition
also sparsity is encouraged. The terms

Erec =
∑
t

||x(t)−W>Wx(t)||22 (10)

Eslow =
∑
t

||z(t)− z(t− 1)||1 (11)

Esparse =
∑
t

||z(t)||1 (12)

with the amplitudes

zi(t) =
√
ei(t) (13)

are combined via

E =Erec + αEslow + βEsparse s.t. ||wi|| = 1. (14)

Note the unit norm constraint on the weight vectors wi. This is necessary to
avoid wi to become a zero vector if large values of α or β are used. This energy
model can now be optimized via stochastic gradient descent.

1 The principle of minimizing the variance over time is also fundamental to the Slow
Feature Analysis [5]. However, SFA is not operating on subspaces.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 19

In case the sparsity term is omitted TSA [13] like bases are found using the
same training samples (Figure 1a and b). These bases are global and the ampli-
tudes are perfectly transformation invariant. However, a large amount of spatial
information is lost with the phases. This representation is sensible to background
clutter and factorizing the invariance problem seems impossible (e.g. one mod-
ule doing translation invariance, the next rotation etc.) [17]. But factorizing the
range of possible transformation parameters is possible according to the i-theory
[15]. Factorizing the invariance means we are restricting it to a local window,
which can be achieved via a sparsity term (Figure 1c). Of course this will de-
crease the invariance [18], but due to the local similarity of most transformations
to shifts, a diverse set of transformations can be handled. By adding additional
layers trained like this first module, the range of invariance can be increased.

(a) (b) (c)

Fig. 1. The first 64 elements of global bases learned from rotated and shifted patches
of random intensities are shown in (a) and (b). In (c) the first 64 elements of a basis
learned with a sparsity prior from natural movie sequences is shown.

2.3 Convolutional Model

When the invariance is factorized to local windows by optimizing sparsity, many
very similar shifted local subspaces are created (Figure 1c). We decrease this
redundancy by training an adapted convolutional network with the energy terms

Erec =
∑
t

||x(t)−
∑
j

(
W̃j ∗ us(ds(Wj ∗ x(t))))

)
||22 (15)

Eslow =
∑
t

||ds(z(t))− ds(z(t− 1))||1, (16)

where

zi(t) =

√√√√ 1∑
k=0

(Wi2+k ∗ x(t))2. (17)

Here, the vectors w are replaced by filters Wj and their counter parts with all di-

mensions flipped W̃j . The convolution operation is denoted by ∗. In addition the

Workshop New Challenges in Neural Computation 2015

20 Machine Learning Reports

downsampling and upsampling operators ds and us with stride s are introduced,
taking only every s-th value in each direction or reversing the downsampling by
filling in zeros. Due to the network structure no sparsity needs to be enforced to
learn local subspaces and the required computational resources stay moderate.

For training the first layer on sequence images, the images were preprocessed
by ZCA filtering [19]. Using these preprocessed images, filters for the convolu-
tional model were optimized by stochastic gradient descent. After training, the
first layer output maps ds(zi(t)) can be computed via (17). The next layer is
trained on the output of the first layer for unprocessed images. Because these
outputs can be high dimensional, the number I of maps is reduced by filtering.
As filters we use the principle components of 1 × 1 × I patches extracted from
the outputs. This data is then ZCA filtered and used for optimizing the second
layer filters. Higher layers can be computed analog to the second layer. For com-
puting the outputs of higher layers, only the PCA step is needed, and thus, ZCA
filtering is omitted.

3 Experiments

We trained a two layer version of the convolutional model using natural movie
sequences from the van Hateren video database [20]. These are gray scale 128×
128 pixel movies collected from television. For training the first layer with α = 50,
the stride was set to 6, the filter size was set to 15×15 pixels and 36 filters shown
in Figure 2a were trained. Then using the learned filters, the first layer output
was generated using stride 2. To train the second layer the 18 magnitude maps
from the first layer output were reduced via PCA to three maps carrying more
than 90% of the variance. Again for training the stride of the second layer was
set to 6. The filter size was adapted to 15 × 15 × 3 to handle all three maps
and 108 filters were learned with α = 100. We see the results for the top map
in Figure 2b. Note, we did not analyze many of the parameters. One might find
better choises. In particular, the second layer filters are critical and for many
parameters no useful filters will be produced.

Clearly for both layers we obtain Gabor like filters (Figure 2). For the second
layer the filters are repeated in every map, however with different intensities.
These finding suggest invariance to small shifts in the first layer and an in-
creased invariance to these shifts in the second layer. We tested this translation
invariance and also rotation and scale invariance using 100 patches of 64 × 64
pixels from the van Hateren image database [21]. We measure the change in
the output of each layer, as the input undergoes transformations. The MSE be-
tween the original and the transformed patch is taken and normalized against
the largest MSE, assuming the patches are uncorrelated for these transformation
parameters. The output of both layers were downsampled with stride 3.

The plots in Figure 3 validate our believe in invariance to small shifts. We
also see invariance to rotation and scaling, because these transformations can
locally be approximated by shifts. And additionally the invariance increases from
the first to the second layer.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 21

(a) (b)

Fig. 2. Layer 1 filters are displayed in (a). In (b) only the top part of the second layer
filters is shown. This top part, which is for the first output map, differs from the other
parts only in the intensities of the filters.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

translation in pixels

n
or
m
al
iz
ed

M
S
E

input
layer 1
layer 2

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

rotation in degrees

input
layer 1
layer 2

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

zoom out ratio

input
layer 1
layer 2

(a) (b) (c)

Fig. 3. Invariance experiment for varying degrees of shift (a), rotation (b), and scale
(c). The normalized MSE in layer 1 and layer 2 is plotted along with results for the
unprocessed input patches as reference.

Next we were interested in the effect of the stride. The strides for both layers
were adapted simultaneously. Using the same approach as above we measured
the MSE for different strides on shifted patches. The plots in Figure 4 show,
that the first layer output is not affected. However, the second layer is. This is
due to the change of the represented area. The larger the stride in the bottom
layer the larger the area represented in the second layer.

These findings suggest using large strides. One of the main problems of in-
variant representations, however, is representing the input uniquely. To test how
well information on fine image structures is retained at each layer we do k-NN
classification (k = 3) on the MNIST [2] dataset. The classification error on the
raw images is 3.09%. As we see in Table 1, there is a drop in the k-NN classi-
fication performance from layer 1 to layer 2, which can be reduced to a certain
extend by choosing small stride sizes. This clearly indicates a loss of important
information. Interestingly, the first layer error rates are significantly better than
on the input images2. We think this is due to the small non-affine transforma-
tions in MNIST, which may be handled well by the Gabor features.

2 The state of the art error rate for MNIST is of 0.23% [22].

Workshop New Challenges in Neural Computation 2015

22 Machine Learning Reports

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

translation in pixels

n
or
m
al
iz
ed

M
S
E

input
stride 6
stride 3
stride 2
stride 1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

translation in pixels

n
or
m
al
iz
ed

M
S
E

input
stride 6
stride 3
stride 2
stride 1

(a) (b)

Fig. 4. The normalized MSE in layer 1 (a) and layer 2 (b) depending on the amount
of shift is plotted for different strides. As reference also a curve for the input patches
is shown.

Layer 1 Layer 2

Stride 6 1.48 12.88

Stride 3 1.41 6.35

Stride 2 1.43 5.01

Stride 1 1.42 3.28

Table 1. Results for MNIST classification. The error rates are given in percent.

4 Conclusion

I-theory, TSA and slow subspace learning methods are closely related. Invariance
learning based on anyone of these seems equally well suited, leaving aside op-
timization and implementation issues. However, if they learn global invariance,
their application is very limited by their adaption to a single transformation
group. Therefore, we implemented a convolutional method, which learns local
invariance due to its structure. The experiments show indeed invariance to mul-
tiple transformations, with increase in invariance from layer to layer, while in-
formation loss also seems to be increased. This information loss remains an open
problem to be solved before deeper networks using our training approach become
useful. Interestingly, the first layer seems to be capable of handling non-affine
transformations in MNIST, leading to improved classification results.

References

1. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernetics
36 (1980) 193–202

2. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11) (1998) 2278–2324

3. Hinton, G.E.: Connectionist learning procedures. Artificial intelligence 40(1)
(1989) 185–234

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 23

4. Földiák, P.: Learning invariance from transformation sequences. Neural Compu-
tation 3(2) (1991) 194–200

5. Wiskott, L., Sejnowski, T.J.: Slow feature analysis: Unsupervised learning of in-
variances. Neural computation 14(4) (2002) 715–770

6. Kohonen, T.: Emergence of invariant-feature detectors in the adaptive-subspace
self-organizing map. Biological Cybernetics 75(4) (1996) 281–291

7. Hyvärinen, A., Hoyer, P.: Emergence of phase-and shift-invariant features by de-
composition of natural images into independent feature subspaces. Neural compu-
tation 12(7) (2000) 1705–1720

8. Kayser, C., Einhäuser, W., Dümmer, O., König, P., Körding, K.: Extracting slow
subspaces from natural videos leads to complex cells. In: Artificial Neural Net-
works—ICANN 2001. Springer (2001) 1075–1080

9. Zou, W.Y., Ng, A.Y., Yu, K.: Unsupervised learning of visual invariance with
temporal coherence. In: NIPS 2011 Workshop on Deep Learning and Unsupervised
Feature Learning. (2011)

10. Zou, W., Zhu, S., Yu, K., Ng, A.Y.: Deep learning of invariant features via simu-
lated fixations in video. In: Advances in Neural Information Processing Systems.
(2012) 3212–3220

11. Cadieu, C.F., Olshausen, B.A.: Learning intermediate-level representations of form
and motion from natural movies. Neural computation 24(4) (2012) 827–866

12. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision research 37(23) (1997) 3311–3325

13. Cohen, T., Welling, M.: Learning the irreducible representations of commutative
lie groups. arXiv preprint arXiv:1402.4437 (2014)

14. Memisevic, R.: Learning to relate images. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 35(8) (2013) 1829–1846

15. Anselmi, F., Leibo, J.Z., Rosasco, L., Mutch, J., Tacchetti, A., Poggio, T.: Unsu-
pervised learning of invariant representations in hierarchical architectures. CoRR
abs/1311.4158 (2013)

16. Hocke, J., Martinetz, T.: Learning transformation invariance for object recognition.
In: Workshop New Challenges in Neural Computation 2014. (2014) 20–25

17. Anselmi, F., Poggio, T.A.: Representation learning in sensory cortex: a theory.
(2014)

18. Lies, J.P., Häfner, R.M., Bethge, M.: Slowness and sparseness have diverging effects
on complex cell learning. PLoS computational biology 10(3) (2014) e1003468

19. Bell, A.J., Sejnowski, T.J.: Edges are the” independent components” of natural
scenes. In: NIPS. (1996) 831–837

20. van Hateren, J.H., Ruderman, D.L.: Independent component analysis of natural
image sequences yields spatio-temporal filters similar to simple cells in primary
visual cortex. Proceedings of the Royal Society of London. Series B: Biological
Sciences 265(1412) (1998) 2315–2320

21. van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural
images compared with simple cells in primary visual cortex. Proceedings: Biological
Sciences 265(1394) (Mar 1998) 359–366

22. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, IEEE (2012) 3642–3649

Workshop New Challenges in Neural Computation 2015

24 Machine Learning Reports

Polynomial Approximation of Spectral Data in
LVQ and Relevance Learning

Friedrich Melchert1,2, Udo Seiffert2, and Michael Biehl1

1 University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science, P.O. Box 407, 9700 AK Groningen, The Netherlands

2 Fraunhofer Institute for Factory Operation and Automation IFF, Sandtorstrasse 22,
39106 Magdeburg, Germany

Abstract. High dimensional data serves as input for a variety of clas-
sification tasks. In the case of spectral information, this data can be
understood as discrete sampling of an (unknown) underlying function.
In this paper we discuss an approach that improves classification perfor-
mance for spectral data by expanding the data in terms of basis func-
tions. Two real world spectral data classification problems demonstrate
the advantages of the method.

Keywords: Classification; supervised learning; functional data; Learn-
ing Vector Quantization; relevance learning; dimensionality reduction

1 Introduction

A variety of real-world applications produce high-dimensional data that are usu-
ally difficult to handle with traditional methods. Apart from developing new
methods suited for a high number of input dimensions, one possible solution is
to use prior knowledge about the underlying structures of the input data for
dimension reduction or data simplification. A very general and in most cases
justifiable approach is to assume high dimensional data vectors are a discretized
representation of a continuous function. This is true for different types of data,
such as time series and spectral data, which are frequently high-dimensional.

Such data is usually recorded in order to serve as input data in a classification
task. Different machine learning and classification algorithms can be applied,
each having its own advantages and disadvantages. Prototype- and distance-
based methods have the advantage of being intuitive to implement and inter-
pret. In this paper an extension of the popular Learning Vector Quantization
(LVQ) [6] is employed. In LVQ systems, prototypes serve as characteristic exem-
plars of their corresponding classes. In combination with an appropriate distance
measure, they constitute an efficient method of classification [2].

The choice of the distance measure is the key to the design of an LVQ system
[2]. In contrast to fixed Euclidean or other Minkowski measures, the General-
ized Matrix LVQ (GMLVQ) makes use of the more flexible concept of relevance
learning. In GMLVQ a parametrized distance measure is used and its parame-
ters are determined in a data-driven training process [12]. Therefore, only the

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 25

basic structure of the distance measure has to be specified in advance. This ap-
proach offers greater flexibility and, moreover, the interpretation of the adaptive
distance measure can give further insight into the structure of the data [14].

In this paper, we discuss the application of GMLVQ to functional input data.
In [5] a functional representation of the relevances in GMLVQ was proposed and
investigated, but samples and prototypes were still considered to be in original
feature space. This paper presents an alternative approach that produces a func-
tional representation of the data and performs GMLVQ adaptation in the space
of coefficients for the functional representation. The idea was first presented in
[13] where a wavelet expansion of mass spectrometry data was employed. Al-
though this also led to a reduction of input dimensions, the wavelet expansion
was motivated as an easy way of finding discriminative features of the sharply
peaked mass spectra.

In [11] the SOM algorithm is modified for the unsupervised clustering of
spectral information by expanding the input data in terms of B-Spline functions.
This yields a reduction of input dimensions by a factor of two. In this paper we
demonstrate that a similar approach using Chebyshev polynomials as functional
basis can reduce the number of input dimensions even further without significant
loss or even improvement of performance with respect to the full feature dataset.
Since the potential benefit of the approach for the quality of the classification has
been discussed in [8], here we focus on the aspect of dimensionality reduction.

2 Polynomial approximation of functional data

In order to reduce the number of input dimensions the approximation of the
data using a weighted set of basis functions is considered. It is assumed, that
the d-dimensional feature vectors vi ∈ Rd result from sampling a continuous (in
general unknown) function fi(x).

vi,j = fi(xj) with j = 1, 2, ..., d. (1)

For a given set of suitable basis functions gk(x) it is possible to find the coeffi-
cients ci,j so that

fi(x) =

∞∑
k=0

ci,j · gk(x). (2)

By limiting the maximum number of coefficients to n, and thus truncating the
series, Eq. (2) becomes an approximation of the original function, which can be
achieved by means of general approximation schemes like least mean squares or
minimal maximum deviation.

From the obtained set of coefficients ci,j a new set of feature vectors ci ∈ Rn

can be composed. Throughout the following we assume that n < d, obviously.
The quality of the functional approximation is highly dependent on the se-

lection of an appropriate set of basis functions and, of course, on the number of
approximation coefficients. Both choices should be guided by the specific prop-
erties of the input data. With respect to the number of functions and coefficients

Workshop New Challenges in Neural Computation 2015

26 Machine Learning Reports

the proposed approach is quite robust within a range of values n [8]. Possible
basis functions include polynomials, trigonometric functions for periodic signals,
wavelets or spline functions. In this paper, we focus on using a polynomial basis
as an important example, more specifically the set of Chebyshev polynomials of
the first kind. They are defined recursively by

T0(x) = 1

T1(x) = x

Tn(x) = 2xTn−1 − Tn−2(x)

(3)

Using Chebyshev polynomials as basis functions Equation (2) becomes a Cheby-
shev series which is known to provide an efficient way to represent smooth non-
periodic functions [3]. Within the context of this paper an open source Mat-
labTM library called chebfun [15] is employed to determine the coefficients of the
series. Although the library provides a wide variety of functions in the context of
Chebyshev polynomials, we only use the implementation of approximations for
discrete data in this paper. For a more detailed description of the implementation
see the documentation in [3].

3 Application to example datasets

The approach is demonstrated by applying it to two publicly available datasets
as well as manually distorted copies thereof. All of the datasets contain spectral
and thus functional input data. An illustration of the datasets is shown in Figure
1.

The first dataset, the Wine dataset (available from [9]), contains 124 samples
of wine infrared absorption spectra in the range between 4000 and 400 cm−1

with 256 sampled values each. One sample of the dataset, which could be clearly
identified as an outlier, was removed for the following analysis. The samples
are labeled according their alcohol content: A two class problem is created by
thresholding the alcohol level as described in [7], the resulting classes correspond
to low and high alcohol content.

As a second dataset we consider the Tecator dataset (available from [16]),
which comprises 215 reflectance spectra in the range from 850 to 1050 nm wave-
length. The spectra are sampled equidistantly using 2 nm step size resulting in
100 sampled values per spectrum. The spectral information was acquired from
meat probes and labeled according to their fat content. Similar to the Wine
dataset the fat content is thresholded at its median in order to obtain two classes.

For further illustration of the presented approach both datasets are artificially
distorted. For the Wine dataset, which seems to be pre-processed in terms of
offset elimination, cf. Fig. 1a, a random offset is added to each of the spectra.
This yields a dataset which will be referred to as WineRO (Wine with Random
Offset) in the following. The spectra in the Tecator dataset already have different
offsets (cf. Fig. 1b), so for distortion the offsets in the dataset are removed by
subtracting the mean value of each spectrum. The resulting dataset will be
referred to as the TecatorNO (Tecator with No Offset) dataset.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 27

(a) Wine dataset (b) Tecator dataset

(c) WineRO dataset (d) TecatorNO dataset

Fig. 1: Input spectra of the different datasets. For the sake of clarity only 20
examples are drawn for each dataset. The presence of offsets in the WineRO
and Tecator datasets is clearly recognizable.

Two experiments are performed for each of the datasets: The first serves as
a natural baseline for classification performance and disregards the functional
characteristic of the input values entirely by training a GMLVQ system in the
original feature space.

The second set of experiments involves a preprocessing of the data in terms
of polynomial expansion as described in section 2. For each dataset an approx-
imation is computed with n = 5, 10, 15, ..., 50 polynomial coefficients, resulting
in new input feature vectors ci ∈ Rn.

Demonstration code (MatlabTM) for GMLVQ training is available from [1].
The settings and parameters kept constant for all experiments. For most pa-
rameters the default values as specified in [1] were used. In detail this means,
all trained GMLVQ systems comprised only one prototype per class which were
initialized as the class-conditional means in the training set. The relevance ma-
trix was initialized as proportional to the identity and batch gradient descent
optimization was performed employing an automated step size control as de-
scribed in [1, 10]. As an additional preprocessing step the input data underwent
a z-score transformation that achieves unit variance and zero mean for all in-
put features. This transformation was done in order to balance varying orders

Workshop New Challenges in Neural Computation 2015

28 Machine Learning Reports

Table 1: Comparison of processing workflows for experiments with and without
incorporation of the functional characteristics of the input data.

original data functional approximation

Preprocessing: polynomial approximation
with n coefficients
vi → cni

z-score transformation z-score transformation

vi → vZ
i ci → cn,Z

i

Training: Train GMLVQ on Train GMLVQ on

90% of vZ
i 90% of cn,Z

i

Validation: Validate GMLVQ on Validate GMLVQ on

remaining 10% of vZ
i remaining 10% of cn,Z

i

of magnitudes between the different features. Furthermore the transformation
facilitates a better interpretation of the resulting relevance matrices [12].

A validation scheme dividing the datasets randomly into 90% training data
and using the remaining 10% as a validation dataset is employed for each of
the experiments. As a measure for classification performance the area under the
ROC (AUROC) is evaluated with respect to the validation set [4]. The ROC
is computed by varying a threshold when comparing the distances between the
data points and the prototypes. The whole workflow is summarized in Table
1. All results were obtained by averaging over 10 random splits of the data.
Figure 2 shows the obtained performance for all datasets in dependency of the
number of polynomial approximation coefficients, as well as the performance of
the classifier using the raw input data.

To illustrate the advantages of the approach we provide more detail on the
Wine and WineRO datasets in Figure 3. The left-hand panels show the proto-
types obtained using a 20 coefficient polynomial approximation. The prototypes
are shown in the space of approximation coefficients, center panels display the
corresponding relevance profiles. In the right-hand panels, the reconstructed pro-
totypes are shown in the original feature space.

4 Discussion

The results depicted in Figure 2 reveal that the classification performance of
the GMLVQ systems trained on the polynomial approximation coefficients are
almost identical to or slightly better than the performance when using original
data. However, in a polynomial approximation with, say, 20 coefficients, which
performs well on all datasets (cf. Fig. 2), the number of input dimensions is
drastically decreased by 80% for the Tecator datasets and by 92% for the Wine
datasets.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 29

(a) Wine dataset (b) Tecator dataset

(c) WineRO dataset (d) TecatorNO dataset

Fig. 2: Comparison of the achieved validation performance, i.e. the area under
ROC for different datasets in dependence of the number of polynomial approxi-
mation coefficients. The solid line represents the value for the classification using
the unprocessed spectral information as feature vectors. Filled circles represent
results achieved using polynomial approximation coefficients.

Comparing the performance on datasets with and without artificial distor-
tion, we conclude that the distortion has no significant effect on performance
when the polynomial approximation is employed. However, the classification
performance with original spectra as input data, is significantly better for the
two datasets without offset (Wine and TecatorNO) than for their counterparts
retaining the offsets.

The combination of polynomial approximation and relevance learning is able
to suppress the influence of offsets. As shown in figure 3b and 3e the first polyno-
mial coefficient, which represents T0(x) = 1 and can therefore be understood as
the constant part of the spectrum, is virtually disregarded by GMLVQ as indi-
cated by a very low value of the corresponding diagonal element of the relevance
matrix. Thus, the classification performance for both dataset versions, with and
without offset, is nearly the same.

Another benefit of the polynomial approximation is an implicit denoising
and smoothing of the data, as can be seen in Figure 3c and 3f. Apart from the
(irrelevant) offset, the prototypes are almost identical. The significant smoothing

Workshop New Challenges in Neural Computation 2015

30 Machine Learning Reports

(a) (b) (c)

(d) (e) (f)

Fig. 3: Detailed comparison of one prototype for the Wine and WineRO dataset.
The top panels (a,b,c) belong to the Wine dataset, the bottom (d,e,f) to the
WineRO dataset. Left-hand panels (a,d) represent prototypes in space of poly-
nomial coefficients, center panels (b,e) represent the relevance profiles obtained
and the right-hand panels (c,f) represent the prototypes after retransformation
to original feature space.

caused by the polynomial approximation becomes evident when comparing the
prototypes to the input spectra in Figure 1.

5 Summary and Outlook

We presented a framework for reducing input dimensions for classification of
functional data, by applying polynomial approximation and performing classi-
fication in the space of the approximation coefficients. We considered two real
world spectral datasets, which were artificially distorted in order to illustrate
the advantages of the presented approach. The results show that for a suit-
able number of polynomial coefficients the resulting classification performance
is comparable or exceeds that for unprocessed data. In comparison to [11] using
Chebyshev polynomials as basis functions, the number of input dimensions was
more significantly decreased by up to 92%, thus drastically reducing the number
of parameters, the risk of over-fitting, convergence problems and computational
effort.

Furthermore, the robustness of the approach to offset distortion of the data
was demonstrated for both example datasets. In forthcoming studies we will
address the question whether this independence also holds for more complex
distortions, such as different scaling of data or the superposition of trends or

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 31

other more complex offsets. Moreover, the intermediate functional representation
of the data allows for a more convenient application of mathematical operations
such as derivatives, integration or root finding to preprocess the data. These
can be used to provide more complex descriptions of the underlying functions,
e.g. the number of roots/maxima or maximum slope, to generate even lower-
dimensional feature vectors, that can serve as classification input.

Acknowledgments. F. Melchert thanks for the support of an Ubbo-Emmius
Sandwich Scholarship from the Faculty of Mathematics and Natural Sciences,
University of Groningen.

References

1. Biehl, M.: A no-nonsense beginner’s tool for GMLVQ. Available online, University
of Groningen, http://www.cs.rug.nl/˜biehl

2. Biehl, M., Hammer, B., Villmann, T.: Distance measures for prototype based class-
fication. In: Grandinetti, L., Petkov, N., Lippert, T. (eds.) BrainComp 2013, Proc.
International Workshop on Brain-Inspired Computing, Cetraro/Italy, 2013. Lec-
ture Notes in Computer Science, vol. 8603, pp. 100–116. Springer (2014)

3. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun guide. Pafnuty Publ. (2014)
4. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2000)
5. Kästner, M., Hammer, B., Biehl, M., Villmann, T.: Generalized functional rele-

vance learning vector quantization. In: Verleysen, M. (ed.) Proc. Europ. Symp. on
Artificial Neural Networks (ESANN). pp. 93–98. d-side (2011)

6. Kohonen, T.: Self-organizing maps. Springer, Berlin (1995)
7. Krier, C., François, D., Rossi, F., Verleysen, M., et al.: Supervised variable clus-

tering for classification of nir spectra. In: Verleysen, M. (ed.) Proc. Europ. Symp.
on Artificial Neural Networks (ESANN). pp. 263–268. d-side (2009)

8. Melchert, F., Seiffert, U., Biehl, M.: Functional representation of prototypes in
LVQ and relevance learning. Preprint, submitted for publication (2016)

9. Meurens, P.M.: Wine mean infrared spectra dataset. University of Louvain,
http://mlg.info.ucl.ac.be/index.php?page=DataBases

10. Papari, G., Bunte, K., Biehl, M.: Waypoint averaging and step size control in
learning by gradient descent. Machine Learning Reports MLR-06/2011, 16 (2011)

11. Rossi, F., Conan-Guez, B., El Golli, A.: Clustering functional data with the SOM
algorithm. In: ESANN. pp. 305–312 (2004)

12. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in Learning
Vector Quantization. Neural Computation 21, 3532–3561 (2009)

13. Schneider, P., Biehl, M., Schleif, F.M., Hammer, B.: Advanced metric adaptation
in Generalized LVQ for classification of mass spectrometry data. In: Proc. 6th Intl.
Workshop on Self-Organizing-Maps (WSOM). Bielefeld University (2007), 5 pages

14. Strickert, M., Hammer, B., Villmann, T., Biehl, M.: Regularization and improved
interpretation of linear data mappings and adaptive distance measures. In: Com-
putational Intelligence and Data Mining (CIDM), 2013 IEEE Symposium on. pp.
10–17 (April 2013)

15. The Chebfun Developers: Chebfun - Numerical Computing with functions. Avail-
able online, University of Oxford, http://www.chebfun.org

16. Thodberg, H.H.: Tecator meat sample dataset. StatLib Datasets Archive,
http://lib.stat.cmu.edu/datasets/tecator

Workshop New Challenges in Neural Computation 2015

32 Machine Learning Reports

Dissimilarity Extraction in a Median Variant of
Learning Vector Quantization

D. Nebel and M. Kaden

Computational Intelligence Group,
University of Applied Sciences Mittweida, Germany

david.nebel@hs-mittweida.de

Abstract. Finding a suitable dissimilarity measure for a given classi-
fication problem is a challenging task. It can be very time consuming
to learn and validate a classifier for each prospective dissimilarity mea-
sure separately. We propose an interpretative classification framework
which is based on a linear combination of different dissimilarity mea-
sures. Evaluating the weights of this linear combination gives a hint of
the most suitable dissimilarity measure. For demonstration purposes we
integrate this linear combination into a median variant of the general-
ized learning vector quantization model. Further, we discuss aspects of
dissimilarity learning on a toy example.

1 Introduction

Classification of complex data is a sophisticated task. Recently, investigations
show that beside a good classification accuracy other properties of the classifier
might be of particular importance [1]. Thus, in many applications the model
complexity, the computational effort of (offline) training and (online) test as
well as the interpretability of the classification model play an important role.
Especially the latter aspect gains in importance in practical applications.

Distance and prototype based classification models, especially Learning Vec-
tor Quantizers (LVQ, [7]), are intuitive and mathematically proven methods.
Due to their practical success, a lot of extensions and modifications of the fun-
damental LVQ principle exist: Generalized LVQ (GLVQ, [14]), Robust Soft LVQ
(RSLVQ, [17]), Relational (RGLVQ, [4]) and Median GLVQ (MGLVQ, [12]).
While most LVQ models require the data to be presented in vectorial form,
MGLVQ drops this restriction. Since it is sufficient to provide dissimilarities
of all data samples, this method can be used with numerical as well as non-
numerical data, for example data with categorical or descriptive features. The
prototypes themselves correspond with representative data samples. This leads
to an intuitive and interpretable model.

Another interesting aspect of classification is the comparison of data objects.
A lot of different dissimilarity measures or distances exist. Yet, to find a suitable
dissimilarity measure for a given classification problem is a demanding task.
In [11] the authors apply a linear combination of different dissimilarity mea-
sures on standard GLVQ. The weights of each distance are obtained using the
stochastic gradient descent. This idea is adapted from GLVQ relevance learning
(GRLVQ,[5]), where the weights receptively the importance of the single features
of the data vectors are learned. Yet, in the approach proposed by [11] the sin-
gle dissimilarity measures have to be differentiable. We propose a more general

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 33

framework based on MGLVQ. To demonstrate the functionality, we apply the
new approach on a simple toy example and discuss critical aspects.

2 Dissimilarity Measures

Many classifiers use distances to compare data points. In this paper, we call a
dissimilarity measure a distance if it is a positive measure and the reflexivity
d(v,v) = 0 is fulfilled [13]. A common choice for comparing two vectors v,w ∈
RD is the (squared) Euclidean distance. Yet, in many practical applications the
Euclidean distance is not appropriate, e. g. for high dimensional spectral data.
A generalization is the lp-distance (Minkowski distance)

dlp(v,w) =

(D∑
i=1

(vi − wi)p
) 1
p

(1)

with p > 0. For p = 2 it is the Euclidean distance dE .
An extension of the standard squared Euclidean distance is the weighted

Euclidean distance

d2E(v,w, Λ) = (v−w)TΛ(v−w) (2)

with a matrix Λ ∈ RD×D. If Λ is a diagonal matrix the single dimensions are
scaled independently. Otherwise, if Λ is the inverse correlation matrix of the data
(Λ = Σ−1), (2) is called Mahalanobis distance.

Functional data is a special type of data where neighboring dimensions are
highly correlated. Examples are time series or spectra. Distances taking such
spatial information into account are the (p)-Sobolev-Distance or the functional
distance by Lee&Verleysen [9]. If additionally the data vectors are densities,
divergences might be an appropriate choice. For example the set of γ-divergences
and the sets of Bregmann- or Csiszar-f-divergences. Common for all divergence
families is the Kullback-Leibler-Divergence:

dKL(υ, ω) = −
D∑
i=1

vi · log

(
vi
wi

)
(3)

which can always be obtained for a particular parameter setting, e. g. for γ → 1
for the γ-Divergence.

Further, general dissimilarity measures are kernel distances. Kernels them-
selves are inner products of functional Hilbert spaces and therefore similarities.
To obtain a dissimilarity we easily perform the transformation [13]:

d2κ(v,w) = κ(v,v)− 2κ(v,w) + κ(w,w) . (4)

The most widely used kernel is the radial basis function kernel (RBF-Kernel)

κrbf (v,w) = exp−
dE(v,w)

2σ2 . (5)

Other examples are the linear kernel κlin =< x,w >E , where <>E denotes the
Euclidean inner product, or the sigmoid kernel (SGD-Kernel):

κsgd(v,w) = tanh(a · κlin + b) . (6)

Due to the nice theory behind them [16], kernel methods are widespread and
very popular in practical experiments.

Workshop New Challenges in Neural Computation 2015

34 Machine Learning Reports

In medical applications the Pearson correlation is often used to obtain a
suitable distance measure:

dcorr(v,w) =

∑D
i=1(vi − µv)(wi − µw)√∑D

i=1(vi − µv)2
√∑D

i=1(wi − µ2
w)

with µx =
1

D

D∑
i=1

. (7)

Beside data samples with numerical features, non-numerical data exists.
These data can be texts, musics, or the samples can include categorical and
descriptive features. Here, also a lot of distance measures are available. Exam-
ples are the Levenshtein-Distance for gene sequences [10] and the Kolmogorov-
Complexity for texts or other information based measures [8].

Moreover, a suitable distance measures might be a linear combination of a
set of M distances dk:

Dλ(v, w) =
M∑
k=1

λkdk(x,w) (8)

with positive weights λk.
The previously listed distance measures are only a small selection. If any

data set is given, the essential question is: Which dissimilarity measure should
we chose? This questions is data dependent and no general answer exists. In the
following section we extend the Median GLVQ to work with a linear combination
of different dissimilarity measures and which learn the weights of this linear
combination.

3 Generalized Learning Vector Quantization and a
Median Variant

Assume a classification problem with training samples v ∈ V ⊂ RD and their
class labels c(v) ∈ C. Further, a set of |W | prototypes wj ∈W ⊂ RD assigned to
class y(wj) ∈ C are given. Moreover, we define d+(v) = d(v,w+) as the smallest
distance between the data point v and the prototype w+ of the set of positive
prototypes W+ = {w|y(w) = c(v)}, i. e. all prototypes belonging to the same
class as data point v. Likewise, w− ∈ W− = {w|y(w) 6= c(v} is the nearest
prototype of another class than v with distance d−(v) = d(v,w−).

The GLVQ cost function is given as

CGLVQ =
∑
v∈V

f (µW (v)) (9)

with a monotonically increasing transfer function f and the classifier function

µW (v) =
d+(v)− d−(v)

d+(v) + d−(v)
(10)

[14]. Thereby, the term d+(v)− d−(v) describes the hypothesis margin and the
denominator of the classifier function limits the costs [3]. The transfer function
f might be the identical function f(x) = x or the sigmoid function fσ(x) =
1/(1 + exp(−σ · x)) with σ > 0. If the latter is chosen, (9) approximates the
classification error, i. e. for σ ↗∞ the cost function counts the misclassifications.

The minimization of the in general non-convex and non-linear cost function
(9) is usually done by stochastic gradient descent. Therefore, the cost function

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 35

has to be differentiable with respect to w± for a randomly chosen data point v.
The updates yield to

w± ← w± − α4w± (11)

with 4w± =
∂f(µW (v))

∂µW (v)
· ∂µW (v)

∂d±(v)
· ∂d

±(v)

∂w± (12)

and a learning rate 0 < α� 1.

After training, data point v is assigned to the class of the winner prototype
ws(v) determined by the winner-takes-all rule (WTA):

s(v) = argmin
j=1,...,|W |

d(v,wj) .

Since the prototypes are adapted gradually according to the update rule (12)
the dissimilarity measure d(v,w) has to be differentiable with respect to the
prototypes. Yet, in many applications the data samples are given with non-
numerical features or even only the dissimilarities between the data are known.
In such cases, the standard variant of GLVQ beeing based on vectorial data
samples and prototypes cannot be applied.

Median-GLVQ (MGLVQ) is a method to handle vectorial as well as non-
vectorial data objects v. Thereby, the prototypes wj are restricted to be data
samples v and only the dissimilarities d(v, wj) between the data samples are
required.

Analogously to the approach in [12], the GLVQ cost function (9) is translated
to a maximization problem

CMGLVQ = log

(∑
v

gW (v)

)
with gW (v) = f(−µW (v)) + 1 . (13)

The cost functions CGLVQ (9) and CMGLVQ (13) both have the same optima
parameter combination, i. e. the log-function influnces the value of the optimum
but not the choice of the optimal prototypes. The term +1 in gW (v) is added
due to numerical reasons to avoid critical values close to zero [12].

The optimization problem of (13) can be solved using the generalized Expec-
tation-Maximization-strategy (gEM) [2]. Therefore, an arbitrary density γ(v) is
introduced and the cost function (13) is decomposed into two terms [12]:

CLK =
∑
v∈V

(Lv(γ, gW)−Kv(γ, pW)) . (14)

The second term is the Kullback-Leibler-divergence (KL) of γ and the density

pW (v) =
gW (v)∑
v∈V gW (v)

(15)

and can be calculated as

Kv(γ, pW) = γ(v) log

(
pW (v)

γ(v)

)
. (16)

Workshop New Challenges in Neural Computation 2015

36 Machine Learning Reports

Further, we formally introduce

Lv(γ, gW) = γ(v) log

(
gW (v)

γ(v)

)
(17)

with L =
∑
v∈V
Lv(γ, gW) (18)

as the lower bound.
The optimization problem (14) can be interpreted as a maximum likelihood

problem [2], which can be solved by a variant of the gEM-approach [12]. It results
in the following steps:

MGLVQ-Algorithm:

1. Initialize W
2. E-step set γW (v)← pW (v) and therefore, it yields Kv(γ, pW) = 0
3. M-step fix γW (v) and determine a prototype set W such that the lower

bound L (18) is improved
4. if no new prototype set W is found in M-step: stop

else: go to E-step

In general, the MGLVQ ends up with an interpretative sparse classification
model. Experiments show that in many cases the requirement of the prototypes
to be data samples is not a significant restriction according to the classification
error [12].

4 Dissimilarity Learning in Median GLVQ

In section 2 it is pointed out that a lot of dissimilarity measures exist. To deter-
mine a suitable measure for a given classification problem is a tricky task.

We adapt the idea of [11] and integrate a linear combination of dis-
tances Dλ(v) in the MGLVQ. The cost function of the dissimilarity MGLVQ
(DMGLVQ) is identical to CMGLVQ (13), but the classifier function µW (v) de-
pends on the linear combinations:

µ̂W (v) =
D+
λ (v)−D−λ (v)

D+
λ (v) +D−λ (v)

with D±λ (v) =

M∑
k=1

λkd
±
k (v) . (19)

The optimization of the prototype assignments is analogously to MGLVQ. Yet,
a Metric-Step is added after the M-step in the MGLVQ-Algorithm. The Metric-
Steps optimize the weights λk for a given prototype set. Unfortunately, a direct
optimization of the non-convex and non-linear cost function is not possible.
However, applying the stochastic gradient descent yields a suitable solution.
The updates are:

λk ← λk + αλ 4λk

with 4λk =
∂f(µ̂W (v))

∂µ̂W (v)
·
(
∂µ̂W (v)

∂D+
λ (v)

· ∂D
+
λ (v)

∂λk
+
∂µ̂W (v)

∂D−
λ (v)

· ∂D
−
λ (v)

∂λk

)
=

∂f(µ̂W (v))

∂µ̂W (v)
· 4λk(
D+
λ (v) +D−

λ (v)
)2 · (D+

λ (v)(d−k (v))2 −D−
λ (v)(d−k (v))2

)

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 37

and 0 < αλ � 1. Note that we drop the log-function of the cost function to
determine the update-rules. Since the log-function is monotonically increasing,
it has no influence on the choice of the optimal prototypes.

Fortunately, the update of λ does not depend on the derivatives of the dis-
tances dk. Thus, we can apply the DMGLVQ still on non-vectorial data sets or
with non-differential dissimilarity measures.

5 Experiments

The toy data set consists of two two-dimensional Gaussian distributed overlap-
ping classes. The number of data points per class is 1000. We perform a 5-fold
cross-validation including a validation set, i. e. the data set is split in five folds
with three folds for training, one fold for test and one fold for validation. Over-
all, we end up with 20 runs. For all runs we provide one randomly initialized
prototype per class.

The following dissimilarity measures are chosen: Euclidean distance dE , l1-
distance dl1, RBF-Kernel d2κrbf with σ = [0.01, 1], Sigmoid kernel d2κsgd with
a = 0.01, b = 1, the Pearson correlation dcorr and a random symmetric matrix
with zeros on the diagonal dran. To obtain the same range of all distances, we
normalize each matrix by dividing by the maximum value of the matrix. The
corresponding dissimilarity matrices of the data samples are displayed in Fig. 1.

First, we run the MGLVQ and obtained a validation accuracy of around
86% for five of the seven distances measures (see Tab. 5). The RBF-kernel with
σ = 1 and obviously the random dissimilarity fail. Thus, five distances are able
to separate the data, i. e. separation information is included in five of the seven
dissimilarity matrices.

In the second step the DGMLVQ with a linear combination of the seven
dissimilarity measures is trained. The overall accuracy of 86.1% is similar to the
single accuracies. Hence, in this classification problem a linear combination does
not bring any benefit.

Interestingly, the correlation distance dcorr wins in the first run of DMGLVQ
since the mean weighting value is equal one (see Tab. 2). To get a ranking of
the applicability of the other distances, in the following steps we always dropped
the distance with the highest weighting value λk. Therefor in the second step
we dropped the Pearson correlation and run the DMGLVQ with a linear com-
bination of the remaining six distances. Now, the Euclidean distance as well as
the Sigmoid-Kernel distance are nearly weighted equally, i. e. λ2k = 0.493 for Eu-
clid and λ2k = 0.489 for the Sigmoid-Kernel distance. Due to the slightly higher
value of the Euclidean distance we dropped it and in the next run obviously
the SGD-Kernel wins. This way we continued to drop the SDG-Kernel distance,
the l1 distance and the RBF-Kernel distance with σ = 0.01 in the following
steps. Up to now the mean accuracies are only slightly decreasing. Finally, only
the RBF-Kernel with σ = 1 and the random matrix, leading to a random class
separation, are remaining. Thus, the DMGLVQ is doing its job well because the
trained models point out the suitable distances. Of course, this is only a little
toy example but it demonstrates the principle of metric extraction of this new
approach.

Workshop New Challenges in Neural Computation 2015

38 Machine Learning Reports

Fig. 1. Depicted are seven dissimilarity matrices of the data samples. The data samples
are sorted, i. e. the first 1000 samples belong to the first class and the others belong
to the second class. The structure of the dissimilarity matrices of dE , dl1, dκrbf with
σ = 0.01, dκsgd, and dcorr are very similar. The matrix of dκrbf with σ = 1 and the
random matrix have different structures.

MGLVQ DMGLVQ
distances dE dlp dκrbf dκsgd dcorr drand all

p = 1 σ = 0.01 σ = 1 a = 0.01, b = 1
accuracy 86.7% 84.5% 86.6% 72.7% 86.2% 86.4% 49.1% 86.1%
std dev. ±2.3% ±2.4% ±2.5% ±3.2% ±2.3% ±2.7% ±3.3% ±2.5%

Table 1. Mean accuracies with standard deviation of the MGLVQ for each dissimilarity
dk and the DMGLVQ applied on the linear combination Dλ of all seven dissimilarities.

steps λ2
k accuracy

dE dlp dκrbf dκsgd dcorr drand
p = 1 σ = 0.01 σ = 1 a = 0.01, b = 1

1 0.007 0 0 0 0 0.993 0 86.1% ± 2.5
2 0.493 0.02 0 0 0.489 - 0 85.7% ± 2.2
3 - 0.33 0 0 0.70 - 0 85.0% ± 2.5
4 - 1 0 0 - - 0 84.7% ± 1.2
5 - - 1 0 - - 0 83.7% ± 1.1
6 - - - 0.3 - - 0.7 50.6% ± 3.0

Table 2. Mean weighting values λ2
k and accuracies of the DMGLVQ for the different

runs removing the distance with the highest value λk by and by.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 39

6 Conclusion and Future Work

We demonstrate a way of distance learning in a median variant of GLVQ. Based
on several dissimilarity matrices of the data points, we propose an approach
to learn the weights of each dissimilarity measures influencing the classification
task. The weights directly correspond to the importance respectively suitability if
the distance measure. Due to the restriction that the prototypes are data points,
the resulting model is interpretable independently of the distance measure. A
first toy example demonstrates the functionality of the novel method.

Future work should include the application on a real world data set with a
detailed analysis of the result. Like in [6] or [11] a linear combination of different
distances might bring an improvement.

Furthermore, investigations to the training of a classification correlation ma-
trix known from the Generalized Matrix Learning Vector Quantization [15] is
ongoing and results have to be analyzed.

References

1. A. Backhaus and U. Seiffert. Classification in high-dimensional spectral data:
Accuracy vs. interpretability vs. model size. Neurocomputing, 131:15–22, 2014.

2. C. M. Bishop. Pattern Regognotion and Machine Learning. Springer, 2006.
3. K. Crammer, R. Gilad-Bachrach, A.Navot, and A.Tishby. Margin analysis of the

LVQ algorithm. In S. Becker, S. Thrun, and K. Obermayer, editors, NIPS 2002,
volume 15, pages 462–469, Cambridge, MA, 2003. MIT Press.

4. B. Hammer, D. Hofmann, F. Schleif, and X. Zhu. Learning vector quantization for
(dis-)similarities. Neurocomputing, 131:43–51, 2014.

5. B. Hammer and T. Villmann. Generalized relevance learning vector quantization.
Neural Networks, 15:1059–1068, 2002.

6. U. Knauer, A. Backhaus, and U. Seiffert. Fusion trees for fast and accurate classifi-
cation of hyperspectral data with ensembles of γ-divergence-based RBF networks.
Neural Computing and Applications, 26(2):253–262, 2015.

7. T. Kohonen. Learning vector quantization for pattern recognition. Technical Re-
port, TKK-F-A601, 1986. Helsinski Universtiy of Technology.

8. A. Kolmogorov. On tables of random numbers. Sankhya: The Indian Journal of
Statistics. Ser. A, 25:369–375, 1963.

9. L. Lee and M. Verleysen. Generalization of the lp norm for times series and its
application to self-organizing maps. In M. Corrtell, editor, Proc. of Workshop on
Self-Organizing Maps (WSOM), pages 733–740, Paris, Sorbonne, 2005.

10. V. Levenshtein. Binary codes capable of correcting deletions, insertions, and re-
versals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.

11. E. Mwebaze, G. Bearda, M. Biehl, and D. Zühlke. Combining dissimilarity mea-
sures for prototype-based classification. In 23rd European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, 2015.

12. D. Nebel, B. Hammer, and T. Villmann. A median variant of generalized learning
vector quantization. In ICONIP 2013, pages 19–26, 2013.

13. E. Pekalska and R. P. Duin. The Dissimilarity Representation for Pattern Recogni-
tion. Foundations and Applications. World Scientific, Singapore, December 2005.

14. A. Sato and K. Yamada. Generalized learning vector quantization. In H. M.
Touretzky DS, Mozer MC, editor, Advances in neural information processing sys-
tems, volume 8, pages 423–429. MIT Press, Cambridge, 1996.

15. P. Schneider, B. Hammer, and M. Biehl. Distance learning in discriminative vector
quantization. Neural Computation, 21:2942–2969, 2009.

16. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.
17. S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation,

15:1589–1604, 2003.

Workshop New Challenges in Neural Computation 2015

40 Machine Learning Reports

Towards Dimensionality Reduction
for Smart Home Sensor Data

Bassam Mokbel, Alexander Schulz

Bielefeld University, CITEC Center of Excellence
Bielefeld, Germany

{bmokbel|aschulz}@techfak.uni-bielefeld.de

Abstract. In this paper1, we investigate in how far nonlinear dimensionality reduction
(DR) techniques can be utilized to tackle particular challenges of sensor data from smart
home environments. Smart homes often contain a large number of sensors of various types,
providing output in real time, which results in a sequence of high-dimensional, heteroge-
neous data vectors. We propose that DR techniques can provide a truthful low-dimensional
representation (i.e. a compression) of this kind of data, together with a corresponding re-
construction (i.e. decompression). This yields an automatic fusion of uncoordinated raw
sensor signals, as well as an economical storage format, with a certain robustness against
sensor failure. In proof-of-concept experiments, we present first empirical results to test
our approach based on real-world data.

1 Introduction

Motivation In recent years, the topic of smart homes gained major attention in the electronics
and electrical appliances industry. The term describes environments, in which a collection of
different sensors and individual devices are utilized for home automation, for assisted living in
healthcare situations, or other interactive home scenarios to provide convenience and intelligent
assistance in everyday life. In this context, efficient data mining and machine learning algorithms
play a prominent role, in order to adapt these systems to the inhabitants and their environment,
based on given sensor data. For example, smart devices may learn the daily habits of a user, and
infer rules to detect the corresponding living situations automatically.

Data in smart home environments are typically characterized by temporal streams of het-
erogeneous, high-dimensional sensor readings as well as preprocessed sensor evaluations, e.g.
temperature sensors, motion sensors, or cameras providing face detection and the location of
inhabitants. In this context, we expect the following challenges for machine learning:

(I) High-dimensional data Given the increasing ubiquity and precision of sensors, together with
the limited memory capacity in typical home automation devices, it becomes challenging to
analyze the output of all available sensors at once, and to store a sufficient amount of historical
data in order to apprehend an adequate temporal context for analysis tasks.

(II) Heterogeneous data At the same time, the large variety in the output data from different
sensor types typically requires hand-tuning and expert knowledge to set up a successful
machine learning system for the given data. Thereby, raw sensor readings are preprocessed

1 Funding from DFG under grant number HA2719/7-1 and by the Cluster of Excellence Cognitive
Interaction Technology ‘CITEC’ (EXC 277) at Bielefeld University is gratefully acknowledged.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 41

and meaningfully represented in accordance with other sensor output. It would be beneficial
to avoid costly human effort for such problem-specific adaptations.

(III) Uncoordinated sensors Similarly, it can be expected that the available collection of sensors
and sensor modalities is very diverse in general, and may even be flexible over time: home
environments are different in shape and size, so the technical configuration will also vary,
while sensors may dynamically change or possibly fail. Therefore, a hand-crafted organization
of sensors to gain higher-level abstract data representations seems no longer appropriate.
Rather, machine learning techniques will have to deal with loose collections of sensors, which
provide individual local views of the environment and may yield missing values.

Nonlinear dimensionality reduction Regarding these three challenges, the aspect of ‘high-
dimensional data’ can be addressed directly by dimensionality reduction (DR) techniques: With
a large collection of sensors available in a smart home, it is expectable that several signals will be
correlated, and the intrinsic dimensionality is actually lower than the number of sensor outputs.
Therefore, DR is a promising tool to establish a low-dimensional representation from the original
sensor data, which is easier to handle in terms of storage space and complexity for data analysis
and machine learning algorithms.

DR has been an emergent research topic over the last decade, with successful applications in
a variety of scientific and industrial fields, especially for nonlinear DR methods. Recent advances
include novel acceleration techniques for big data sets [11,4], as well as principled evaluation
and parameterization approaches [7,6]. Hence, there are many DR algorithms readily available,
see [8,12] for overviews. Some existing work in the literature demonstrates the general benefit of
DR also in the context of sensor data: for example, linear DR [13], and sparse coding techniques [1]
were used to achieve compressed representations from sensor signals.

However, given the heterogeneous characteristics of sensor data in smart homes, as described
in our challenge (II), we can expect that correlations are usually not linear. Therefore, linear DR
may fail to capture the relevant information in the data, unless problem-specific preprocessing
steps (including nonlinear transformations) are established by human experts. Hence, we believe
that nonlinear DR techniques would be more appropriate, which has not yet been sufficiently
investigated in current literature.

There exist successful applications of manifold-based nonlinear DR techniques like the self-
organizing map (SOM) [2] or Isomap [5] for spatio-temporal sensor data. However, those ap-
proaches realize a rather restrictive embedding: while the SOM depends heavily on the a-priori
choice of a lattice structure for the embedded points, Isomap requires an appropriate neighbor-
hood graph in the original data space. This makes both methods less flexible w.r.t. unseen data.
Regarding challenges (II) and (III), we believe that the generalization ability of a DR embedding
is a key ingredient for treating smart home data, and should be investigated further. Modern
high-performance nonlinear DR techniques have proven to be successful in terms of generalization
for biological data, see [3]. Therefore, these approaches seem like a viable alternative to tackle
the challenges of smart home data. In this contribution, we present first empirical results by test-
ing the t-SNE [12] method in particular, together with a recent extension by a kernel mapping
approach [4], using a small data set of raw sensor signals for proof-of-concept experiments.

2 Dimensionality reduction for smart home data
The goal of DR is to find low-dimensional (low-D) vectors {y1, . . . ,yN} = Y ⊂ RL, which resem-
ble the structure of the original high-dimensional (high-D) data set {x1, . . . ,xN} = X ⊂ RH .

Workshop New Challenges in Neural Computation 2015

42 Machine Learning Reports

The dimensionality L of the embedding space RL is defined a priori by the user, and is often cho-
sen as 2 or 3 for the benefit of visualizing the embedded points in a scatter plot. Many nonlinear
DR techniques optimize the low-D vector locations such that their neighborhoods resemble the
neighborhood structure in the original data w.r.t. certain criteria of distance preservation. If the
data’s intrinsic dimensionality is higher than L, not all pairwise distances between the data can
be represented accurately in the embedding, and a certain loss of information is inevitable. To as-
sess how truthful a given embedding represents the original high-D data, there exist independent
quality criteria to evaluate the reliability of their low-D counterparts, see e.g. [9,10].

Typically, nonlinear DR methods emphasize the preservation of local neighborhoods in fa-
vor over a faithful reproduction of larger distances. In this work, we use the well-established
nonlinear DR technique t-distributed stochastic neighbor embedding (t-SNE) [12], which aims to
minimize the discrepancy between neighborhood probability distributions in the original, and
the embedding space, as measured by the Kullback-Leibler divergence. The approximate size of
the considered neighborhood can be controlled explicitly via the perplexity parameter in t-SNE.
One limitation of t-SNE (and most other nonlinear DR techniques) is that the embedding Y is
obtained by an optimization procedure based on the given data X, but there is no functional
form available for the mapping. In case of time series as they occur in smart homes, this has
certain downsides: On the one hand, we require an explicit function to add unseen data (e.g.
incoming sensor readings) seamlessly to the existing low-D representation of previous data, i.e.
an embedding function of the form f : RH → RL with xi 7−→ f(xi) = yi for all i = {1, . . . , N}.
On the other hand, we may see the embedding as a compressed data representation, which al-
lows us to store and handle all yi as a compact alternative to xi. Hence, we also demand a
corresponding ‘decompression’ function, by which we can reproduce original sensor signals from
their low-dimensional counterparts, i.e. an inverse mapping g : RL → RH which approximately
recovers high-D points x̃i ∈ RH with yi 7−→ g(yi) = x̃i ≈ xi for all i = {1, . . . , N}.

To achieve these desired properties, we refer to a recent extension called kernel t-SNE [4].
This method uses the original high-D points together with their low-D counterparts embedded
by the regular t-SNE, and establishes a mapping between the two via regression. Therefore, a
generalized linear mapping is assumed, with parameters α and an appropriate basis function, in
our case a normalized Gaussian kernel of bandwidth σ, see [4] for details. This addresses both of
our requirements. On the one hand, we can train the kernel mapping to establish an embedding
function f(x) = y for unseen data x. On the other hand, we can obtain an inverse function
g(yi) = x̃i ≈ xi for reconstructing high-D points from low-D inputs, by using the same learning
scheme in the opposite manner: the kernel mapping is then trained for given low-D vectors with
their high-D counterparts as regression targets.

3 Experimental evaluation

Application background & technical setting In our experiments, we use real world sensor
data from “The Cognitive Service Robotics Apartment as Ambient Host” project (CSRA) at
the CITEC research facility in Bielefeld, Germany. The CSRA project involves an intelligent
apartment for research purposes, where multiple sensors constantly monitor various conditions
of the environment, as well as human interactions in each room. The apartment consist of a living
room with an adjacent kitchen area, a small entrance hallway, and a fitness room, each holding
appropriate furniture and home appliances. Details can be found on the project’s website2.

2 http://cit-ec.de/en/content/cognitive-service-robotics-apartment-ambient-host

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 43

We are addressing two modalities of sensor readings, both producing multi-dimensional data
streams in real-time. With a rather small dimensionality and limited complexity of this data,
we are not covering all three challenges from Section 1 to the full extent with our experiments.
However, we believe that the data represents all three aspects to some degree, and our results
may serve as a first proof-of-concept.

In the first modality, we use 3-dimensional person tracking data from three different overhead
camera systems: These depth-image cameras are installed in the ceiling at the entrance, the
kitchen, and the living room. Each camera preprocesses the depth image to yield a person location
hypothesis in its local 3D coordinate system, whenever a person is detected in the camera’s field
of view. Since the fields of view of adjacent cameras are overlapping, a person hypothesis may
be present in several local coordinate systems at a time, in case a user is moving through the
overlapping areas. Note, that these depth cameras are low-cost devices similar to the Microsoft
Kinect model, which seems realistic for person tracking in future home automation systems.
Additionally, the fact that the cameras yield separate local tracking results (rather than unified
spatio-temporal data in a global coordinate system) is in line with our premise of ‘uncoordinated
sensors’ from Section 1. From all three cameras with individual 3D coordinate systems, we gain
9 real-valued data dimensions in each time step.

The second modality comes from a SensFloor R⃝ tactile floor mat, which is installed on the
kitchen ground. It yields continuous pressure levels for 8 individual segments which are evenly
partitioned in a clockwise fashion. Like in the case of a single camera, we can expect changing
values only when a person is moving in the kitchen area. With these 8 pressure sensors, and the
9-dimensional data from person tracking, we are addressing 17 real-valued data dimensions in
total. Since the distribution and correlation of values in the pressure sensors are much different
from the camera tracking output, our scenario involves the challenge of ‘heterogeneous data’.

In the following, we will address three distinct research problems in the context of smart home
data, which relate to the challenges in Section 1. For each problem, we will present experimental
results from our described setting. The data for our experiments consist of two sequences, in
which a single person walks through the apartment in an exploratory manner. The duration of
Sequence A is 86 seconds, while Sequence B lasts 50 seconds. In both sequences, the person enters
the field of view of every camera at least once, and is walking over the tactile floor panels briefly.

Each sequence is a time series (x1, . . . ,xN) of 17-dimensional vectors xi ∈ RH=17. Every
vector represents the sensor values provided within a 50 millisecond time frame. We applied
only general, fairly simple preprocessing steps, which are not specific to the given scenario or
sensor characteristics: If a sensor provides missing values (e.g. when a camera does not detect any
person), we continue to write the last known values in the subsequent vectors for each following
time step, until the sensor delivers values again. Next, every vector, where no change to its
predecessor is observed, was removed from the sequence, in order to avoid many zero distances
between distinct data points. To avoid strong discontinuities between subsequent vectors, we
additionally smoothed3 the time series by setting each vector entry [xi]d to the mean value of
corresponding entries in a window of 10 predecessors and successors. (This translates to 1 second
in the original time series, if no steps were removed from the sequence.) Lastly, we used a z-score
transformation for the whole sequence to balance the numeric representation of all dimensions.

3 Note that this common preprocessing step is not problem-specific. However, it is necessary, since
discontinuities in the data can lead to clustered low-D representations (in our case due to the pressure
sensors in particular). This would yield an insufficient basis for training robust kernel mappings.

Workshop New Challenges in Neural Computation 2015

44 Machine Learning Reports

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5

Sequence A, Kitchen Camera

1 0 0
1 0 1
1 1 0
1 1 1

(a) Sequence A

1.5

2

2.5

3

3.5

4

0.5 1 1.5 2 2.5

Sequence B, Kitchen Camera

1 0 0
1 0 1
1 1 0
1 1 1

(b) Sequence B

Fig. 1: Top-down view of the person tracking coordinates from the kitchen camera. The symbols
indicate which of the three cameras is tracking the person at that time point.

As an example, the person tracking results from the kitchen camera are displayed in a top-
down4 plot in Figure 1. A line connects the points in the order of their temporal progression.
The symbolic labels indicate whether each of the three cameras is tracking the person at that
time: the binary code signifies the tracking status of the first camera (in the kitchen), the second
(in the living room), and the third (in the entrance area), e.g. “1 0 1” means that the kitchen
camera is tracking the person, while the camera in the living room is not tracking, and the
entrance camera is tracking as well5.

Problem 1 – low-dimensional representation Our first question is, whether we can obtain
a reliable low-dimensional representation of the time series data, without a problem-specific
preprocessing of the given sensor signals. Specifically, can we observe a rather smooth temporal
trajectory in the embedding, despite the given heterogeneous multi-dimensional sensor data?
This relates mainly to challenge (II) from Section 1.

We applied the t-SNE method with a target dimensionality of L = 3, for both given sequences
A and B. Our assumption is that a 3-dimensional embedding can represent the original data
rather truthfully, since only a single person is moving through the spatio-temporal sensor system.
Since t-SNE relies on a non-convex optimization starting from a random initialization, we ran
the method several times and evaluated the reliability of every embedding in terms of the quality
criterion QNX, as proposed in [9]. Additionally, we evaluated the quality index Qxi

NX for every
single point, as proposed in [10], which yields the ratio of preserved neighbors in a point’s k-
neighborhood. We chose the best respective 3D embedding in terms of this evaluation; the result
for each sequence is presented in Figure 2.

In both embeddings, we can see that the time series is represented as a rather smooth tra-
jectory, with only a few positions where the sequence is torn apart. The average quality Qxi

NX
over all points is 91.6% for A and 91.9% for B, in a k = 10 neighborhood. This substantiates our
positive visual assessment. From these results, we can conclude, that DR can actually produce

4 Note that the tracking data is in fact 3D, however, the depth values follow a standard pattern of
decreasing with the distance to the camera’s center, and are thus omitted in this top-down perspective.

5 Since we display the particular field of view of the kitchen camera in Figure 1, the first bit of the
points’ labels is always 1 in these plots.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 45

Sequence A, t−SNE embedding

0 0 0
0 0 1
0 1 0
1 0 0
1 0 1
1 1 0
1 1 1

(a) Sequence A

Sequence B, t−SNE embedding

0 0 0
0 0 1
0 1 0
1 0 0
1 0 1
1 1 0
1 1 1

(b) Sequence B

Fig. 2: 3D embedding obtained by the t-SNE method for both 17-dimensional sequences. The
colored symbols indicate which of the three cameras is tracking the person at that time. The
temporal progression of the sequence is mostly captured by a smooth trajectory in 3D.

a fairly accurate 3D embedding of the 17-dimensional original sensor data, even without hand-
crafted preprocessing steps. The low-D representation yields a homogeneous representation of
heterogeneous sensor signals.

Problem 2 – explicit parametric mapping & inverse Is it possible to obtain an explicit
embedding function, which generalizes to unseen data, as well as an inverse mapping, which
allows for an approximate reconstruction of the original sensor signals from the compressed low-
dimensional representation? This relates mainly to challenge (I) from Section 1, since it would
enable a compression and reconstruction of high-D sensor signals for more efficient storage and
handling, without too much loss of information.

With the kernel t-SNE method, we now train a kernel mapping f based on the embeddings
in Figure 2. To measure the discrepancy between the original embedding and the result of our
trained mapping function, we can simply calculate the mean squared error (MSE) between both
sets of vectors. We evaluate the generalization ability by averaging the training and test errors for
random splits of the data over a 5-fold cross-validation with 10 repeats. After meta-parameters
have been adjusted to the given data, an acceptable average error for both embedded sequences
was observed, although with rather high standard deviations (std.): For Sequence A, we achieved
a mean MSE of 9.5 (0.5 std.) on the training, and 31.1 (11.2 std.) on the test set. For Sequence
B, the errors were generally lower with a mean MSE of 1.4 (1.2 std.) on the training, and 10.4
(2.0 std.) on the test set. From the experiment, we observed that the kernel mapping was often
not able to capture the few discontinuous parts of the embedded trajectory. The other parts were
reproduced more truthfully by the learned mapping. However, the training behavior in general
tended to overfit. This may be due to the fact that the input data contains many degrees of
freedom which are mapped to considerably less variables in the output.

Instead, training an inverse mapping function g was much easier in the experiments. We again
used a repreated 5-fold cross-validation, which resulted in very low errors in general. The mean
MSE for Sequence A was 0.007 (0.001 std.) on the training, and 0.017 (0.005 std.) on the test set.

Workshop New Challenges in Neural Computation 2015

46 Machine Learning Reports

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3

Sequence A, Kitchen Camera Reconstruction

(a) Sequence A

1.5

2

2.5

3

3.5

4

0.5 1 1.5 2 2.5

Sequence B, Kitchen Camera Reconstruction

(b) Sequence B

Fig. 3: The original person tracking data from the kitchen camera (the thin black line), together
with the reconstruction (the red dashed line) based on a 3D embedding of the respective 17-
dimensional sequence.

For Sequence B, we achieved 0.037 (0.006 std.) MSE on the training, and 0.741 (0.883 std.) on the
test set. We can exemplify these very good results by visualizing the respective reconstructions
of the person tracking data from Figure 1: In the Figure 3, we show the original person tracking
from the kitchen camera, together with its reconstruction via the inverse mapping function for
both sequences. In each case, the original trajectory is resembled rather smoothly, which verifies
our quantitative evaluation showing very high performance on the test set.

We can conclude that training an accurate forward mapping function f(xi) is harder than
training the inverse mapping g(yi). Therefore, the idea of using a DR technique for compressing
sensor signals can be a viable option to handle smart home data efficiently, since we are able to
reconstruct the approximate original signals via a trained kernel mapping g(yi). However, the
idea to use a kernel mapping f(x) to extend the DR embedding to unseen data seems less robust
with the techniques we applied, and needs further refinement.

Problem 3 – robustness against sensor failure Can we utilize the learned embedding
f(x) and reconstruction function g(yi) to fill missing sensor readings with plausible values? This
relates to challenge (III) from Section 1, since it would signify that the compressed representation
is robust in a dynamically changing technical environment.

Therefore, we chose an arbitrary 30% time window in Sequence B, and manipulated the
original data by filling one dimension with erroneous values. We replaced the y-coordinate of the
entrance camera in that time frame with values that simulate a failing sensor: small Gaussian
noise around the average output of the y-coordinate over the given sequence. Figure 4a shows
the manipulated camera data. We then used the previously trained mapping f to embed these
erroneous data vectors in 3D, and applied the trained inverse function g to reconstruct the original
sensor signals. The result showed the interesting effect of reconstructing the original trajectory
nearly perfectly, see Figure 4b. Hence, the trained kernel mappings seem robust against local
failures of single sensors, and can help to fill missing values in dynamic sensor environments.

Conclusion Our preliminary results show, that modern nonlinear DR techniques offer promising
features to tackle the challenges of smart home sensor data. Trained kernel mappings are able
to capture the characteristics of our example data and did generalize well. Our ongoing research
will include a comparative study with other DR methods (e.g. sparse coding).

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 47

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Sequence B, Entrance Camera, partly missing the y coordinate

0 0 1
1 0 1
1 1 1

(a) erroneous tracking data

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Sequence B, Entrance Camera, reconstructed missing parts

original
failure
reconstruction

(b) reconstructed tracking data

Fig. 4: Top-down plots of the person tracking data from the entrance camera in Sequence B,
where parts of the y-coordinate were replaced by its mean value to simulate a sensor failure.
On the left, the manipulated input data is shown, where the noisy/failing part is highlighted in
cyan and the original trajectory is the black line. On the right, the kernel mapping was used to
successfully reconstruct the original tracking data, where the reconstruction is drawn in green.

References

1. R. Calderbank, S. Jafarpour, and R. Schapire. Compressed learning: Universal sparse dimensionality
reduction and learning in the measurement domain. Technical report, 2009.

2. E. Catterall, K. Van Laerhoven, and M. Strohbach. Self-organization in ad hoc sensor networks:
An empirical study. In Proceedings of the Eighth International Conference on Artificial Life, ICAL
2003, pages 260–263, Cambridge, MA, USA, 2003. MIT Press.

3. A. Gisbrecht, B. Hammer, B. Mokbel, and A. Sczyrba. Nonlinear dimensionality reduction for cluster
identification in metagenomic samples. In IV 2013, pages 174–179, 2013.

4. A. Gisbrecht, A. Schulz, and B. Hammer. Parametric nonlinear dimensionality reduction using kernel
t-sne. Neurocomputing, 147:71–82, 2015.

5. O. C. Jenkins and M. J. Matarić. A spatio-temporal extension to isomap nonlinear dimension
reduction. In Proceedings of the Twenty-first International Conference on Machine Learning, ICML
’04, pages 56–, New York, NY, USA, 2004. ACM.

6. J. A. Lee, D. H. Peluffo-Ordóñez, and M. Verleysen. Multiscale stochastic neighbor embedding:
Towards parameter-free dimensionality reduction. In ESANN 2014, 2014.

7. J. A. Lee, E. Renard, G. Bernard, P. Dupont, and M. Verleysen. Type 1 and 2 mixtures of Kullback-
Leibler divergences as cost functions in dimensionality reduction based on similarity preservation.
Neurocomputing, 112:92–108, July 2013.

8. J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, 2007.
9. J. A. Lee and M. Verleysen. Quality assessment of dimensionality reduction: Rank-based criteria.

Neurocomput., 72(7-9):1431–1443, 2009.
10. B. Mokbel, W. Lueks, A. Gisbrecht, and B. Hammer. Visualizing the quality of dimensionality

reduction. Neurocomputing, 112:109–123, 2013.
11. L. van der Maaten. Accelerating t-SNE using tree-based algorithms. Journal of Machine Learning

Research, 15:3221–3245, 2014.
12. L. van der Maaten and G. Hinton. Visualizing high-dimensional data using t-SNE. Journal of

Machine Learning Research, 9:2579–2605, November 2008.
13. Y. Zhu, E. Song, J. Zhou, and Z. You. Optimal dimensionality reduction of sensor data in multisensor

estimation fusion. Signal Processing, IEEE Transactions on, 53(5):1631–1639, May 2005.

Workshop New Challenges in Neural Computation 2015

48 Machine Learning Reports

Impact of Regularization on the Model Space for
Time Series Classification

Witali Aswolinskiy, René Felix Reinhart and Jochen Steil

Research Institute for Cognition and Robotics - CoR-Lab
Universitätsstraße 25, 33615 Bielefeld, Germany

{waswolinskiy,freinhart,jsteil}@cor-lab.uni-bielefeld.de

http://www.springer.com/lncs

Abstract. Time series classification is an active research field and ap-
plicable in many domains, e.g. speech and gesture recognition. A recent
approach to classify time series is based on modelling each time series by
an Echo State Network and then to classify the time series in the readout
weight or model space of these networks. In this paper, we investigate
the effect of Echo State Network regularization on the model space. The
results show that regularization has a strong impact on the model space
structure and the separability of the time series in the model space.

Keywords: model space, echo state networks, reservoir computing, time
series classification, time series clustering, regularization

1 Introduction

In time series classification, a label is assigned to a sequence of data points.
One main challenge is that the time series can have different lengths. A recent
approach is learning in the model space: For each time series a model is trained
and the model’s parameters are used as features in a consecutive classification
stage [2]. Typically, the models are trained to minimize the one-step-ahead pre-
diction error on the time series. The number of model parameters is independent
of the time series length, which allows to employ any feature based classifier from
machine learning theory in the classification stage.

Echo State Networks (ESNs) [5] are promising candidates for models in this
context, because they offer temporal integration of the input, nonlinear compu-
tation and quick training. Learning in the model space of ESNs was evaluated
for time series classification [2] and clustering [3] with promising results. Here,
we investigate the influence of regularization during training of ESNs on classi-
fication performance and model space structure.

Regularization is a technique to reduce model complexity in order to prevent
overfitting and comes in the context of ESNs often in form of ridge regression.
In ridge regression not only the sum of squared residuals is minimized, but
also the sum of the squared regression coefficients. This shrinks the coefficients
and thereby reduces their variance. Without regularization, and non-orthogonal
data vectors, the coefficients can have a large magnitude and be unstable - minor

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 49

changes in the data can lead to major changes of the coefficients [4, 10]. This is
especially important in the context of learning in the model space, where these
coefficients form the model space. For a better understanding of the model space
we investigate the effects of different forms of regularization on the model space.
We show that L2 but not L1 regularization achieves good classification results,
and that the modelling error is not necessarily predictive for the classification
performance in the model space.

2 Learning in the Model Space of Echo State Networks

A classic ESN architecture consists of a reservoir with recurrently connected
neurons and a linear regression readout. The reservoir states x and the readouts
y are updated according to

x(k+1) = (1 − λ)x(k) + λf(W recx(k) + W inu(k+1)) (1)

y(k) = W outx(k), (2)

where λ is the leak rate, f is the activation function, e.g. tangens hyperbolicus,
Wrec the recurrent weight matrix, Win the weight matrix from the inputs to
the neurons and Wout the weight matrix from the neurons to the readouts y.
Only Wout is trained with linear regression - the other weights are initialized
randomly and remain fixed.

For classification with ESNs, input time series are fed into the reservoir and
the readout is typically trained on the reservoir states with linear regression to
predict the class label for each step of the time series. In contrast, in learning in
the model space of ESNs, the ESNs are an intermediate step to create a time-
independent representation of the time series. Let a dataset consist of N discrete
time series ui, i = 1...N with varying lengths Ki: ui(0), ...,ui(k), ...,ui(Ki). For
each time series ui, an ESN is trained to predict from the previous step ui(k)
the next step ui(k+1) in the time series. The ESNs are trained independently,
but share the same reservoir parameters Win and Wrec in order to create a
coherent model space. The prediction error

E(W out
i) =

1

Ki

Ki∑
k=1

(ui(k) −W out
i xi(k))2 + α

∥∥W out
i

∥∥
L

(3)

for time series i is minimized, where α is the regularization strength and L is the
regularization norm. The resulting readout weights W out

i form the model space,
where the classification takes place.

In the model space, arbitrary classification algorithms can be used. This
approach will be denoted here as model space learning (MSL) and is visualized
in Fig. 1. The example shows the transformation of the data - here noisy sum of
sine waves - via regression on the reservoir activations to the readout weights.
In this example, the time series and hence the reservoir activations are 100 steps
long. The dimensionality of the model space depends on the dimensionality of

Workshop New Challenges in Neural Computation 2015

50 Machine Learning Reports

Fig. 1. Learning in the Model Space of ESNs. In the upper part of the diagram, noisy
sine waves are shown, which are fed into the reservoir. For each time series a readout
is trained to predict the next input. In the lower part of the diagram, the time series,
the reservoir echos and the readout weights are visualized with matching colors. The
signal, reservoir activation and readout weight matrices were projected to a plane using
PCA. In the model space, the time series of different classes are easily separable.

the signal and the number of reservoir neurons. For signals with d dimensions
and reservoirs with n neurons the model space dimensionality is d ·n or d ·(n+1)
if a regression intercept is used. For comparison, in the lower part of Fig. 1, each
time series is represented as a point in signal space, reservoir space (the space
of reservoir neuron activations) and model space. For visualization purposes,
the data was projected to two dimensions via principal component analysis. In
this example, time series from different classes can be easily separated in the
model space.

3 Effect of Regularization on the Model Space

In MSL regularization can occur at two stages. First, while training the ESN
models and second, while training a classifier in the model space where the ESN

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 51

readout weights serve as features. Here, we focus on the effect of regularizing
the ESN readout weights W out. The regularization strength for ESN training is
given by α in Eq.(3).

3.1 L2 and L1 Regularization

In L2-regularization or ridge regression the sum of squared residuals is mini-
mized. In L1-regularization or Lasso regression the magnitude of the weights is
minimized [9]. This results in a more sparse weight distribution. We evaluated
the effect of regularization in the ESN on the model space on two multivari-
ate datasets from the the UCI repository [7]. Since a direct analysis of model
space properties is difficult, we assess the model space structure indirectly by
evaluating pattern separability in the classification stage.

The Australian Sign Language Signs (AUSLAN) dataset consists of 2565
samples (27 repetitions x 95 signs), recorded from a native signer using hand
position trackers. The sequences are between 45 and 136 steps long and have 22
input dimensions.

The Spoken Arabic Digit (SAD) dataset [6] consists of 8800 samples (10
digits x 10 repetitions x 88 speakers) with 13 input dimensions - Mel Frequency
Cepstral Coefficients (MFCCs). The sequences are between 4 to 93 steps long.

Classification error rates were obtained via five times repeated random sub-
sampling, also known as Monte Carlo cross validation [8]. In the AUSLAN
dataset, from the 2565 samples, in each fold, 600 randomly selected samples
were used for training and the rest for testing. In the SAD dataset the split was
half-and-half.

After transforming the time series to model parameters by training the ESNs,
in the model space, two classifiers were evaluated: Ridge classifier and support
vector machine (SVM) with radial basis function kernel. The ridge classifier is a
linear classifier trained with ridge regression: The K class labels are encoded in
a 1-of-K scheme and the regressed scores transformed to estimated class labels
with the winner-takes-all method. Since the random initialization of the reservoir
weights Win and Wrec affects the performance, only the results of the best out
of five reservoirs were used. In order to mitigate the influence of the classifier
parameters on the model space analysis, for each α value and classifier, several
classifier parameter values were evaluated and from these evaluations the lowest
error rate was chosen. The used ESN and classifier parameters are listed in
the Appendix.

L2 Regularization: The classification error rates for the datasets at different
regularization strengths are depicted in Fig. 2 (A,B). The diagram can be divided
in three areas: Overfitting on the left, underfitting on the right and the lowest
error rates in the middle. Interestingly, the SVM classifier does not achieve lower
error rates than the linear ridge classifier. This suggests, that the considered
classification tasks can be solved linearly in the model space.

Workshop New Challenges in Neural Computation 2015

52 Machine Learning Reports

Fig. 2. Classification error rates in the AUSLAN and SAD datasets with ridge (A,B)
and Lasso (C,D) regression for different ESN regularization strengths α and two classi-
fiers. The average error rate of 5-fold Monte Carlo cross validation is shown. The very
small standard deviations are indicated by error bars.

L1 Regularization: Fig. 2 (C,D) shows the classification error rates for Lasso
regression. Compared to Fig. 2 (A,B) the performance is considerably worse.
With ridge regression the error rate in AUSLAN was 3.31±0.4% and in SAD
1.5±0.5%. With Lasso regression, the lowest error rate in AUSLAN was 16.6±
0.4% and in SAD 5.0±0.6%. These results indicate that sparseness in the model
space is detrimental for classification performance. A possible explanation is the
nature of L1-regularization: The explanatory variables mostly correlated with
the target variable are selected. In MSL, Lasso is executed for each time series
independently and thus, for similar but slightly different time series of the same
class, different reservoir neurons may be selected. This effect emphasizes the
difference between the samples in the model space rather than their similarity.
A manual inspection of the model space validated the presence of this effect.

3.2 Difficulty of the Task

In order to investigate, whether there is dependence between regularization and
the difficulty of the classification task, we devised a synthetic dataset. The task

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 53

is to differentiate between time series

u(k) = sin(0.2k) + sin(0.311k) + sin(0.42k)

u(k) = sin(0.2k) + (1 −∆) sin(0.311k) + (1 +∆) sin(0.42k) .

The difficulty of the task is controlled with the parameter ∆: The smaller the
value of ∆, the more similar are the respective time series and thus the more
difficult the task. The dataset consists of 200 time series of length 100 created by
generating 10,000 steps of each sequence and dividing them in 100 parts each.
Half of the time series were used for training and half for testing.

Fig. 3 shows how the model prediction error (A) and the classification error in
the model space (B) depend on the regularization strength α and task simplicity
∆. The prediction error is the normalized root mean square error (NRMSE)
computed for predicting the next input during training of the ESN models and
was averaged over all models. With ∆=0, the two time series classes are the
same and thus not separable (see first column in Fig. 3B). With increasing ∆
the difference between the time series classes increases and the classification error
rate decreases. Weak regularization with α<10−5 leads to overfitting: Low model
prediction error, but high classification error in the model space (see the upper
parts of Fig. 3A and 3B). Regularizing with α>10 leads to underfitting during
model training, but the classification error rates remain low until α exceeds 107

(see the lower parts of Fig. 3A and 3B). Regularizing with 10<α<103 achieves
the best results. Noteworthy is that no correlation between the prediction error
and classification error rate is observable. This means that for pattern separation
in the model space, it is less important how exact a model fits the data.

3.3 Noise and Overfitting

The main goal of regularization is to prevent the learning of noise which leads to
smaller errors on the training data, but decreases the generalization capability
and therefore causes larger errors on the test data. As the amount of noise in
the UCI datasets is unknown, we use again a synthetic dataset to study the
effect of regularization on the model space in the presence of noise. The task is
to differentiate between time series of the form

u(k) = sin(0.2x) + sin(0.311x) + sin(0.42x) + ε

u(k) = sin(0.2x) + 0.7 sin(0.311x) + 1.3 sin(0.42x) + ε .

This corresponds to the synthetic dataset from the previous section with ∆=0.3
and added noise. During the simulations, the standard deviation σε of the Gaus-
sian distributed noise ε was varied. Fig. 3C and 3D show the the average of
the prediction error and the classification error rate for different regularization
strengths α and noise levels σε. Best results are achieved with α around 1. Here
too, no correlation between the model prediction error and the classification
performance in the model space can be observed. Low classification rates are
possible even with large model prediction errors, e.g. a NRMSE of 1.0.

Workshop New Challenges in Neural Computation 2015

54 Machine Learning Reports

Fig. 3. Average NRMSE for predicting the next value in a time series with the ESNs
(A,C) and classification error rate in the model space (B,D). Dark cells denote high
values and bright cells low values.

4 Conclusion

In this paper we investigated the effect of regularization during training of ESNs
on the classification performance in the readout weight space (i.e. model space)
of these ESNs. Regularization improved the performance for more difficult tasks
as well as in the presence of noise. L2 regularization performed considerably
better then L1 regularization. In conclusion, L2 regularization is more suitable
for MSL, and the model prediction error can not be used to estimate the expected
classification performance in the model space.

5 Appendix

Preprocessing: All datasets were scaled to the range [−1/d, 1/d].

Reservoir Parameters: n: Number of reservoir neurons, Input Scaling: Scal-
ing of the weights from the input to the reservoir; Rec. Connectivity: Density
of the recurrent weight matrix Wrec, Rec. Scaling: Spectral radius of the re-

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 55

current weights W rec, λ: Leak rate of the neurons, Bias Scaling: Scaling of the
neuron biases.

– Synthetic: n: 50, Input Scaling: 1, Rec. Connectivity: 10%, Rec. Scaling: 0.9,
λ: 1, Bias Scaling: 0.1

– AUSLAN: n: 100, Input Scaling: 1, Rec. Connectivity: 10%, Rec. Scaling:
0.9, λ: 1, Bias Scaling: 0.1

– SAD: n: 50, Input Scaling: 2, Rec. Connectivity: 10%, Rec. Scaling: 0.9, λ:
0.7, Bias Scaling: 0.1

Classifier parameters: For both synthetic datasets, a linear regression classi-
fier without regularization was used. In AUSLAN and SAD:

– Ridge Classifier: Ridge from 1e-5 to 1e+5 in logarithmic scale.
– SVM Classifier [1]: Penalty C from 0.1 to 10000 in logarithmic scale, Kernel

coefficient gamma from 0.01 to 100 in logarithmic scale.

Acknowledgments. This project is funded by the German Federal Ministry of
Education and Research (BMBF) within the Leading-Edge Cluster Competition
“it’s OWL” (intelligent technical systems OstWestfalenLippe) and managed by
the Project Management Agency Karlsruhe (PTKA). The authors are responsi-
ble for the contents of this publication.

References

1. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

2. Chen, H., Tang, F., Tino, P., Yao, X.: Model-based kernel for efficient time series
analysis. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 392–400 (2013)

3. Chen, H., Tino, P., Rodan, A., Yao, X.: Learning in the model space for cognitive
fault diagnosis. IEEE Transactions on Neural Networks and Learning Systems
25(1), 124–136 (2014)

4. Hoerl, A.E., Kennard, R.W.: Ridge regression: applications to nonorthogonal prob-
lems. Technometrics 12(1), 69–82 (1970)

5. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. GMD Technical Report 148, 34 (2001)

6. Kadous, M.W.: Temporal classification: Extending the classification paradigm to
multivariate time series. Ph.D. thesis, The University of New South Wales (2002)

7. Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.
edu/ml

8. Picard, R.R., Cook, R.D.: Cross-validation of regression models. Journal of the
American Statistical Association 79(387), 575–583 (1984)

9. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996)

10. Vinod, H.D.: A survey of ridge regression and related techniques for improvements
over ordinary least squares. Review of Economics and Statistics pp. 121–131 (1978)

Workshop New Challenges in Neural Computation 2015

56 Machine Learning Reports

Ensembles of Neural Oscillators

Danil Koryakin, Fabian Schrodt, Martin V. Butz

Cognitive Modeling, Department of Computer Science,
University of Tübingen, Sand 14, 72076 Tübingen, Germany

Abstract. Modularization is a promising direction for the further de-
velopment of artificial neural networks (ANNs), and a large variety of
modularized ANNs have been proposed. Possibly the main advantage of
modularization is that, due to the wiring and learning mechanisms, dif-
ferent modules in the ANN can be biased towards developing particular
problem solution substructures – allowing the incorporation of a priori
problem knowledge. We present a modular Echo-State Network (mESN)
architecture, where modules process independent recurrences. The struc-
ture enables the modeling of complex, periodic functions by means of an
additive combination of elementary oscillations. We compare the mESN
to monolithic networks on problems of different complexity and confirm
superior performance. Finally, we sketch out potential applications and
future work directions.

Keywords: Modular Neural Network, Recurrent Neural Networks, Echo
State Network, Periodic Dynamics

1 Introduction

Artificial Neural Networks (ANNs) are very general machine learning systems,
which have been applied in many areas of science and engineering. To tune ANNs
for solving particular problems, researchers have proposed numerous ANN ar-
chitectures, with different topologies, types of neurons involved, learning mech-
anisms, and modularizations by constraining neural connections.

Modularity typically groups neurons in an ANN towards specific functional-
ities and restricts communication between the groups of neurons in a particular
manner. For example, in [7] and [8] ANNs are composed of several feed-forward
neural networks. These modules are mediated by a gating network, which chooses
the output of the most relevant module. The modules are combined either hi-
erarchically or recursively depending on the problem to be solved. Such modu-
lar networks have been applied to engineering applications, such as trajectory
modeling [8] and recognition [3, 7]. More complex modularized ANNs have been
considered in cognitive science for understanding processes in the human brain
[9] or for controlling complex humanoid robots [1].

In this work we propose a modular, recurrent ANN (RNN) architecture for
modeling time series. Although our architecture generally allows the usage of any
type of RNN as a module, we focus on Echo-State Networks (ESNs). Thus, we

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 57

call the investigated architecture modular ESN (mESN). As it was shown in [10],
despite their compact size, ESNs are able to model quite complex oscillators.
They are flexible and can be driven either by a signal from alternative input
neurons or operate as autonomous oscillators.

The possibility to use ESNs as autonomous oscillators makes them especially
suitable for applications where once learned target dynamics must be reproduced
on request. In such applications the networks can serve as a memory for complex
time series. Compactness of ESNs would bring added value to such devices.
Despite this potential benefit, applications for input-less reproductions of time
series are sparse. They include applications for cyclic rehearsal [4], [5] and for
artificial problems [4], [5], [11].

In the next section we detail the mESN architecture. Section 3 evaluates the
mESN in the task of reproducing of mixtures of periodic signals and analyzes its
performance. Section 4 sketches possible practical applications of the presented
model. In the conclusions, we summarize our work and draw future research
perspectives.

2 Modular ESN

The modular Echo-State Network (mESN) consists of several modules, each of
them being an ESN. These modules do not have direct connections to each
other and therefore operate independently. The mESN is shown schematically
in Figure 1. The output of an mESN is computed as a linear combination of
outputs of its modules as follows.

o(n) =

M∑
i=1

rioi(n) (1)

where M is the number of modules, oi(n) is the output of the ith module at time
step n, and ri is its responsibility for generating the output.

Using standard ESNs as modules in mESN is particularly advantageous for
modeling time series that consist of multiple oscillators. ESNs have been shows
to be able to produce accurate, oscillating output signals for a long period of time
without further external stimulation, solely drive by their own output feedback.
In mESN, the output signal oi(n) of one ESN module i is computed as follows:

oi(n) = WOUT,i[fi (Wixi(n− 1) + WOFB,ioi(n− 1))], (2)

where n is the current time step, xi(n − 1) is the vector of reservoir states at
the previous time step, Wi is the matrix of reservoir weights, fi is the vector
of activation functions of all reservoir neurons, WOUT,i is the matrix of output
weights, and WOFB,i is the matrix of output feedback weights. Expression (2) is
derived from the more general expression of ESNs, ignoring signals from possibly
additional input neurons. The general expression for updating an ESN output,
rules for designing the matrix W as well as a training procedure for the standard
ESNs can be found in [6].

Workshop New Challenges in Neural Computation 2015

58 Machine Learning Reports

Fig. 1. Structure of the mESN consisting of M modules. Responsibilities ri of the
modules define a portion of each module in the total network output o(n), which is
computed as a linear combination of the individual module outputs.

The design of the mESN requires the choice of macro parameters for each
ESN module as well as a the independent training of the output weights WOUT,i.
To train the modules, a preliminary decomposition of a training sequence Y into
a set of sequences is necessary:

Y = (Y1 ⊕ Y2 ⊕ ...⊕ YM) (3)

where Yi is the time series assigned to the ith module. The operator ⊕ denotes
an application-dependent split of every value y(n) of the sequence Y into a set
of values yi(n), each of them belonging to the corresponding component Yi at
the current time step n.

In our study the decomposition was performed by an expert using a priori
knowledge about the target time series. Thus, additional information about a
problem was incorporated into the model during the design phase. A similar
approach was described elsewhere [12, 2]. In these studies feedforward neural
network modules were trained independently of each other on already segmented
sequences. In our study, ESN modules were also trained independently of each
other using the training procedure

WOUT,i = M−1
i Ti, (4)

where M−1
i is the inverted matrix of states of the ith module on its training

sequence and Ti is the corresponding sequence of target outputs.
Modularity provides an opportunity to choose the macro parameters inde-

pendently for each module. These parameters include the module’s reservoir size,
a spectral radius of the matrix Wi, and an interval for initialization of the feed-
back weights WOFB,i. An independent parameter choice is especially useful for
time series that consist of components with very different characteristics, such
as very slow and fast dynamics – where larger and smaller spectral radii are

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 59

more suitable, respectively – or differing component complexities – where the
reservoir sizes should be adapted accordingly [10].

3 Experiments

In this section we demonstrate the merit of mESNs when modeling time series of
different complexity. We focus on smooth sine waves and triangular signals. The
latter are not continuously differentiable and consequently more challenging. We
compared the performance of our mESN implementation with our corresponding
single-reservoir ESN implementation.

3.1 Experimental Setup

In the experiments we focus on dynamic reservoirs that were randomly gen-
erated for different combinations of ESN parameter settings. These parame-
ters were reservoir size, connectivity of a dynamic reservoir, and scaling of the
feedback weights WOFB . Ranges of connectivity and of WOFB were the same
for standard ESNs and for the mESNs, and were set to {0.1, 0.2, ..., 1.0} and
{10−10, 10−9, ..., 3.9, 4.0}, respectively. Ranges of reservoir sizes were different
for the evaluated ESNs and mESNs. Modules in mESNs were equipped with
only 4 to 10 reservoir neurons. The single-reservoir in the ESNs had from 10 to
100 neurons. For each combination of the parameter values, 500 networks were
generated, trained, and evaluated on a test sequence. Networks with the smallest
normalized root mean squared errors (NRMSE) were chosen as ESN modules for
the mESN. The mESN performance was compared with the performance of the
best single-reservoir ESN.

We considered three sets of target dynamics. The first time series was com-
posed of sine waves, the second was composed of triangular signals, and the third
was composed of a mixture of the two. For each target dynamics, a sequence of
700 time steps was generated, which was split into a washout sequence (the first
100 time steps), a training sequence (following 300 steps), and a test sequence
(the last 300 time steps).

Mixtures of sine waves are known in the literature as Multiple Superimposed
Oscillators (MSO). The number of sine waves defines the complexity of a dy-
namics: more sine waves constitute more difficult dynamics. The whole family
of the MSO dynamics can be described as follows:

y(n) =

s∑
i=1

sin(αin), (5)

where s is the number of sine waves and αi specify their respective frequencies.
We generated the sequences for the following standard set of the frequencies
α1 = 0.2, α2 = 0.311, α3 = 0.42, α4 = 0.51, α5 = 0.63, α6 = 0.74, α7 = 0.85,
and α8 = 0.97. Because of the smoothness of the individual components, the
MSOs are moderately non-linear and continuously differentiable over the whole
time axis.

Workshop New Challenges in Neural Computation 2015

60 Machine Learning Reports

Like the MSOs, the mixtures of triangular signals (MTS) are linear com-
binations of their components. Each component is a periodic triangular signal
characterized by a period and an amplitude. The amplitude of all components
was one. The periods were set to the following integers {32, 24, 20, 12, 8, 4},
which yields periods similar to the MSO ones. Despite this similarity, the MTS
are more difficult because of much higher non-linearity at peaks of the triangular
signals. Figure 2 shows curves of the least and most complex MTS dynamics,
MTS2 and MTS6. As can be seen, an MTS with more components resembles a
chaotic attractor. But in contrast to known chaotic attractors, both MSOs and
MTSs have internal structures that are very suitable for modularization.

For example, MTS2 consists of two distinct components Y1 and Y2, with
periods 32 and 24 time steps, respectively. To model MTS2 with mESN, two ESN
modules are employed. Each module is then trained on one of the components
and the best ESN is chosen, respectively, by means of the stochastic search
procedure detailed above. A dynamic reservoir for every candidate was updated
using the formula (2) at every time step of the washout and training sequences.
The output weights WOUT,i of module i were trained using formula (4) given
the training sequence Yi, that is, the corresponding target values oi(n) and Ti,
which appear in formulae (2) and (4), were taken from the sequence Yi.

Fig. 2. Mixtures of triangular signals showing the simplest (MTS2, blue curve) and
most complex dynamics (MTS6, red curve) considered. The sequences are split into
washout, training and test intervals.

4 Results

Table 1 shows reached performances and sizes of the best mESNs and ESNs
found for time series with two, four, six, and eight dynamic components. Per-
formance of the standard ESNs varies over a wide range from 10−12 to 10−2.
Standard ESNs had big difficulties on more complex dynamics and could not
model the most difficult target MST4.4 at all. At the same time, as expected,

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 61

Table 1. Performance of the best mESN and ESN on the respective target dynamics of
different complexity. MSOs are mixtures of sine waves, ”TriX” stands for a mixture of
X different triangular signals, and ”MSTX.Y” stands for a combination of X sine waves
with Y triangular signals. The number of neurons is the summed number of reservoir
neurons in all modules in the best mESN / ESN found for the respective problem.

mESN
Number of
Components

MSO & NRMSE &
size

Triangular &
NRMSE & size

MST & NRMSE & size

2 MSO2: 5.62 × 10−10

with 8 neurons
Tri2: 7.99 × 10−7

with 10 neurons
MST1.1: 8.08 × 10−7

with 10 neurons

4 MSO4: 6.47 × 10−10

with 16 neurons
Tri4: 8.37 × 10−7

with 18 neurons
MST2.2: 8.63 × 10−7

with 18 neurons

6 MSO6: 7.83 × 10−10

with 24 neurons
Tri6: 9.45 × 10−7

with 26 neurons
MST3.3: 1.04 × 10−6

with 26 neurons

8 MSO8: 1.07 × 10−9

with 32 neurons
- MST4.4: 1.59 × 10−6

with 34 neurons

ESN
Number of
Components

MSO & NRMSE &
size

Triangular &
NRMSE & size

MST & NRMSE & size

2 MSO2: 2.51 × 10−12

with 5 neurons
Tri2: 2.42 × 10−6

with 30 neurons
MST1.1: 3.29 × 10−6

with 20 neurons

4 MSO4: 5.72 × 10−8

with 9 neurons
Tri4: 7.31 × 10−4

with 90 neurons
MST2.2: 3.16 × 10−3

with 90 neurons

6 MSO6: 8.43 × 10−5

with 14 neurons
Tri6: 1.83 × 10−3

with 100 neurons
MST3.3: 5.80 × 10−2

with 90 neurons

8 MSO8: 2.73 × 10−4

with 68 neurons
- MST4.4: no ESN could

model the dynamics

the complexity of the time series had only a minor impact on the performance of
the mESNs. Their test errors varied only within four orders of magnitude. Also
the most difficult dynamic, MST4.4, which consists of four sine components and
four triangular components, was solved with high accuracy. The high perfor-
mance of the mESNs was also reached thanks to an individual choice of critical
parameters for each component, which was especially helpful on mixtures of
MSOs and MTSs. Whereas the sine waves needed similar WOFB settings below
10−6, some triangular signals required reservoir neurons to operate in a satura-
tion range with WOFB up to 3.8. Such a wide parameter spread is infeasible for
a single-reservoir ESN.

Besides the performance gain, modularity is very favorable for the genera-
tion of compact models of complex target dynamics. The largest reduction in
model size was observed in the sequence ”Tri4”, where mESN required 18 neu-
rons whereas 90 neurons were needed with standard ESNs. In order to reach
higher performance, a single-reservoir ESN increases a variety of reservoir states
through formation of complementary neural paths. This automatically requires a
larger reservoir. On the contrary, in the mESN splitting target components leads
to decoupling of internal dynamics. As a result, smaller ESN modules provide a
sufficient variety of internal dynamics for the corresponding target component.
However, splitting the components causes a slight size overhead in mESNs. This
can be seen in the easiest target dynamics, such as MSO2, where mESN re-

Workshop New Challenges in Neural Computation 2015

62 Machine Learning Reports

quired 8 neurons while a single-reservoir ESN solved the problem best with only
5 neurons.

5 Discussion

The experiments showed advantages of an mESN ensemble over a single-reservoir
ESN. The main advantage is the possibility to decouple internal dynamics from
each other. Like other modular architectures, it allows incorporating a priori
knowledge to do a focused choice of modules’ parameters and to reach higher
accuracy with more compact models. Besides that, such an organization offers
flexibility and robustness for potential applications. Modules of different types
can be plugged into the ensemble. Switching off a malfunctioning module allows
avoiding an abrupt reduction in system performance.

The mESN is useful for modeling periodic patterns of any complexity and
any period, especially when consisting of different components. Currently we see
at least three potential applications. The first one is an analysis of a time series
through mESN synchronization. It will produce an mESN whose active ESN
modules will indicate which components are present and how they are mixed
with each other.

The second application is a flexible control of a robot arm shown in Figure 3.
Its end effector may be required to draw a complex trajectory periodically. Each
ESN module may be linked to its own joint and produce a specific trajectory
independently of the other modules – leading to the generation of the overall,
target trajectory with the end effector. Alternatively, the end-effector trajectory
may be controlled by selectively switching mESN components on and off over
time, possibly enabling the generation of digits on any surface and with any
surface orientation that is reachable with the robot arm.

Another relevant application is the generation of central pattern generators
(CPG), where primitive rhythmic signals are combined into more complex pat-
terns. An mESN will represent a CPG with a population of tiny ESN modules.

Fig. 3. mESN-based loopless control of a robot arm. Coordinates (xT , yT) of the end
effector (red point) on a trajectory (thick line) are a sum of projections of coordinates
of individual joints. (xi, yi) are coordinates of ith joint in a coordinate system with the
origin at the (i− 1)th joint. Coordinates (xi, yi) are output of the ith ESN module.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 63

A linear combination of their outputs will be used to tune the CPG to a target
behavior. CPG parameterization may be realized by augmenting the individual
neural oscillators with input neurons.

6 Conclusions and Outlook

In this paper we presented the modularized echo state network architecture
mESN. In mESN modules are combined without a switching block common
for mixtures of experts. The independent operation of the neural oscillators
realizes component decoupling, enabling local parameter and meta parameter
optimization for each module and time series component. The proposed model
is useful for practical applications that deal with decomposable and switching
processes. Currently, we are investigating possibilities to tune an ensemble of
neural oscillators after changes in the target dynamics, such as amplitude and
phase. Moreover, we are working on automatizing the mESN modularization.

References

1. Byadarhaly, K.V., Perdoor, M.C., Minai, A.A., A modular neural model of motor
synergies, Neural Networks 32, pp. 96–108 (2012)

2. Gradojevic, N., Gencay, R., Kukolj, D., Option Pricing With Modular Neural Net-
works, IEEE Transactions On Neural Networks 20, pp. 626–637 (2009)

3. Happel, B.L.M., Murre, J.M.J., The Design and Evolution of Modular Neural
Network Architectures, Neural Networks 7, pp. 985–1004 (1994)

4. Holzmann, G., Hauser, H., Echo State Networks with Filter Neurons and a De-
lay&Sum Readout, Neural Networks 23, pp. 244–256 (2010)

5. Jaeger, H., The ”echo state” approach to analysing and training recurrent neural
networks, Technical Report 148, German National Research Institute for Computer
Science (2001)

6. Jaeger, H., A tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the ”echo state network” approach, Technical Report 159, Ger-
man National Research Center for Information Technology (2002)

7. Jacobs, R.A., Jordan, M.I., Barto, A.G., Task Decomposition Through Competi-
tion in a Modular Connectionist Architecture: The What and Where Vision Tasks,
Cognitive Science 15, pp. 219–250 (1991)

8. Jordan, M.I. Jacobs, R.A., Hierarchical mixtures of experts and the EM algorithm,
Proceedings of 1993 International Joint Conference on Neural Networks, pp.1339–
1344 (1993)

9. Kharratzadeh, M., Shultz, T., Neural-network modelling of Bayesian learning and
inference, 35th Annual Conference of the Cognitive Science Society, pp. 2686–2691.
Berlin, Germany, Cognitive Science Society (2013)

10. Koryakin, D., Lohmann, J., Butz M.V., Balanced echo state networks, Neural
Networks 36, pp. 35–45 (2012)

11. Reinhart, F., Steil, J., Reservoir regularization stabilizes learning of Echo State
Networks with output feedback, In Proceedings of ESANN2011, European Sym-
posium on Artificial Neural Networks (2011)

12. Soltani, S., On the use of the wavelet decomposition for time series prediction,
Neurocomputing 48, pp. 267–277 (2002)

Workshop New Challenges in Neural Computation 2015

64 Machine Learning Reports

Ensemble Methods and Active Learning in HCI

Patrick Thiam, Markus Kächele, Friedhelm Schwenker, and Günther Palm

Institute of Neural Information Processing,
Ulm University, Germany

{firstname.lastname}@uni-ulm.de

1 Introduction

An explosion in terms of amount and complexity of data is being witnessed in
current days. The globally available amount of data is increasing so fast that
a proper assessment and annotation of the data is almost impossible. Conse-
quently, annotated data is scarce while unannotated data is available in huge
amounts. Supervised Learning [4] and Semi-Supervised Learning [3] rely on an-
notated data in order to successfully perform classification or regression tasks.
The robustness as well as the performance of a model trained with such tech-
niques highly depend not only on the amount of annotated samples available,
but also on the quality of the annotation process. Thus the creation of a large
and reliable annotated corpus is the bottleneck in the domain of Supervised and
Semi-Supervised Learning. Meanwhile, data annotation is known to be hard,
expensive both in time and costs, and error prone [6].
Active learning [8] is a technique that can be used to address these issues. The
main characteristic of active learning is the ability of the learner to select the
samples from which it learns. More specifically, the learner selects the most
informative unannotated samples to be annotated by an oracle (e.g. a human
annotator). In this way the learner is able to improve its performance and ac-
celerate its learning process, while reducing the costs for the annotation of an
entire corpus. The following study focuses on developing and implementing active
learning methods for unimodal and multimodal emotion recognition in human
computer interaction.

2 Proposed Approach

We propose a pool-based active learning approach based on novelty detection
[10] combined with binary classification. The very first step consists of using
the local binary patterns on three orthogonal planes (LBP-TOP) [11] to extract
the features from the video sequences. The algorithm then begins with a small
set of annotated samples L and a large set of unannotated samples U . At each
iteration the most uncharacteristic samples of the unannotated set are detected
using a committee [9] of randomly generated Support Vector Data Description
(SVDD) [5] models. Each model is trained and tested on the entire pool U . The
samples are then selected by majority vote. Subsequently there are two variants

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 65

of the algorithm.
The first variant consists in annotating the whole set of detected outliers, adding
the annotated samples to the pool L, training a binary Support Vector Machine
(SVM) [1] on L and applying the model to U . This process is iterated until a
termination criterion is satisfied. The binary SVM is used in this variant just
to measure the performance of the active learning method and does not get
involved in the selection process of the samples to be annotated.
The second variant consists in involving the binary SVM in the selection process
of the samples to be annotated. At each iteration, the binary SVM model trained
at the previous iteration is tested on the set of uncharacteristic samples selected
by the committee of SVDD models. Depending on the chosen query strategy, a
subset of the detected outliers is annotated instead of the whole selection as in
the previous variant. Those samples that are annotated are added to L, while the
other samples are left in U . This process is iterated until a termination criterion is
satisfied. Several query strategies are experimented with among others, random
sampling, uncertainty sampling (Shannon entropy, learning at the border), and
certainty sampling (farthest from the border) [2] [7] [8]. This variant of the
algorithm helps the annotator by enabling him to choose the number of samples
to be annotated at each iteration. This is not possible while using the first
variant of the algorithm, since the amount of unannotated samples classified as
uncharacteristic by each member of the committee is unforeseeable.

3 Discussion/Conclusion

The approach is currently being tested on a dataset consisting of 30 video se-
quences of 30 minutes each, depicting in each case an experiment involving a
participant who interacts by speech and touch input with a multi-modal system.
The experiment involves resolving a series of timed puzzles with increasing levels
of difficulty. As an incentive, the participant can earn money based on his/her
performance. The longer it takes to solve a puzzle, the less money is rewarded.
These settings induce sporadic and spontaneous facial reactions from the partic-
ipants during the interaction process. The objective is to enable the system to
distinguish facial expressions characterized by the presence of observable facial
gestures from those without any facial gestures.
So far a total of 6 participants was drawn from the dataset and manually anno-
tated in order to have the ground truth needed in order to assess the performance
of the approach. A binary SVM was then trained and tested on the annotated
corpus of each participant and the results of the classification were used as base-
line. Finally the described approach was tested on each selected participant’s set
and compared with the baseline. The first results of the undertaken experiments
suggest that the proposed active learning approach performs as well as a system
trained on the fully annotated corpus, while dramatically reducing the cost of
annotation. Further experiments involving more participants are to be under-
taken for a better assessment of the performance of the approach. Moreover the
applicability of the approach to multimodal datasets should be investigated.

Workshop New Challenges in Neural Computation 2015

66 Machine Learning Reports

References

1. Abe, S.: Support Vector Machines for Pattern Classification. Springer, London,
England (2005)

2. Angluin, D.: Queries revisited. In: Proceedings of the 12th International Conference
on Algorithmic Learning Theory. pp. 12–31. Springer, London, UK (2001)

3. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,
Cambridge, Massachussets (2006)

4. Cunningham, P., Cord, M., Delany, S.J.: Machine Learning Techniques for Mul-
timedia: Case Studies on Organization and Retrieval, chap. Supervized Learning,
pp. 21–49. Springer, Berlin, Heidelberg (2008)

5. David, M.T., Robert, P.D.: Support vector data description. Machine Learning
(2004)

6. Kächele, M., Schels, M., Meudt, S., Kessler, V., Glodek, M., Thiam, P., Tschechne,
S., Palm, G., Schwenker, F.: On annotation and evaluation of multi-modal cor-
pora in affective human-computer interaction. In: Böck, R., Bonin, F., Campbell,
N., Poppe, R. (eds.) Multimodal Analyses enabling Artificial Agents in Human-
Machine Interaction, pp. 35–44. Lecture Notes in Computer Science, Springer In-
ternational Publishing (2015)

7. Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. In: Proceedings of the Eighteenth International Conference
on Machine Learning. pp. 441–448. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (2001)

8. Settles, B.: Active learning literature survey. Computer sciences technical report,
University of Wisconsin–Madison (2009)

9. Seung, S.H., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings
of the Fifth Annual Workshop on Computational Learning Theory. pp. 287–294.
ACM, New York, NY, USA (1992)

10. Thiam, P., Meudt, S., Kächele, M., Palm, G., Schwenker, F.: Detection of emo-
tional events utilizing support vector methods in an active learning hci scenario.
In: Proceedings of the 2014 Workshop on Emotion Representations and Modelling
for HCI Systems. pp. 31–36. ERM4HCI ’14, ACM, New York, NY, USA (2014)

11. Zhao, G., Pietikinen, M.: Dynamic texture recognition using local binary patterns
with an application to facial expressions. IEEE Transactions on Pattern Analysis
and Machine Intelligence pp. 915–928 (2007)

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 67

Preditable Feature Analysis

Stefan Rihthofer and Laurenz Wiskott

{stefan.rihthofer,laurenz.wiskott}�ini.rub.de

Institut für Neuroinformatik,

Ruhr-Universität Bohum

Abstrat. Inspired by the idea of Slow Feature Analysis (SFA), we have

developed an algorithm that selets features by preditability rather than

slowness. While SFA has proven valuable in �nding invarianes and per-

forming reognition tasks, the goal of Preditable Feature Analysis (PFA)

is to perform planning and ontrol-tasks, as the preditable features an

be used to estimate the onsequenes of possible ations of an agent or

ontroller. From SFA we adopt the problem-onstraints to avoid trivial or

repeated solutions. To de�ne preditability we fous on a given predition

model but support a variety of models that ful�ll ertain requirements,

using linear, autoregressive proesses as the default model.

Sine �tting a predition model on training-data is an optimization prob-

lem by itself, we fae a hard to solve hen-and-egg-problem regarding

model-�tting and seleting the best suitable features. In this work we

provide a tratable algorithm to solve this nested problem with reason-

able auray.

1 Introdution

Consider a typial reinforement-learning setting, where an agent is plaed in

an environment and aims to ahieve some goal. In ontrast to most ommon

disrete, board-game-like senarios we onsider a � more natural � ontinuous

setup. The input is a high-dimensional, ontinuous signal over time, like vision

or some other sensori input.

PFA is intended as a tool to organize the vast amount of inoming data. Only

data that helps to understand and manipulate the agent's state in the desired

way is onsidered useful. Allowing to predit outomes of possible ations is a

key-feature the agent's learning model must provide. [1℄ gives an exellent review

of former proposals to use preditable features for tasks like this.

Our work is strongly inspired by Slow Feature Analysis (SFA) � an algo-

rithm that has proven valuable in several �elds and problems onerning signal-

and data analysis. It ahieves a drasti, yet reasonable dimensionality redu-

tion by fousing on slowly varying subsignals, so-alled �slow features�. Sine

slowness usually indiates invariane and invariant problem representations are

ruial for typial data-analysis and reognition tasks, many of these tasks be-

ome muh more feasible after applying SFA. Examples are the self-organization

of omplex-ell reeptive �elds, the reognition of whole objets invariant to

Workshop New Challenges in Neural Computation 2015

68 Machine Learning Reports

spatial transformations, the self-organization of plae-ells, extration of driving

fores, or nonlinear blind soure separation. (see [2,3,4,5,6℄).

Instead of slowness, PFA selets subsignals by preditability with respet to a

ertain predition model that ful�lls the riteria we give in Setion 3. In ontrast

to model-independent notions of preditability like in the information bottlenek

approah [7,8℄, PFA diretly provides a usable predition model together with

the feature seletion. However, simultaneous feature seletion and model �tting

is a di�ult nested optimization problem that appears to be only addressable

with a relaxed formulation that we desribe in Setion 2.

Using some notion of preditability for learning is of ourse not a new idea.

ForeCA (Foreastable Component Analysis), an independently developed method,

is based on the same paradigm as PFA, but proposes a model-independent ap-

proah [9℄. A further di�erene is that PFA searhes for well preditable Systems,

while ForeCA selets best preditable single omponents. There also exists an

ICA-based approah to preditability-driven dimensionality redution, see [10℄.

2 Extrating preditable features

Given an input-signal x(t) with n omponents, our goal is to extrat r well

preditable output-omponents, referred to as �preditable features�. In order to

measure preditability, we use a linear, auto-regressive predition model,

beause it is simple, popular and has been suessfully used in many �elds for

modeling temporal proesses. Like in SFA, we optimize the parameters over a

training phase Ωt and also adopt the SFA onstraints to avoid trivial or repeated

solutions. We also allow for an optional, non-linear expansion h (e.g. monomials

of low degree). The �rst steps of PFA are indeed equal to those in SFA, i.e. we

also apply a non-linear expansion and start with a sphering-step. Mean is de�ned

using 〈s(t)〉 := 1
|Ωt|

∑

t∈Ωt
s(t) (average of a signal over the training phase). To

ful�ll the onstraints, the expanded signal is sphered over the training-phase:

z̃(t) := h(x(t)) − 〈h(x(t))〉 (apply expansion; make mean-free) (1)

z(t) := Sz̃(t); S :=
〈
z̃z̃T

〉− 1

2
(normalize ovariane) (2)

A single signal omponent is regarded well preditable, if eah value an

be approximated by a linear ombination of p reent values. Expressing this

formally, we fae the problem of �nding vetors a and b suh that

aT z(t)
!
≈ b1a

T z(t− 1) + . . .+ bpa
T z(t− p) = aT histz,p(t) b (3)

with hist de�ned as the signal's history over the reent p timesteps:

histz,p,∆(t) :=

p
∑

i=1

z(t− i∆)eTi =
(
L1, . . . , Lp

)
z (4)

with ei ∈ Rp, (e1, . . . , ep) = Ip,p. Here Ip,p denotes the p-dimensional identity,

thus ei denotes the i-th p-dimensional Eulidean unit vetor. L denotes the lag

operator (with ∆-length timesteps implied). ∆ defaults to 1: histz,p := histz,p,1.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 69

PFA

z(t) a
T
z(t)

Fig. 1. Illustration of PFA

To extrat multiple omponents, we de�ne the extration matrix Ar :=
(a1, . . . , ar) ∈ Rn×r

and the redued identity Ir ∈ Rn×r
onsisting of the �rst

r Eulidean unit vetors as olumns. Sine z is sphered, we an obtain unorre-

lated omponents by onstraining Ar to be orthogonal, i.e. ∃A ∈ O(n) : Ar =
AIr where O(n) ⊂ Rn×n

denotes the spae of orthogonal transformations, i.e.

AAT = I. We denote the extrated signal with m := AT
r z.

The ommon way to extend (3) to multiple dimensions an be written as

m(t)
!
≈ B1m(t− 1) + . . .+Bpm(t− p) with Bi ∈ Rn×n

, diagonal (5)

In this form, it does not ful�ll all riteria from Setion 3 (it is not orthogonal

agnosti for n > 1), whih are ruial for PFA to work. Nevertheless, there are

strategies to extrat features that are preditable in terms of (5). It is straight

forward to �nd losed-form solutions for a and b from (3), if one of the vetors

is given. If b is given, hoose a as the eigenvetor orresponding to the smallest

eigenvalue in

〈
zzT

〉
− 2

〈
zbT histz,p

〉
+
〈

histz,p bb
T histTz,p

〉

(6)

If a is given, hoose b as

bT :=
〈
zTaaT histz,p

〉 〈

histTz,p aa
T histz,p

〉−1

(7)

One an hoose a starting-value and apply (6) and (7) in turns, but this usually

runs into loal optima. Our alternative approah is desribed below.

But �rst we proeed by re�ning (5) to be suitable for PFA:

m(t)
!
≈ B1m(t− 1) + . . .+Bpm(t− p) with Bi ∈ Rn×n

(8)

The di�erene to the �rst formulation is that B does not have to be diagonal,

i.e. eah extrated omponent's predition may depend on all other extrated

omponents. A massive advantage of model (8) is that we an initially �t it to

our data in full dimension and searh for the best-�tting omponents afterwards.

We formalize the need for suh a model-property in Setion 3.

Let g be a general predition-model:

g ∈ G : z(t)
!
≈ g(histz,p,∆(t)) (9)

Workshop New Challenges in Neural Computation 2015

70 Machine Learning Reports

where G is the model-lass, i.e. the set of possible realizations of g. We measure

the predition error in an average least squares sense by

err(g, z) :=
〈
‖z− g(histz,p,∆)‖2

〉
(10)

With g∗
z := argming∈G err(g, z), we de�ne the optimal error of z:

err(z) := err(g∗
z, z) (11)

To formalize (8) as a predition model in this notation, we ombine the oe�ient-

matries Bi to a single wide matrix and de�ne gB and G
lin

:

B := (B1, . . . ,Bp) ∈ Rn×np
(12)

gB(histm,p(t)) := B vec(histm,p(t)) (13)

G
lin

:= { gB : B ∈ Rn×np } (14)

By analytial optimization, we obtain the following regression formula to �t

gB ∈ G
lin

to m = AT
r z:

Bz(Ar) =
(

AT
r

〈
zζT

〉
Ar

)(

Ar
T
〈
ζζT

〉
Ar

)−1

(15)

with ζ(t) := vec(histz,p(t)) and the following notation de�ned for any matrix A:

vec(A) :=

(
a1

.

.

.

an

)

(ai olumns of A) A := Ip,p ⊗A =

(
A 0

.

.

.

0 A

)

︸ ︷︷ ︸

p times A

(16)

PFA as desribed below relies on some riteria to work properly. In situations

where these riteria are not met, PFA an still be applied, but is likely to produe

suboptimal results. Using the iteration (6) vs. (7) on the result as a postproess-

ing step an improve this. So far this iteration was only desribed for single

omponents though. While (15) is a multi-omponent generalization of (7), ob-

taining a multi-omponent variant of (6) is far more di�ult. It would allow

us to apply the iteration on extrated signal-systems and an be formulated as

follows:

minimize
A∈O(n)

〈
‖AT

r z−BTAr
T ζ‖2

〉
(17)

We an write the optimization term as

vec(AT
r)

T
〈
(Z⊗ I)B̃B̃T (ZT ⊗ I)

〉
vec(AT

r) (18)

with Z := (z, histz,p) and B̃T := (I,−BT). By some index-manipulation, the en-

tral onstant matrix an be e�iently omputed from

〈
ζζT

〉
and

〈
zζT

〉
, whih

PFA omputed anyway for (15). An optimal vec(AT
r) an be obtained as the

eigenvetor orresponding to the smallest eigenvalue of the entral matrix. How-

ever, this would in general not yield an orthogonal Ar, but we an projet

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 71

it to the nearest orthogonal Ar using singular value deomposition. Sine the

projetion-error for the smallest eigenvalue an still render that result subopti-

mal, we take several small eigenvalues into aount as andidates. This is usually

su�ient to ahieve a good improvement. Let us now return to the atual proe-

dure. If r = n, A = I and thus Ar = Ir, we write W := Bz(I) =
〈
zζT

〉 〈
ζζT

〉−1
.

For r = n and A ∈ O(n), we have Bz(A) = ATWA. Sine z is sphered, we an

state the following ompat notation of the PFA-problem:

minimize
A∈O(n)

err(AT
r z) (19)

Inserting our default model, we have err(AT
r z) =

〈
‖AT

r z − Bz(Ar)Ar
T ζ‖2

〉
.

However, beause (15) is an involved term, mainly due to the projetion under

the inversion symbol, (19) appears to be untratable by every method known to

us

3

. Instead of solving it diretly, we propose the following tratable relaxation:

minimize
A∈O(n)

〈
‖AT

r z− ITr Bz(A)AT ζ‖2
〉
=
〈
‖AT

r (z−Wζ)‖2
〉

(20)

Informally speaking, problem (20) asks for omponents that are optimally

preditable, if the predition may be based on the entire input signal, rather

than just on the extrated omponents themselves. From now on we denote a

global optimum of (19) with A∗
r and of (20) with A

(0)
r .

PFA

z(t)

m(t) = A
T

r z(t)

Fig. 2. Illustration of relaxation (20)

To solve (20) globally, we write it as

minimize
A∈O(n)

Tr
(

AT
r

〈
(z−Wζ) (z−Wζ)

T 〉
Ar

)

(21)

and hoose A suh that it diagonalizes

〈
(z−Wζ) (z−Wζ)T

〉
and sorts the r

smallest eigenvalues to the upper left. (Use

〈
(z− g∗

z(histz,p)) (z− g∗
z(histz,p))

T 〉

for a general model.) This proedure an be desribed as performing prinipal

omponent analysis (PCA) on the residues of the predition (but seleting the

smallest eigenvalues). In Setion 4 we prove that if err((A∗
r)

T z) = 0, then A
(0)
r is

also a global solution of (19) (given that the model ful�lls ertain onditions).

4

3

Not ounting evolutionary and other inherent loal optimization approahes, sine

we aim for the global solution. Experiments showed us, that loally optimal solutions

are usually still of high error and of low relevane for the model.

4

Note that if A
(0)
r is used as solution for (19), the predition model must be re�tted to

the redued signal to get optimal predition. For this, alulate Bz(A
(0)
r) as de�ned

in (15).

Workshop New Challenges in Neural Computation 2015

72 Machine Learning Reports

More preisely speaking, the relaxation gap of (20) depends on err((A∗
r)

T z) in
a ontinuous manner and is zero, if that error is zero. If the optimal subsignal

has a signi�ant predition error, the solution obtained as A
(0)
r usually su�ers

from over�tting and is suboptimal for (19). The (multi-omponent) iterative

algorithm desribed above an be used to improve results in suh ases.

3 Criteria for suitable predition models

In this setion we disuss what properties of a predition model are ruial to

make the proedure desribed in Setion 2 feasible.

De�nition 1 (Orthogonal agnostiity riterion). We say that a predition-

model G is orthogonal-agnosti on Ωt, if for every A ∈ O(n),g ∈ G:

err(z) = err(AT z) (22)

Equation (22) means that the model �ts equally well to any orthogonal trans-

formation of the data. In Setion 4 we will need a more restritive variant of this

riterion, that additionally onsiders projetions of the data to subspaes:

De�nition 2 (Projetive orthogonal agnostiity riterion). We say, that

a predition-model G is projetive orthogonal-agnosti on Ωt, if for every

A ∈ O(n), r ≤ n the following holds:

〈
‖AT

r z− ITr g
∗
AT z(A

T histz,p)‖
2
〉
=
〈
‖AT

r z−AT
r g

∗
z(histz,p)‖

2
〉

(23)

Note that for r = n, (23) simpli�es to (22) and projetive orthogonal agnostiity

beomes equivalent to ordinary orthogonal agnostiity. An even stronger and

very intuitive riterion is the following:

De�nition 3 (Commuting with orthogonal transformations). We say,

that a predition-model G ommutes with orthogonal transformations, if

for every A ∈ O(n) the following holds:

g∗
AT z = ATg∗

z. (24)

This riterion implies projetive and ordinary orthogonal agnostiity. To assure

projetive orthogonal agnostiity, it is a straightforward proedure to onstrut

models suh that they ommute with orthogonal transformations.

De�nition 4 (Information onsisteny riterion).We say that a predition-

model G is information-onsistent on Ωt, if for every A ∈ O(n), r ≤ n the

following holds:

〈
‖AT

r z− g∗
AT

r
z(A

T
r histz,p)‖

2
〉
≥
〈
‖AT

r z−AT
r g

∗
z(histz,p)‖

2
〉

(25)

An information-onsistent model always bene�ts from more data rather than

getting onfused by it. For r = n, (25) follows from orthogonal agnostiity.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 73

Theorem 1 G
lin

is projetive orthogonal agnosti and information onsistent.

Proof. Projetive orthogonal agnostiity follows beause the model ommutes

with orthogonal transformations, as Bz(A) = ATBz(I)A. A formal proof for

information onsisteny of G
lin

is tehnially more hallenging, but straight for-

ward based on the provided alulus. However, we skip it here.

4 Relaxation Gap Theorem

Theorem 2 For any predition model lass G that is projetive orthogonal ag-

nosti and information onsistent, the following holds:

If ∃ r ≤ n, A∗ ∈ O(n) : err(A∗
r
T
z) = 0 (26)

and ∄ r̃ > r, A∗ ∈ O(n) : err(A∗
r̃
T
z) = 0 (27)

then err(A(0)
r

T
z) = 0 (28)

(27) has the purpose to ensure, that the maximal r holding (26) is used in (28).

Proof. De�ne O(r, s) := diag(O(r),O(s)) as the set of spae-partition preserv-

ing orthogonal transformations, i.e. every Ã ∈ O(r, s) ⊂ O(r + s) has the form
(
Arr 0
0 Ass

)
with Arr ∈ O(r) and Ass ∈ O(s). We derive that any global solutions

A(0)
, B(0)

of (20) an only di�er by a transformation ontained in O(r, s):

∃ Ã ∈ O(r, n− r) : A(0) = B(0)Ã (29)

One an show that

∀ r ≤ n,A ∈ O(n), Ã ∈ O(r, n− r) : err(ITr A
T z) = err(ITr (AÃ)T z) (30)

This implies that solutions of (19) persist, if transformed by any Ã ∈ O(r, n−
r). By ondition (26), we have err(A∗

r
T z) = 0. By information onsisteny, it

follows that

〈
‖A∗

r
T z−ITr g

∗
A∗T z

(A∗T histz,p)‖
2
〉
= 0. So A∗

is a ommon global

optimum of (19) and (20). By (29) it holds that: ∃ Ã ∈ O(r, n−r) : A(0) = A∗Ã.

Finally by (30) we onlude that A(0)
must also be an optimum of (19).

By ontinuity arguments, the impliation of theorem 2 extends to signals

with omponents of low error � the lower the error is, the more preise we an

�nd an optimum of (19) by solving (20).

5 Conlusion

With Preditable Feature Analysis we present a method to extrat preditable

features in a rigorously pratial sense, diretly providing a model that atually

performs the predition. While the algorithm is based on involved alulus, it

boils down to ompletely lassial methods in the end (Eigenvalue-, Singular

Workshop New Challenges in Neural Computation 2015

74 Machine Learning Reports

value deomposition), also inheriting omputational ost and salability from

these. Note that paralellizable eigenvalue solvers exist, also designed to run ef-

�iently on a Graphis Proessing Unit (GPU), a highly parallelized proessor

type widely available on graphis ards.

Further we have provided some theory to desribe the onditions under whih

PFA works best and an be used with other predition models. We expet to �nd

appliations for PFA in the �eld of goal-driven ontrol-tasks and reinforement

learning. For instane we plan to use PFA to obtain well preditable proto value

funtions for use in ontinuous navigation tasks.

Aknowledgment

The authors aknowledge support from the German Federal Ministry of Edu-

ation and Researh within the National Network Computational Neurosiene

- Bernstein Fokus: �Learning behavioral models: From human experiment to

tehnial assistane�, grant FKZ 01GQ0951.

Referenes

1. W. Bialek, I. Nemenman, and N. Tishby. Preditability, omplexity, and learn-

ing. Neural Comput, 13:2409�2463, Nov 2001. [DOI:10.1162/089976601753195969℄

[PubMed:11674845℄.

2. Mathias Franzius, Niko Wilbert, and Laurenz Wiskott. Invariant objet reognition

and pose estimation with slow feature analysis. Neural Computation, 23(9):2289�

2323, 2011.

3. Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott. Slowness and sparse-

ness lead to plae-, head diretion-, and spatial-view ells. In Pro. 3rd Annual

Computational Cognitive Neurosiene Conferene, Nov. 1�2, San Diego, USA,

pages III�8, 2007.

4. Laurenz Wiskott. Estimating driving fores of nonstationary time series with slow

feature analysis. arXiv.org e-Print arhive, 2003.

5. Sven Daehne, Niko Wilbert, and Laurenz Wiskott. Self-organization of v1 omplex

ells based on slow feature analysis and retinal waves. In Pro. Bernstein Confer-

ene on Computational Neurosiene, Sep 27�Ot 1, Berlin, Germany, 2010.

6. Tobias Blashke, Tiziano Zito, and Laurenz Wiskott. Independent slow feature

analysis and nonlinear blind soure separation. Neural Computation, 19(4):994�

1021, 2007.

7. Felix Creutzig, Amir Globerson, and Naftali Tishby. Past-future information bot-

tlenek in dynamial systems. Physial Review E, 79:041925, 2009.

8. Felix Creutzig and Henning Sprekeler. Preditive oding and the slowness priniple:

An information-theoreti approah. Neural Computation, 20(4):1026�1041, 2008.

9. Georg Goerg. Foreastable omponent analysis. In Sanjoy Dasgupta and David

Mallester, editors, Proeedings of the 30th International Conferene on Mahine

Learning (ICML-13), volume 28, pages 64�72. JMLR Workshop and Conferene

Proeedings, May 2013.

10. Aapo Hyvaerinen. Complexity pursuit: Separating interesting omponents from

time series. Neural Computation, 13(4):883�898, 2001.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 75

Incremental learning of action models as HMMs
over qualitative trajectory representations

Maximilian Panzner and Philipp Cimiano

Semantic Computing Group, CITEC, Bielefeld University,
mpanzner@cit-ec.uni-bielefeld.de

http://www.sc.cit-ec.uni-bielefeld.de

Abstract. In this paper we present an incremental approach to learning
generative models of object manipulation actions as HMMs over qualita-
tive relations between two objects. We compare the incremental approach
against a traditional batch training baseline and show that the resulting
qualitative action models are capable of one-shot learning after just one
seen example while displaying good generalization behavior as more data
becomes available.

Keywords: hidden markov models, model merging, action recognition,
online classification, qualitative trajectory calculus

1 Introduction

Acquiring representations or models of actions is important for many embodied
intelligent systems that need to act in the world. We present a system which
incrementally learns action models as Hidden Markov Models (HMMs) over
qualitative relations between two objects. The incremental nature of the model
building process allows the system to learn and adapt continuously. The result-
ing action specific models are capable of one–shot learning after just one seen
example while displaying good generalization behavior as more and more data
becomes available. There has been a lot of work in the field of intelligent sys-
tems on developing formalisms for learning and representing actions, ranging
from task-space representations [1] to high-level symbolic description of actions
and their effects on objects [2]. With our system we aim at bridging the gap
between low-level representations and high-level object manipulation plans in
a way that facilitates transfer of learned concepts between the representational
levels. On the one hand, we abstract away from continuous task-space values
such as joint angles and Euclidian positions. On the other hand, in contrast to
purely symbolic descriptions like logic oriented action descriptions, we model
actions as distributions and are thus able to capture variation in action perfor-
mance. As an intermediate-level representation between two objects, we chose
to build on the qualitative trajectory calculus as a formal foundation, which
discretizes the relative position and movement of the objects into qualitative
relations. The temporal progression of action instances is modeled using HMMs.

Workshop New Challenges in Neural Computation 2015

76 Machine Learning Reports

As we target applications in the field of human robot interaction, where the
human tutors expect the robot to be responsive toward new tasks or stimuli, we
adopt an incremental model merging scheme to estimate the HMM parameters
on-line [3].

2 Method

In this approach action models are represented as Hidden Markov Models (HMM)
over sequences of qualitative relations between a trajector and a landmark ex-
pressed in the Qualitative Trajectory Calculus (QTC). This model was already
successfully applied to a co-development task using both action and linguistic
cues to emerge structured, joint representations of action performances along
with the grammatical structure of natural language sentences describing the
respective action [4].

2.1 Qualitative action models

To describe the relative position and movement between landmark and trajector
we build on the qualitative trajectory calculus - double cross (QTCC1) [5] as a
formal foundation. In general, QTC describes the interaction between two mov-
ing point objects k and l with respect to the reference line RL that connects them
at a specific point t in time. The QTC framework defines 4 different subtypes
as a combination over different basic relations between the two objects. As we
only have one actively moved object in our experiments, we decided on QTCC1

to give the best trade off between generalization and specificity of the qualita-
tive relations. QTCC1 consists of a 4-element state descriptor (C1, C2, C3, C4)
where each Ci ∈ {−, 0,+} represents a so called constraint with the following
interpretation:

C1 Distance constraint: Movement of k with respect to l at time t1:
- k is moving towards l
0 k is not moving relative to l
+ k is moving away from l

C2 Distance constraint: Movement of l with respect to k at time t1: same as
above but with k and l interchanged

C3 Side constraint: Movement of k with respect to RL at time t1:
- k is moving to the left-hand side of RL
0 k is moving along RL or not moving at all
+ k is moving to the right-hand side of RL

C4 Side constraint: Movement of l with respect to RL at time t1 analogously to
C3

As the positions in our dataset were sampled at a fixed rate, we could have
missed some situations where one or more state descriptor elements transition
through 0. These discretization artifacts are compensated by inserting the miss-
ing intermediate relations one at a time from left to right. QTCC1 is a rather

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 77

coarse discretization, leading to situations where the qualitative relation between
the two objects can hold for a longer portion of the trajectory and is, due to
the fixed rate sampling, repeated many times. Unlike many spatial reasoning
systems, where repeating states are simply omitted, we use a logarithmic com-
pression of repetitive subsequences:

|ŝ| = min(|s|, 10ln(|s|+ 1)) (1)

where |s| is the original number of repeated symbols in the sequence and |ŝ|
is the new number of repeated symbols. By applying this compression scheme
we preserve information about the acceleration along the trajectory, which in-
creases the overall performance especially for very similar actions like “jumps
over” and “jumps upon”, while still allowing to generalize over high variations in
relative pace of the action performances. The logarithmic compression of repet-
itive symbols in a sequence is in line with findings from psychophysics known as
the Weber-Fechner law[6].

2.2 Learning qualitative action models

Differing from previous work [4], where we learned action models by batch train-
ing over all underlying trajectories, we now apply an incremental learning scheme
utilizing the best first model merging [7,8] framework. Model merging is inspired
by the observation that, when faced with new situations, humans and animals
alike drive their learning process by first storing individual examples (memory
based learning) when few data points are available and gradually switching to
a parametric learning scheme to allow for better generalization as more and
more data becomes available [9]. Our approach mimics this behavior by starting
with simple models with just one underlying sequence, which evolve into more
complex models generalizing over a variety of different sequences as more data
becomes available.
The process to evolve simple models into complex ones relies on three basic oper-
ations. Data incorporation integrates a new observation sequence into an ex-
isting, possibly empty, model. State merging consolidates the resulting model
in a way which allows it to generalize to yet unseen trajectories by intertwining
paths corresponding to different action performances. Model evaluation ap-
proximates how well a given model fits its constituting dataset. This incremental
learning scheme allows our models to display good generalization performance
when faced with new samples while still being capable of one-shot learning after
just one seen example. Learning, as generalization over the concrete observed
examples, is driven by structure merging in the model in a way that we trade
model likelihood against a bias towards simpler models, known as the Occam’s
Razor principle, which among equally well predicting hypothesis prefers the sim-
plest explanation requiring the fewest assumptions. As graphical models, HMMs
are particularly well suited for a model merging approach because data incorpo-
ration, state merging and model evaluation are straightforward to apply in this
framework and implemented as graph manipulation operations:

Workshop New Challenges in Neural Computation 2015

78 Machine Learning Reports

Data incorporation: When a new sequence is to be integrated into a given
model we construct a unique path between the initial and the final state of the
model where each symbol in the sequence corresponds to a fresh state in the new
path. Each of these states emits its respective symbol in the underlying sequence
and simply transitions to the next state with probability 1, yielding a sub path
in the model which exactly reproduces the corresponding sequence.
State merging: The conversion of the memory based learning scheme with
unique sub paths for each sequence in the underlying dataset into a model which
is able to generalize to a variety of similar trajectories is achieved by merging
states which are similar according to their emission and transition densities.
Merging two states q1 and q2 means replacing these states with a new state q̂
whose transition and emission densities are a weighted mixture of the densities
of the two underlying states.
Model evaluation: We evaluate the models resulting in the merging process
using a mixture composed of a structural model prior P (M) and the data de-
pendent model likelihood P (X|M):

P (M |X) = λP (M) + (1− λ)P (X|M) (2)

The model prior P (M) acts as a data independent bias. Giving precedence to
simpler models with fewer states makes this prior the primary driving force in
the generalization process:

P (M) = e−|M |, (3)

where the model size |M | is the number of states in the model. It is also possible
to include the complexity of the transitions and emissions per state. For our
dataset we found that using only the number of states generates the best per-
forming models. While the structural prior favors simpler models, its antagonist,
the model likelihood, has its maximum at the initial model with the maximum
likelihood sub-paths. The exact likelihood of the dataset X given the model M
is computed as:

P (X|M) =
∏
x∈X

P (x|M) (4)

with

P (x|M) =
∑

q1...ql∈Ql

p(qI → q1)p(q1 ↑ x1) . . . p(ql ↑ xl)p(ql → qF) (5)

where l is the length of the sample and qI , qF denote the initial and final states
of the model. The probability to transition from a state q1 to q2 is given as
p(q1 → q2) and p(q1 ↑ x1) denotes the probability to emit the symbol x1 while
being in state q1. As we do not want to store the underlying samples explic-
itly, we use an approximation, which considers only the terms with the highest
contribution, the Viterbi path:

P (X|M) ≈
∏
q∈Q

(∏
q′∈Q

p(q → q′)c(q→q′)
∏
σ∈Σ

p(q ↑ σ)c(q↑σ)

)
(6)

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 79

Fig. 1. Sequence of models obtained by merging samples from an exemplary language
(ab)+ and subsequently merging the highlighted states. Reproduced from [7].

where c(q → q′) and c(q ↑ σ) are the total counts of transitions and emissions
occurring along the Viterbi path associated with the samples in the underlying
dataset (see [7] for details).

The simplest model in our approach is a model which simply produces a sin-
gle sequence. These models are called maximum likelihood models because they
produce their respective sequences with the highest possible probability. Start-
ing from maximum likelihood models over individual sequences we build more
general HMMs by merging simpler ones and iteratively joining similar states to
intertwine sub-paths constructed from different sequences, allowing them to gen-
eralize across different instances of the same action class. The first model M0 of
the example in figure 1 can be seen as a joint model of two maximum likelihood
sequences {ab, abab}. When generating from such a model, the actual sequence
which will be generated is determined early by taking one of the possible paths
emanating from the start state. Only the transitions from the start state display
stochastic behavior, the individual sub-paths are completely deterministic and
generate either ab or abab. Intertwining these paths is done trough state merg-
ing, where we first build a list of possible merge candidates using a measure of
similarity between state emissions and transition probability densities. In this
approach we use the symmetrized Kullback-Leibler (KL) divergence. Then we
greedily merge the best pair of states and re-evaluate the model likelihood. In
the example above, the first two merges lead to model M3 where we experienced
a drop in log likelihood from −0.602 to −0.829. We continue the merging process
until we reach a point where merging more states would deteriorate the model
likelihood to a point where it is no longer compensated by the prior favoring sim-
pler models (eq. 3). The final model M4 is now able to generate the whole set
of sequences from the exemplary language (ab)+ the two initial samples where
drawn from.

Workshop New Challenges in Neural Computation 2015

80 Machine Learning Reports

Fig. 2. Averaged class confusion matrix for the batch (left) and the incremental (right)
approach.

3 Experiments

3.1 Dataset

To acquire a dataset we implemented a simple game where the test subjects
where asked to perform an action with two objects according to a given instruc-
tion. The game screen was divided into two parts. The upper part was the actual
gamefield with the two freely movable objects and below the gamefield was a
textfield, where the test subjects could see the instruction describing the desired
action performance. We had a total of 12 test subjects yielding a dataset with
1200 sample trajectories balanced over the four action classes “jumps over”,
“jumps upon”, “circles around” and “pushes”. See [4] for a complete description
of the dataset.

3.2 Batch vs. Incremental

To validate the incremental model building scheme we evaluate the performance
of the incremental process against a traditional Baum Welch parameter estima-
tion baseline. We consider a setting where the system is trained using recorded
action performances from 11 test subjects and is then presented with a 12th set
of action trajectories recorded from a new performer. Following this scheme the
dataset is partitioned into 12 folds with 1100 training examples and 100 test

F1 precision recall σ

Batch 0.86 0.82 0.90 0.11
Incremental 0.86 0.82 0.90 0.12

Table 1. Results of the 12-fold cross-validation for the batch and the incremental
approach.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 81

-0,2

 0

 0,2

 0,4

 0,6

 0,8

 1

 0 10 20 30 40 50 60 70 80 90

F 1
 sc

or
e

Number of states

Fig. 3. Development of F1 scores as the number of hidden states is increased for the
batch training approach. The errorbars indicate the standard deviation of the F1 scores
across the 12 folds.

examples for each fold. We trained one HMM for each of the four action classes.
Test sequences where classified according to the action specific HMM having the
highest probability to have produced the respective sequence. Both approaches
showed almost identical results (see table 1) with both having an averaged F1

score of 0.86. The only difference is a slightly higher standard deviation between
the results of the 12 folds for the incremental approach. The class confusion
matrices in figure 2 show again only slight differences for both approaches. A
noteworthy observation here is that the class confusions are not symmetric.

3.3 Parameter Sensitivity

In this experiment we evaluate the sensitivity of the batch and the incremental
approach to their respective free parameters. As can be seen in figure 3 the
classical Baum-Welch approach to HMM parameter estimation is highly sensitive
to its structural parameter, the number of hidden states. F1 scores range from
0.03 to 0.86 as the number of hidden states in the model is increased. The
incremental approach on the other hand displays an almost linear response over

0,84

0,84

0,85

0,85

0,86

 0 0,2 0,4 0,6 0,8 1

F 1
 sc

or
e

λ

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

M
ea

n
nu

m
be

r o
f s

ta
te

s

λ

Fig. 4. Sensitivity to the λ parameter of the incremental approach.

Workshop New Challenges in Neural Computation 2015

82 Machine Learning Reports

0.30

0.40

0.50

0.60

0.70

0.80

 10 20 30 40 50 60 70 80 90 100

Number of training samples

F1
precision

recall

Fig. 5. Early learning behavior of the incremental model. The model performs notably
well even with a single training example.

the whole range of values for the λ parameter (equation 2). While the F1 score
is stable with respect to λ, the number of hidden states in the model decreases
drastically from 170 to 39 (at λ = 0.95). Setting λ = 1 and thus evaluating the
model quality only by the prior favoring simpler models with less states leads to
poorly performing models with just a single hidden state.

3.4 Early learning behavior

In this experiment we evaluate the one–shot learning capability of the incremen-
tal model. We prepared training sets with only 1 to 100 examples per action
class and evaluated the classification performance as in section 3.2. As can be
seen in figure 5 the precision is with 54% already notably good after the classifier
had seen only one training example per action class.

3.5 Early classification behavior

To evaluate how well the system performs when it is presented with incom-
plete sequences, we trained the system as in section 3.2 but truncated the test
sequences. As can be seen in figure 3.5, the sequences for the push action are
rather distinctive. After the classifier has seen only 5% of the sequence, over 70%
of the respective sequences are correctly classified as belonging to that action
class. The “circles around” and “jumps over” actions get classified rather late in
the sequence because a jumping trajectory could easily look like the start of a
circles around action.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 83

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

St
ab

le
 cl

as
sifi

ca
tio

n
re

su
lts

 %

Sequence length %

circles around
pushes

jumps upon
jumps over

Fig. 6. Early sequence classification behavior. The x-axis represents the length of the
sequence presented to the classifier and the y-axis the percentage of sequences for which
their classification result will not change if more of the sequence was presented.

References

1. Komei Sugiura, Naoto Iwahashi, Hideki Kashioka, and Satoshi Nakamura. Learning,
generation and recognition of motions by reference-point-dependent probabilistic
models. Advanced Robotics, 25(6-7):825–848, 2011.

2. Moritz Tenorth and Michael Beetz. KnowRob – Knowledge Processing for Au-
tonomous Personal Robots. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4261–4266, 2009.

3. Andreas Stolcke and Stephen Omohundro. Hidden markov model induction by
bayesian model merging. Advances in neural information processing systems, pages
11–11, 1993.

4. Maximilian Panzner, Judith Gaspers, and Philipp Cimiano. Learning linguistic con-
structions grounded in qualitative action models. IEEE International Symposium
on Robot and Human Interactive Communication, 2015.

5. Nico Weghe, Bart Kuijpers, Peter Bogaert, and Philippe Maeyer. A Qualitative
Trajectory Calculus and the Composition of Its Relations. GeoSpatial Semantics
SE - 5, 3799(Dc):60–76, 2005.

6. Thomas Bruss and Ludger Rüschendorf. On the perception of time. Gerontology,
56(4):361–370, 2010.

7. Stephen Omohundro. Best-first model merging for dynamic learning and recog-
nition. In Advances in Neural Information Processing Systems 4, pages 958–965.
Morgan Kaufmann, 1992.

8. Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by
bayesian model merging. In Grammatical inference and applications, pages 106–
118. Springer, 1994.

9. Roger N Shepard. Toward a universal law of generalization for psychological science.
Science, 237(4820):1317–1323, 1987.

This research/work was supported by the Cluster of Excellence Cogni-
tive Interaction Technology ’CITEC’ (EXC 277) at Bielefeld University,
which is funded by the German Research Foundation (DFG).

Workshop New Challenges in Neural Computation 2015

84 Machine Learning Reports

On the Applicability of Recurrent Neural
Networks for Pattern Recognition in

Electroencephalography Signals

Marcel Binz, Sebastian Otte, and Andreas Zell

Cognitive Systems Group
University of Tuebingen

Tuebingen, Germany

Abstract. Brain-Computer Interfaces (BCI) define a direct communi-
cation interface between brains and external devices, computers or ma-
nipulators. Most BCI require a classification of Electroencephalography
(EEG) signals. This research investigates the application of Recurrent
Neural Networks (RNN) in this domain, with a focus on the learning
properties of Dynamic Cortex Memories (DCM), an extension of the
Long Short-Term Memory (LSTM) model. Methods are evaluated on
a cued motor imagery task, where subjects have to imagine different
movements over a fixed period of time. While the investigated recurrent
architectures do not outperform state-of-the-art methods in terms of final
accuracy, they provide several important advantages, like their ability to
predict just-in-time, the absence of a time window in the recall phase,
and their adaptability. Conclusively, the applied methodology exhibits
the promising potential of RNN based BCI systems.

Keywords: EEG, Recurrent Neural Network, Dynamic Cortex Mem-
ory, Long Short Term Memory

1 Introduction

Brain-Computer Interfaces (BCI) allow for direct communication between the
brain and external devices by specifying a mutual language. This requires an
interpretation of brain signals in terms of classification. Here we analyse the
application of Recurrent Neural Networks (RNN) for such signals captured with
Electroencephalography (EEG).

State-of-the-art BCIs use µ- and β-rhythms to derive the desired mapping. A
time window is specified, over which variances of a band-pass filtered signal are
computed. These are used as input for Support Vector Machines (SVM) or linear
models, like Linear Discriminant Analysis (LDA). Discriminability between two
classes is increased by the Common Spatial Pattern (CSP) algorithm, which
maximizes variance in one condition, while minimizing it in the other, achieving
information transfer rates of 50 bits/min [3].

While traditional supervised methods assume an independent and identical
distribution of the data set, this assumption does not hold for EEG measure-
ments, since they are clearly correlated over time. RNNs offer a way to model

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 85

these dependencies. They are, in theory, able to recognize and learn relevant
temporally encoded patterns automatically. Thus, no information will be lost by
averaging over time windows and information will not be restricted to the same
window. The CSP algorithm assumes a jointly Gaussian-distributed source ac-
tivation and known frequency bands, possibly limiting its power and restricting
its use cases. In an optimal scenario RNNs would work on raw data and detect
even unknown properties automatically.

EEG signals have been applied as inputs for RNNs in multiple domains,
for example the prediction of epileptic seizures [14]. Gueler et al. [8] employ
Lyapunov exponents for signal classification in combination with EEG measure-
ments. Probably most relevant to our work is classification of imagined mental
tasks with Elman RNNs [5]. LSTMs in particular were utilized to detect lapse
and achieved high temporal resolution [2].

This research, however, focuses on Dynamic Cortex Memory (DCM) based
RNNs [13]. The DCM model, an extension of the well-established Long Short-
Term Memory (LSTM) [9, 6, 7], provides an architectural modification, which
facilitates faster convergence and a more stable behavior during training. Espe-
cially, results presented in [12] indicating their superiority on suppressing high-
frequency noise, make them interesting for the problem scenario given in this
paper due to the noisy nature of EEG signals.

The remainder of this paper is structured as follows: Section 2 provides foun-
dations on BCI systems and relevant signal properties. In Section 3 RNNs, and
particularly the DCM architecture, are briefly recapitulated. Then, in Section 4,
the data set is introduced and the experimental setup is outlined. The results
achieved are presented and discussed in Section 5. Finally, Section 6 concludes
major aspects and observations, and motivates future studies.

2 Brain Computer Interfaces and Electroencephalography

While computers are able to exchange information with each other at the speed
of over one terabits/sec, information transfer rates between humans and com-
puters reach a maximum of 50 bits/sec [16, 4]. BCI address this communication
bottleneck by providing a direct communication channel between the brain and
an executing device. To archieve this they establish a new mutual language be-
tween both interactors. Developing BCIs will have major impacts on the way
human interaction with computers works. The current state of research is still
far away to be used universally in practice, but there are target groups, which
could receive immediate benefits. Restoring motor functions in locked-in patients
or monitoring in high risk situations are the first use cases that come to mind.
Additionally BCIs have the possibility to provide better understanding of brain
pattern.

2.1 The BCI Pipeline

Typical BCIs include multiple processing steps (Figure 1), starting with cap-
turing the signal. For this purpose EEG is most prevalent. In EEG multiple

Workshop New Challenges in Neural Computation 2015

86 Machine Learning Reports

electrodes are placed on the scalp to measure corresponding electrical activities.
Due to the existence of functional maps their spatial location provides useful
information. Once digitalized, preprocessing methods are applied to increase the
signal-to-noise ratio. In the last step a translation algorithm generates a mapping
from the transformed signal to a command.

In some BCIs these algorithms are stationary and rely on the users to learn
a voluntarily regularization of their brain activity in order to archive control,
while others employ machine learning algorithms to adapt themselves to already
present pattern.

Fig. 1. Processing steps of a BCI. Captured signals are transformed with preprocessing
methods. These are then passed on to a classifier, which generates the task specific
mapping, leading to device commands [11].

2.2 Motor Imagery Tasks

Motor imagery tasks are part of the BCI framework. In their experimental setup
a subject has to imagine a movement out of a predefined set of movements. In the
synchronous version the length of the imagination is fixed and known in advance,
while the asynchronous version discards this constraint. It is known, that move-
ments or only their imagination are indicated by decreased µ- and β-rhythms
(see Figure 2). This process is referred to as Event-Related Desynchronization
(ERD).

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 87

0 5 10 15 20 25 30
−150

−100

−50

0

50

100

150

Frequency (Hz)

P
o
w
er

C3-Cz
C4-Cz

Fig. 2. Average power of the fourier transformed signal in one condition. The blue line
corresponds to the difference between C3 and Cz, the red one to the difference between
C4 and Cz. A decrease in µ- and β-rhythms is observed in one electrode, while it is
absent in the other.

3 Dynamic Cortex Memory

With the introduction of the Long Short-Term Memory (LSTM) [9], especially
Recurrent Neural Networks (RNNs), enjoy again emerging popularity. Due to
their cyclic connections RNNs can learn temporal dependencies in data se-
quences. In contrast to standard RNNs, networks containing LSTM blocks [9],
which are themselves a special kind of a recurrent network, that can be seen as
differentiable memory cells, are even able to deal with long time-lag problems.
LSTMs provide additional abilities. These are, for instance, that they are able
to learn highly non-uniformly compressed sequences, where the position of im-
portant input events is difficult to predict or the adequate recognition of even
noisy sequences.

However, in this paper recently introduced Dynamic Cortex Memory (DCM)
networks [13] are used. A DCM block is in principle an LSTM block with for-
get gates [6] and peep-hole connections [7], but has several novel weighted con-
nections within each block, i.e. connections from each gate to each other gate
and a self-recurrent connection for each gate (see Figure 3). As in LSTM net-
works the gradient is computed using Back Propagation Through Time (BPTT).
Nonetheless, even if there are more connections per block, DCM networks tend
to require less blocks and, thus, less weights than LSTM networks to achieve
similar or even better results. DCMs were shown to converge faster than LSTMs
during training and behave more stably [13, 12].

4 Experimental Setup

The present data set [10] consists of a 2-class motor imagery task and was part
of the BCI Competition IV [1]. Classes include a left and a right movement and

Workshop New Challenges in Neural Computation 2015

88 Machine Learning Reports

Π

ΠΠ

Forget gate φ

Output gate ωInput gate ι

CEC

gc

fc

Input Output

· · ·

··
· ···

··· ···

Fig. 3. Illustration of a DCM block [12]. Like LSTMs, DCMs consist of at least one
memory cell that is controlled by three gates. Additionally, DCMs provide an inter-
gate communication infrastructure that connects each gate with each other gate. This
includes also a self-recurrent connection for each gate.

corresponding cues were presented synchronously. EEG data of nine subjects was
collected. All were right-handed and had normal or corrected-to-normal vision.
For each subject five sessions were recorded. The first two sessions were recorded
normally, while the last three contained feedback in form of a smiley face. The
last two sessions are used to evaluate submission and their true labels were not
distributed until the end of the competition. To ensure a fair comparison they
are also not used for training in this work.

During all sessions subjects were placed in an armchair and had to watch
a monitor with a distance of approximately one meter. Electro-oculargraphy
(EOG) activation was recorded separately prior to the actual task. Three EEG
channels were measured with a sampling frequency of 250 Hz.

Before the first session each subject individually selected a movement, which
they could imagine best (for example pulling a brake or squeezing a ball). Due to
their correspondence with evaluation sessions, we will only use the third session
for training. A session consisted of four runs with 40 trials (20 for each class).
At the start of each trial a fixation cross followed by a short warning sound was
presented. After the fixation cross disappeared, a visual cue was shown. Feedback
started 0.5 seconds later. The subjects were instructed to move the smiley to
the respective side by imagining the corresponding movement. Positive feedback
was provided by a green smiley, negative by a red one. The cue vanished at 7.5
seconds, which results in a feedback period of four seconds. A break between one
and two seconds was added after each trial.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 89

5 Results and Discussion

Entries from the competition were required to provide predictions for each
recording step. From all these Cohen’s Kappa, as given in Equation (1), is used to
evaluate their performance. To ensure comparison we will stick to this measure.

K =
p0 − pc
1− pc

(1)

Here, p0 is the observed chance and pc the random chance for an agreement.
Note that the presented results are average Kappa values calculated for entire
output sequences.

EOG artifacts were removed for all subjects except for subject 5, because of
missing EOG recordings in evaluation sessions, by a method based on regres-
sion analysis [15]. Mutual Information was used to locate subject specific µ- and
β-bands. Fifth-order Butterworth filters extracted information from the two se-
lected bands. Band power, corresponding to its squared value, of the transformed
signal was obtained and used as input for the network. Resulting networks con-
sisted of six input units, one hidden layer with eight DCM units and a softmax
output layer.

80 % of the data were used for training, 20 % were separated from the training
set and used for validation. Supervised feedback was provided in terms of a target
sequence with length corresponding to the input, which does not only optimize
classification for the sequence as a whole during the learning process, but also for
previously unlearned parts. Training with sequential targets has the drawback of
many adjacent learning iterations of the same class. Due to this, batch learning
was used to derive gradients. A decay rate of 0.01 and a momentum term of 0.9
were set. A 3 × 4 cross-validation between the learning rate (10−6, 3 · 10−7 or
10−7) and the selection of the training interval (0− 4s, 0.5− 3.5s, 0.5− 2.5s or
1.5− 3.5s) was performed and the best network based on the validation set was
chosen. During this process subjects 2 and 3 showed unsatisfying performances,
thus their networks were trained using wider frequency bands and data from all
available subjects.

Figure 4 plots the average development of correct predictions over the course
of a trial. Starting with guessing at chance level the networks are able to detect
patterns and to transmit them over a whole trial. This process leads to steadily
improved predictions. It is to mention that the winner of the competition used a
two second decay for classification, which limits usage in online BCI. Compared
to this, RNNs are always able to perform predictions just-in-time. It is still
straight forward to incorporate a delay in the network and thus improve its
performance, see Figure 4 for a realization.

Table 1 shows the final results of the competition in 2008. While not placing
in the top ranks, the RNNs achieve competitive results, averaging Kappa values
of 0.43 without delay and 0.53 with induced delay.

Usage of DCM networks allows to discard several constraints and requires less
a priori knowledge. They do not require the fixation of a time window in advance,
which provides more flexibility. Additionally their results are independent of

Workshop New Challenges in Neural Computation 2015

90 Machine Learning Reports

0 1 2 3 4

0

0.5

1
A
cc
u
ra
cy

Time

0 1 2 3 4

0

0.5

1

A
cc
u
ra
cy

Time

Fig. 4. Both plots display the average percentage of correct predictions for one subject
over all time points. The left plot consists of un-delayed outputs, here accuracy remains
at chance level at the beginning. Over time the network is able to identify pattern and
accumulate them. At the end of a trial a nearly perfect prediction is reached. Delaying
the prediction by a two second window, as indicated in the left plot, leads to the
accuracies in the right plot.

Rank Contributor Kappa Approach

1 Chin et al. 0.60 Filter Bank CSP & Naive Bayes Parzen Window Classifier
2 Gan et al. 0.58 CSSD & LDA
3 DCM with 2s delay 0.53 DCM with 2s delay
4 Coyle et al. 0.46 CSP, NTSPP & SVM or LDA
5 DCM without delay 0.43 DCM without delay
6 Lodder et al. 0.43 Wavelet packet transform & LDA
7 Saa 0.37 Spectral features & ANN
8 Ping et al. 0.25 Bandpower & Bayesian LDA

Table 1. Final results of all submissions for data set 2b in the BCI Competition IV
[1], including those archived by DCM networks in this work.

variants of the CSP algorithm. They are always able to work online, which
extends the number of possible use-cases.

6 Conclusion

In this work we examined the applicability of RNNs in a 2-class motor imagery
task measured by EEG. Presented networks proved themselves as solid classifiers
for this data set, reaching nearly state-of-the-art level. RNNs do not presuppose
an independent and identically distribution of the data set, allowing them to
retrieve additional information in the case of temporally correlated patterns,
which are clearly present in brain signals. Their property to work just-in-time
without requiring any additional adaptations could turn out to be powerful,
especially in asynchronous or other sophisticated setups.

Additional feature engineering and incorporating adaptive filtering directly
into the networks could further increase their performance. Applying them to
more complex tasks could verify outlined hypothesis regarding their flexibility.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 91

References

1. Blankertz, B.: BCI Competition IV, http://www.bbci.de/competition/iv/
2. Davidson, P.R., Jones, R.D., Peiris, M.T.R.: Eeg-based lapse detection with high

temporal resolution. Biomedical Engineering, IEEE Transactions on 54(5), 832–839
(2007)

3. Dornhege, G.: Toward Brain-computer Interfacing. A Bradford book, MIT Press
(2007)

4. Fitts, P.M.: The information capacity of the human motor system in controlling
the amplitude of movement. Journal of experimental psychology 47(6), 381–391
(Jun 1954)

5. Forney, E.M., Anderson, C.W.: Classification of eeg during imagined mental
tasks by forecasting with elman recurrent neural networks. In: Neural Networks
(IJCNN), The 2011 International Joint Conference on. pp. 2749–2755. IEEE (2011)

6. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction
with LSTM. Neural Computation 12, 2451–2471 (1999)

7. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with
LSTM recurrent networks. Journal of Machine Learning Research 3, 115–143
(2002)

8. Güler, N.F., Übeyli, E.D., Güler, İ.: Recurrent neural networks employing lyapunov
exponents for eeg signals classification. Expert Systems with Applications 29(3),
506–514 (2005)

9. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural computation
9(8), 1735–1780 (1997)

10. Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain–
computer communication: motivation, aim, and impact of exploring a virtual
apartment. Neural Systems and Rehabilitation Engineering, IEEE Transactions
on 15(4), 473–482 (2007)

11. McFarland, D.J., Wolpaw, J.R.: Brain-computer interfaces for com-
munication and control. Commun. ACM 54(5), 60–66 (May 2011),
http://doi.acm.org/10.1145/1941487.1941506

12. Otte, S., Liwicki, M., , Zell, A.: An analysis of Dynamic Cortex Memory Networks
(2015)

13. Otte, S., Liwicki, M., Zell, A.: Dynamic Cortex Memory: Enhancing Recurrent
Neural Networks for Gradient-Based Sequence Learning. In: Wermter et al., S.
(ed.) Artificial Neural Networks and Machine Learning ICANN 2014, pp. 1–8.
No. 8681 in Lecture Notes in Computer Science, Springer International Publishing
(Sep 2014)

14. Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch, D.: Recurrent
neural network based prediction of epileptic seizures in intra-and extracranial eeg.
Neurocomputing 30(1), 201–218 (2000)

15. Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., Pfurtscheller,
G.: A fully automated correction method of eog artifacts in eeg recordings. Clinical
neurophysiology 118(1), 98–104 (2007)

16. Shannon, C.E.: Prediction and entropy of printed english. Bell System Technical
Journal 30, 50–64 (Jan 1951)

Workshop New Challenges in Neural Computation 2015

92 Machine Learning Reports

Population Monte Carlo Meets Contrastive
Divergence Learning

Oswin Krause1, Asja Fischer2, and Christian Igel1

1 Department of Computer Science, University of Copenhagen, Denmark
2 Department of Computer Science and Operations Research, Université de

Montréal, Canada

1 Background

Estimating the log-likelihood gradient with respect to the parameters of an undi-
rected graphical model, such as a Restricted Boltzmann Machine (RBM) [1–3],
is a challenging task. As the analytic calculation of the gradient is computa-
tionally unfeasible, it is often approximated using Markov Chain Monte Carlo
(MCMC) techniques. In k-step Contrastive Divergence (CD-k) learning [2], the
algorithm most often used for RBM training in practice, a Markov chain is ini-
tialized with a sample from the training dataset, and only a small number of
k steps of Gibbs-sampling are performed. This results in a considerable bias of
the gradient approximation [4, 5], which is difficult to detect. To reduce the bias,
the use of persistent Markov chains or alternative sampling techniques such as
parallel tempering were proposed (see the review [3] and referencers therein).
However, these techniques can not exploit parallelization in the same way and
can not be implemented as efficiently as CD-k.

2 Population Monte Carlo and CD

We introduce an Importance Sampling (IS) based approach for bias reduction in-
spired by the Population Monte Carlo method [6]. Assume our goal is to estimate
the expectation Ep(x) {f(x)}, where p(x) = 1

Z p̃(x) is the intractable distribution
of the model (e.g., the RBM) with unknown normalisation constant Z and f(x)
is an arbitrary function using the samples x (e.g., the log-likelihood gradient).
Let q(x) be the distribution of the samples given by starting the Markov chain
from a random sample from the training dataset and running it for k steps. Using
samples of q directly (as in CD-k) will lead to the biased estimate Eq(x) {f(x)}.
Let us now consider a known proposal distribution κ(x′|x) > 0 which allows to
sample some x′ conditioned on a sample x from q. We can now perform IS using
the equality

Ep(x) {f(x)} = Eq(x)

{
Eκ(x′|x)

{
p(x′)

κ(x′|x)
f(x′)

}}
. (1)

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 93

As the normalization constant Z from p(x) is unknown, we calculate p̃(x) and
estimate Z. This leads to the self-normalized IS estimator

Ep(x) {f(x)} ≈
N∑
i=1

ωif(xi)∑N
j=1 ωj

, (2)

based on N samples, where xi ∼ q(·), x′
i ∼ κ(·|xi), and ωi = p̃(x′

i)/κ(x′
i|xi).

For RBMs a natural choice of κ are the tractable conditional distributions used
as transition operator in Gibbs-sampling.

The main problems of the proposed approach are the well-known issues of
IS. First, if the proposal distribution κ is too dissimilar from p, the estimator
will exhibit a large variance. Second, the estimation of Z by 1

N

∑N
i ωi leads to a

bias in the estimator. Furthermore, if the number of samples is small compared
to the complexity of the RBM, samples will not represent the distribution well
enough, which makes this approach more suited for RBMs with a small number
of neurons.

3 Preliminary Results

Our preliminary experiments suggest that the proposed technique works very
well for RBMs with a small number of hidden neurons, outperforming CD-k and
even parallel tempering. However, when the number of hidden units is large we
see no advantage of the new method which may be explained by the fact that the
proposal distribution gets too dissimilar to the RBM distribution and, thus, the
IS-based estimate becomes too unreliable. Therefore, future work has to focus
on finding a good proposal distribution.

References

1. Smolensky, P.: Information processing in dynamical systems: Foundations of har-
mony theory. In Rumelhart, D.E., McClelland, J.L., eds.: Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, vol. 1: Foundations. MIT
Press (1986) 194–281

2. Hinton, G.E.: Training products of experts by minimizing contrastive divergence.
Neural Computation 14 (2002) 1771–1800

3. Fischer, A., Igel, C.: Training restricted Boltzmann machines: An introduction.
Pattern Recognition 47 (2014) 25–39

4. Fischer, A., Igel, C.: Empirical analysis of the divergence of Gibbs sampling
based learning algorithms for Restricted Boltzmann Machines. In Diamantaras, K.,
Duch, W., Iliadis, L.S., eds.: International Conference on Artificial Neural Networks
(ICANN 2010). Volume 6354 of LNCS., Springer-Verlag (2010) 208–217

5. Fischer, A., Igel, C.: Bounding the bias of contrastive divergence learning. Neural
Computation 23 (2011) 664–673

6. Cappé, O., Guillin, A., Marin, J.M., Robert, C.P.: Population Monte Carlo. Journal
of Computational and Graphical Statistics 13 (2004)

Workshop New Challenges in Neural Computation 2015

94 Machine Learning Reports

CAPTCHA Recognition with Active Deep Learning

Fabian Stark, Caner Hazırbaş, Rudolph Triebel, and Daniel Cremers

Technical University of Munich, Germany
{fabian.stark,c.hazirbas,rudolph.triebel,cremers}@in.tum.de

Abstract. CAPTCHAs are automated tests to tell computers and humans
apart. They are designed to be easily solvable by humans, but unsolvable
by machines. With Convolutional Neural Networks these tests can also
be solved automatically. However, the strength of CNNs relies on the
training data that the classifier is learnt on and especially on the size
of the training set. Hence, it is intractable to solve the problem with
CNNs in case of insufficient training data. We propose an Active Deep
Learning strategy that makes use of the ability to gain new training data
for free without any human intervention which is possible in the special
case of CAPTCHAs. We discuss how to choose the new samples to re-train
the network and present results on an auto-generated CAPTCHA dataset.
Our approach dramatically improves the performance of the network if
we initially have only few labeled training data.

1 Introduction

A CAPTCHA [1] (Completely Automated Public Turing test to tell Computers
and Humans Apart) is an automated test to identify whether the user is a
human or not. CAPTCHAs are often used on the internet to prevent automated
programs from abusing online services. Nowadays, most service providers such
as email or online shopping sites require users to solve CAPTCHAs, which most
often consist of some distorted text that must be read and typed in correctly. For
humans this is a comparably simple task, but computers still have difficulties
here. Useful CAPTCHAs should be solvable by humans at least 80% of the times
while programs using reasonable resources should succeed in less than 0.01% of
the cases [4]. An example of a CAPTCHA is shown in Fig. 1.

Recently, researchers have started investigating automated methods to solve
CAPTCHAs. Many of these existing solutions first perform character segmenta-
tion and then recognition. However, they can not solve newer, more challenging
CAPTCHAs, where the letters are skewed so that they can not be separated by
vertical lines. Thus, rectangular windows can not be used for segmentation, and
more powerful classification methods are needed. One successful approach pro-
posed recently by Goodfellow et al . [9] uses a deep Convolutional Neural Network
(CNN), a framework that is also used in many other tasks such as object classifi-
cation [5, 6], automatic speech recognition [8, 10] or natural language processing
[3, 7]. However, a major requirement for training a deep CNN is a very large
training data set (for example the ImageNet [15] data for image classification),

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 95

Fig. 1. Google’s reCAPTCHAs [2] consist of a distorted word and a word scanned
from a text book. The user must type both words, thereby helping to digitize printed
books.

and for CAPTCHA recognition, there is usually only a small annotated training
data set available. Furthermore, the appearance of CAPTCHAs can, in contrast to
objects in natural images, often change significantly from those in the training
data, e.g. due to major changes in the distortion applied to the text.

To address these problems, we propose in this paper an approach that is
based on Active Learning. The idea here is to start learning with a comparably
small training set and to add new training samples in every subsequent learning
round. The decision whether to add a sample to the training data is based on
the uncertainty that the classifier associates with a given prediction. Under the
assumption that this uncertainty estimation is well calibrated, the algorithm
selects the most informative samples to learn from, resulting in less training
samples required than in standard passive learning. As a further advantage,
the algorithm can adapt to new input data that differs in appearance from the
current training data. We note however that our problem is different to other
Active Learning settings in that we do not need a human supervisor to acquire
the ground truth labels for training. Instead, we use the return value that we
obtain automatically when solving a CAPTCHA. Thus, if the classifier is able to
solve a CAPTCHA correctly we can use that information for re-training, because
then the ground truth label is known. Of course, if the CAPTCHA is not solved
we don’t have that information, but we will show how learning can be done
from the correctly predicted samples only. In summary, we present three novel
contributions: First, we show how to compute uncertainty from a deep CNN
and how this relates to correct classification. Second, we peform Active Learning
with a deep CNN. And third, we show that already the correct, but uncertain
classified samples are enough for efficient learning, with the effect that we need
only little training data, and this is obtained without any human intervention.

2 Related Work

Conventional methods aim at detecting the text within natural images in two
disjoint steps [11]: localizing the regions of words or single characters within the
image, segmenting [17] and then recognizing them [19]. In addition, a dictionary
can be used to dismiss unlikely words. For example, Mori and Malik [18] proposed
a method to solve CAPTCHAs using a dictionary with all 411 words that the
considered CAPTCHAs contain. Chellapilla and Simard [4] also solve CAPTCHAs

Workshop New Challenges in Neural Computation 2015

96 Machine Learning Reports

Fig. 2. Convolutional Neural Network for CAPTCHA Recognition. Our CNN is
composed of three convolution, three pooling and two fully-connected layers. The last
layer outputs the probability distributions for all digits for which we can compute the
prediction and uncertainty of the prediction.

by segmenting single characters and recognizing them, but without a dictionary.
However, in modern CAPTCHAs, single characters can not be segmented easily
with rectangular windows, as the characters can overlap each other (see Fig. 1).
These CAPTCHAs are more similar to hand-written text, and LeCun et al . [16]
proposed to use Convolutional Neural Networks (CNN) for recognition of hand-
written digits. These CNNs are designed to construct the hierarchy of the objects
layer by layer and perform classification. In 2014, Goodfellow et al . [9] proposed
to combine localization, segmentation and recognition of multi-character text
using deep CNNs. Training is done on millions of images using a cluster of
several computers. Jaderberg et al . [12] proposed a CNN for text recognition on
natural scene images. However, for training they artificially create a very large
set of text images. In contrast, we use a much smaller training set. By exploiting
Active Learning, we fine-tune the network during runtime, and our network is
fed with correctly classified but highly uncertain test samples.

3 A Deep CNN for CAPTCHA Recognition

We propose a deep CNN to solve the whole sequence of a CAPTCHA. Our purpose
is to recognize the full sequence without pre-segmentation. We use the network
structure shown in Fig. 2. We focus on CAPTCHAs with 6 digits. Each digit is
represented by 62 neurons in the output layer. We define a bijection Θ(x) that
maps a character x ∈ {‘0’,...‘9’, ‘A’,..., ‘Z’, ‘a’,..., ‘z’} to an integer l ∈ {0, ...61}:

Θ(x) =

0 . . . 9, if x = ‘0’ . . . ’9’
10 . . . 35, if x = ‘A’ . . . ’Z’
36 . . . 61, if x = ‘a’ . . . ’z’

. (1)

We assign the first 62 output neurons to the first digit of the sequence, the sec-
ond 62 neurons to the second digit and so on. Thus, for a digit xi the neuron
index n is computed as n = i · 62 + Θ(xi), where i ∈ {0, ..., 5} is the index
of the digit, i.e. the output layer has 6 · 62 = 372 neurons. To predict a digit,
we consider the corresponding 62 neurons and normalize their sum to 1. Fig. 4
shows an example of a network output. Here, the predicted character index for
the first digit is c0 = 52 and the predicted label is x = Θ−1(c0) = ‘q’.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 97

 Train
Classi er

 Predict
 Labels

 Ask
Labels

 Update

 Training
 Data

 Test
 Data Supervisor

 Learnt

 Model

Predictions,

Uncertainties

Additional

Training Data
Training Data

Fig. 3. Flow chart of Active Learning. We start with training on a small data set.
Then, the classifier is applied to some new data, resulting in a label prediction and
an associated uncertainty. From this uncertainty, the classifier decides whether to ask
for a ground truth label or not. In our case, this query is done by solving the given
CAPTCHA with the prediction and using it if it was correct. Then, the training data is
increased and learning is performed again. In our method, we use a deep CNN, which
can be efficiently re-trained using the newly added training samples.

Neuron index n
0 50 100 150 200 250 300 350

O
ut

pu
t o

f e
ac

h
ne

ur
on

0

0.05

0.1

0.15

0.2

0.25

0.3

Θ(x
1
)

0 10 20 30 40 50 60

O
ut

pu
t o

f e
ac

h
ne

ur
on

0

0.2

0.4

0.6

Fig. 4. Example output of the network for the CAPTCHA “qnnivm” in Fig. 2. Left:
There are 62 outputs for each digit. The black box shows the output for the first digit.
Right: Probability distribution for the first digit. The sum is normalized to 1.

4 Active Learning to Reduce the Required Training Data

For a good classification accuracy, CNNs usually require a very large training set.
However, collecting millions of hand-labeled CAPTCHAs is infeasible. Therefore,
we propose to use Active Learning (see Fig. 3). The main idea of this is to add
new training data only if necessary, i.e. if the sample is informative enough for
re-learning. This is decided based on the uncertainty of the prediction, which we
compute using the best-versus-second-best strategy [14], as described next.

4.1 Obtaining the uncertainty

As mentioned above, we estimate the predictive distribution of each digit by
normalizing the sum of the corresponding network outputs to 1. From this we
compute the overall uncertainty η using “best-vs-second-best” as

η =
1

d
·
d∑
i=1

arg max {P(xi) \ arg maxP(xi)}
arg maxP(xi)

, (2)

Workshop New Challenges in Neural Computation 2015

98 Machine Learning Reports

where P(xi) is the set of all network outputs for digit di. Thus we divide the
second best by the best prediction for every digit.

4.2 Querying Ground Truth Information

Our CAPTCHA recognition problem is unique in the sense that we can perform
learning without human intervention. We achieve this by only using those data
samples for re-training, for which the classifier already provided a correct label.
For these, the CAPTCHA can be solved and we know what the correct text is.
However, simply using all these correctly classified samples for re-training would
be very inefficient. In fact, training would be done more and more often, be-
cause the classifier will be better over time and therefore classify more samples
correctly. Thus, with every new correctly classified sample a retraining would
be necessary. To avoid this, we use the uncertainty values presented above: We
sort the correctly classified test samples in each learning round by prediction
uncertainty and use only the most uncertain ones for re-training. This results in
a lower number of required training samples, but as we will show in the experi-
ments, the most uncertain samples are also the most informative for learning.

5 Experimental Evaluation

We present the results of our approach on auto-generated CAPTCHAs. All exper-
iments have been executed using the Caffe [13] deep learning framework on an
NVIDIA GeForce R© GTCTM 750 Ti GPU.

5.1 Dataset Generation

As there is no hand-labeled CAPTCHA dataset, we use our own scripts to generate
CAPTCHAs. During the auto-generation, we ensure that there is no duplication
in the dataset.

We use the Cool PHP CAPTCHA framework to generate CAPTCHAs. They
are composed of distorted text with a fixed length of 6 similar to Google’s
reCAPTCHA. They have a size of 180 × 50. We have modified the framework
to generate black and white images. Furthermore we have disabled shadows and
the line through the text. We also do not use dictionary words, but random
characters. Therefore we have removed the rule that every second character has
to be a vowel. We fix the font to “AntykwaBold”. Fig. 5 shows some examples
of our auto-generated CAPTCHAs.

5.2 Network Design

We use the network illustrated in Fig. 2. The convolutional layers have a size of
48, 64 and 128. They all have a kernel size of 5× 5 and a padding size of 2. The
pooling layers have a window size of 2 × 2. The first and third pooling layers
and also the first convolutional layer have a stride of 2. Then the network has

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 99

qnnivm oigjpj ijcvyl pqmwfj eilrqi

cvodvt njbgzp pzcqee hepfpf ijlmqw

Fig. 5. Example CAPTCHAs used in the experiments.

one fully connected layer with a size of 3072 and a second fully connected layer
(classifier) that has an output size of 372. We also add rectified linear units and
Dropout after every convolutional and the first fully connected layer. The batch
size for every iteration is 64.

5.3 Qualitative Evaluation

We train the network with the SGD algorithm. However, in contrast to other
methods we train the network for all digits independently. The learning rate
changes by the rule α = α0 · (1+γ · t)−β where the base learning rate α0 = 10−2,
β = 0.75, γ = 10−4 and t is the current number of iteration. We set momentum
µ = 0.9 and regularization parameter λ is 5 · 10−4.

As the most expensive part is to get the training samples, our approach
aims at decreasing the required size of the initial training set. So we first of all
train our network with a very small initial training set of 104 images for 5 · 104

iterations. We only achieve an accuracy of 9.6% which even decreases with more
iterations. Because of that, we want to make use of Active Learning.

First of all, we again train our network with 104 training images for 5 · 104

iterations. Afterwards, we classify 5 · 104 test images. Then, we pick new train-
ing samples from the correctly classified ones. We can take all of them, or we
only pick 5 · 103 samples based on their uncertainty: Either with the highest
uncertainty, the lowest uncertainty, or randomly. Uncertainty is computed as
described in Section 4.1. Once the new selected samples are added to the train-
ing set, we re-train the network for 5 · 104 iterations. Subsequently we follow
the same procedure. We apply this algorithm for in total 20 Active Learning
rounds (epochs). The accuracy is computed after every 5 · 103 iterations on a
fixed validation set. We get the best performance with the correct but uncertain
predictions (see top plot in Fig. 6). All results are the average out of two runs.

However increasing the number of samples in the training set requires more
storage. Moreover, one should increase the number of iterations to benefit more
from the cumulated set which will cause longer training time. For all these rea-
sons, we suggest to use only the selected samples at each iteration to re-train
the network. Therefore we again train with 104 initial training images for 5 · 104

iterations. Then we classify 105 test images and replace the training set with 104

of the correct classified ones and train for 2.5 ·105 iterations again. Subsequently
we follow the same procedure and decrease the number of iterations after each
epoch according to the following rule: 2.5·104 iterations until epoch 6, 2·104 until

Workshop New Challenges in Neural Computation 2015

100 Machine Learning Reports

Iterations ·104
0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y
(%

)

0

20

40

60

80

100

added correct and uncertain samples
added all correct samples
added random correct samples
added correct and certain samples

Iterations ·104
0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y
(%

)

0

20

40

60

80

100
used correct and uncertain samples
used random correct samples
used correct and certain samples

Fig. 6. Learning curves for Active Deep Learning. Top: The training set is
increased with the selected samples after each iteration. When using all the correct ones
(black curve), we stop adding new images to the training set after 50 · 104 iterations,
because the size of the training set already exceeds 3 · 106. Bottom: Network is re-
trained only on the new samples. Vertical black lines denote the end of every Active
Learning epoch.

epoch 11, 1.5 ·104 until epoch 16, 1 ·104 until epoch 21 and 5 ·103 until epoch 40.
We again get the best performance with the correct but uncertain predictions
(see bottom plot in Fig. 6). This is reasonable as the network in fact classifies
the images correctly, but still is very uncertain about the prediction. Hence it
can learn from the fact that it was indeed right with its classification. One can
argue that learning with misclassified samples should yield better results. This
is indeed the case, however not possible in practice.

6 Conclusion

We propose a CAPTCHA solving technique that uses initially a very small set
of images to train a deep CNN and then improves the classifier by exploiting
the test samples. New training samples are chosen from the test set based on
their uncertainty. Our results show that the performance of the network can be
significantly improved with the correctly classified but uncertain test samples.

Acknowlegments The work in this paper was partly funded by the EU
project SPENCER (ICT-2011-600877).

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 101

References

1. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai prob-
lems for security. In: EUROCRYPT (2003)

2. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: recaptcha:
Human-based character recognition via web security measures. Science (2008)

3. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language
model. The Journal of Machine Learning Research 3, 1137–1155 (2003)

4. Chellapilla, K., Simard, P.Y.: Using machine learning to break visual human in-
teraction proofs (hips). In: NIPS (2004)

5. Claudiu Ciresan, D., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep
big simple neural nets excel on handwritten digit recognition. arXiv preprint
arXiv:1003.0358 (2010)

6. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: Int. Conf. on Artificial Intell. and Statistics. pp. 215–223 (2011)

7. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th inter-
national conference on Machine learning. pp. 160–167. ACM (2008)

8. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. Audio, Speech, and Language
Processing, IEEE Transactions on 20(1), 30–42 (2012)

9. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V.: Multi-digit number
recognition from street view imagery using deep convolutional neural networks.
ICLR (2014)

10. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. Signal
Processing Magazine, IEEE 29(6), 82–97 (2012)

11. Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep features for text spotting. In:
CVPR (2014)

12. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild
with convolutional neural networks. IJCV (2015)

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

14. Joshi, A., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image
classification (2009)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

16. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998)

17. Lu, Y.: Machine printed character segmentation; an overview. Pattern Recognition
28(1), 67–80 (1995)

18. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: breaking a visual
captcha (2003)

19. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: 2013 12th International Confer-
ence on Document Analysis and Recognition. vol. 2, pp. 958–958. IEEE Computer
Society (2003)

Workshop New Challenges in Neural Computation 2015

102 Machine Learning Reports

Intrinsic Plasticity: A Simple Mechanism to
Stabilize Hebbian Learning in Multilayer Neural

Networks

Michael Teichmann, Fred H. Hamker

Technische Universität Chemnitz, Department of Computer Science,
Straße der Nationen 62, 09107 Chemnitz, Germany

{michael.teichmann,fred.hamker}@informatik.tu-chemnitz.de

https://www.tu-chemnitz.de/informatik/KI/

Abstract. Hebbian learning uses only information local to the neurons.
Hence, there is no control of the encoding by a population of neurons.
This can lead to an imbalanced representation particularly in deeper net-
works. Intrinsic plasticity, the regulation of the neurons excitability, can
overcome this issue by ensuring that each neuron equally participates
in the encoding. We present a simple form of this mechanism, regulat-
ing the mean and the variance of a neuron based on local information,
within a fully plastic multilayer model of the early visual system. Where
all excitatory as well as inhibitory network connections are learnable,
using Hebbian and anti-Hebbian principles. We show that the presented
intrinsic plasticity mechanism effectively regulates the mean and the vari-
ance of the neuron’s activities, improving the encoding of deeper network
layer.

Keywords: intrinsic plasticity, deep neural networks, Hebbian learning

1 Introduction

One of the most important criteria of biologically plausible learning principles
is their locality, i.e. a neuron has only access its own state and incoming sig-
nals. Common formulations of Hebbian learning use only information local to
synapse or neuron. Indeed, such formulations can not ensure that a population
of so defined neurons will learn a codebook representing the inputs manifold.
By extending such populations by plausible mechanisms of inter neuron interac-
tion, as inhibition, it can be shown that an adequate representation of the input
can be learned [2]. A common plausible principle to learn such connections is
anti-Hebbian learning [2, 13, 8]. However, this principle aims only to reduce cor-
relations between neurons based on their coactivity. It has no objective ensuring
an adequate input encoding by a neuron population. Further, Hebbian learning
depends on the association between pre- and postsynaptic activity. If a presynap-
tic neuron shows more activity, it’s connection will be more strengthen. Hence,
it is very likely for more complex input data or in higher layers of abstractions

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 103

in deep networks, that some neurons will show higher activity for the pattern
they encode. Which in turn will enforce the imbalance in subsequent layers.

The human nervous system has various mechanisms to stabilize its function-
ing [12, 11]. Beside homo- and hetero-synaptic regulations of the weight develop-
ment, as synaptic scaling, it has been found that neurons preserve their average
firing rate over time [14]. If a neuron is highly stimulated, respectively weakly,
over a long period of time it can be observed that its sensitivity to this stim-
ulation decreases, respectively increases, and it returns to its previous activity
regime. This means, its intrinsic excitability is adapted, called intrinsic plasticity
[14, 11].

For first computational implementations of intrinsic plasticity it has been
speculated that neurons try to approach an exponential firing regime [10], being
efficient from the perspective of information theory. To transfer any input dis-
tribution into an exponential output distribution, a nonlinear transfer function,
as a sigmodial, is needed [10]. Indeed, it is still unclear whether the objective
of cortical neurons is an exponential regime as well as how they achieve it.
Beside sigmodial activation functions, rectified linear activation functions have
been very common in the past and recently in deep neural networks. There is
also biological evidence that this function type is an adequate description for
cortical neurons [7]. However, this function is mainly linear, except its rectifica-
tion. Hence, mathematically it can not transfer any input distribution into an
exponential one.

We believe that the aspect of the exponential regime is not the objective
of cortical neurons and is a byproduct of the neural circuit developing sparse
representations. Instead, the intrinsic plasticity mechanism aims to stabilize the
operating point of a neuron so that the brain is not wasting resources for non
responding cells or hyperactive ones. Thus, we aim to control the two most
important moments of neural activity, the mean and the variance, by adapting
the slope and the threshold of the neurons rectified linear activation function. We
implemented this form of intrinsic plasticity into a model of the primary visual
cortex (V1) to demonstrate its effectiveness for stabilizing the neural response
properties.

2 Model

Based on our previous work [13, 8], we developed a fully plastic network model
of V1. The network consists of two layers with two populations of excitatory and
inhibitory neurons, respectively. The connectivity between both layers relies on
neuroscientific foundations. Following we will introduce the basic structure and
the main mechanisms of the network.

Architecture After preprocessing the gray scaled input images, using a whiten-
ing procedure [5, 13], we set these images on the input layer LGN (lateral genic-
ulate nucleus). LGN provides input to all neurons in V1-layer 4, which in turn
is projecting to layer 2/3. Beyond the standard feedforward view on V1, we im-
plemented the connectivity based on neuroscientific data [6, 1, 9], resulting in a

Workshop New Challenges in Neural Computation 2015

104 Machine Learning Reports

Fig. 1. Model architecture. Two layer V1 model, using dedicated excitatory and in-
hibitory neurons. The connectivity base on neuroscientific foundations.

richer connectivity structure. Figure 1 provides an illustration of the connections
between all populations of neurons in the network. The neurons in the network
are retinotop organized (for geometry see Table 1). Each neuron has a limited
receptive field and is only connected to its neighbors. For instance, the connec-
tions of the first V1-layer 4 neuron are defined so that it receives input from the
first 12 by 12 patch of the LGN population. Dependent on the position in the
layer grid the next neuron receives a shifted patch (1px shifts). Further, neu-
rons having overlapping connections are all connected with the same inhibitory
neuron. All neurons having the same x and y position also have the same con-
nectivity. If neurons are connected to a certain x-y position then they have a
connection to all neurons at this position, i.e. to all in the z dimension. Due to
this organization the model is scalable to any input size. Indeed to reduce the
computational costs, we chose a 24 by 24 size for the input.

Neuron activation function The model neurons are described via differential
equations calculating the firing rate. The membrane potential mj of a neuron j
is calculated via Eqn. 1,

τm
∂mj

∂t
= aj ·

∑
i

wijri −
∑
k,k 6=j

ckjrk − θj

−mj (1)

where ri denotes the firing rate of an afferent neuron i and wij is the exci-
tatory weight between these two neurons and ckj is the inhibitory weight from

Table 1. Layer geometry and amount of neurons. The x and y dimension denotes the
position in the grid and the z dimension the amount of cells at this position.

Layer Type Geometry Neurons

LGN Input 24x24x2 1152

V1-L4
Excitatory 13x13x4 676
Inhibitory 13x13x1 169

V1-L2/3
Excitatory 7x7x12 588
Inhibitory 7x7x3 147

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 105

another neuron k. The influence of these currents on the neuron can be modu-
lated by a threshold θj and a slope aj . The time constant τm is set to 10ms. The
neurons output is defined as rectified linear function with a saturation term for
high values (Eqn. 2).

rj =

{
0.5 + 1

1+e−3.5(mj−1) if mj > 1

(mj)
+ else

(2)

Intrinsic plasticity The fraction neurons participating in the encoding is con-
trolled by their first activity moments [10]. This is, the mean and variance of
activity. We adapt the parameters θj and aj for each individual neuron, so that
a target activity θtarget and squared activity atarget are approached. This is done
by increasing the threshold when the neuron is more active than the target value
(Eqn. 3) and decreasing the slope when the neurons squared activity is above
the target value (Eqn. 4). Hence, over time (τθ and τa are set to 10000ms) all
neurons are pushed into the same regime.

τθ
∂θj
∂t

=
(
rj − θtarget

)
− δ(θj) (3)

τa
∂aj
∂t

=
(
atarget − r2j

)
− δ(aj − 1) (4)

We add a small constant (ε = 1
100) drift δ(x) in the direction of the initial

values θ = 0 and a = 1 (Eqn. 5), giving the neurons a small bias to prefer a
minimal modified activation function. Further, this prevents neurons in very deep
layers, learning long periods from very noisy inputs, from developing extreme
values.

δ(x) = ε · sgn(x) (5)

Neuron calcium level Unlike the standard Hebbian learning, we rely on the
postsynaptic calcium concentration instead of directly using the neurons firing
rate (for details see [8]). This calcium concentration Caj follows the postsynaptic
firing rate with a layer specific time constant τCa,layer (Eqn. 6). This allows us
to learn from the activity trace, facilitating the learning of invariance properties
by using a slow time constant [8]. We set the time constant for layer 4 neurons
to 10ms and layer 2/3 neurons to 500ms.

τCa,layer
∂Caj
∂t

= rj − Caj (6)

Calcium dependent Hebbian learning For learning the excitatory connec-
tions, we use Hebbian learning with a covariance term on the presynaptic site,
where r̄pre denotes the mean activity of the presynaptic layer (Eqn. 7). Multiplied
with the postsynaptic calcium concentration and discounted by a normalization
term [3], constraining the weight vector length. The parameter αj is adapted
based on the maximum activity of a neuron (see [8]).

τLearn,j
∂wij
∂t

= (ri − r̄pre) · Caj − αj (Caj)
2
wij (7)

Workshop New Challenges in Neural Computation 2015

106 Machine Learning Reports

Anti-Hebbian learning To decorrelate the neurons, so that each becomes
selective to another pattern, we use anti-Hebbian learning on inhibitory connec-
tions (cf. [13]). An inhibitory weight ckj is strengthen when both neurons, the
pre- and the postsynaptic, are coactive and is decreased when only the post-
synaptic neuron shows activity (Eqn. 8). To prevent the total suppression of a
neuron the weight is also decreased when the postsynaptic activity drops below
θc = 0.05.

τc
∂ckj
∂t

= rk · (rj − θc)
+ − αc · rj · ckj (8)

3 Methods

Network training To learn receptive fields, being later comparable to findings
in the primate brain, we trained the model on natural scenes [4, 13, 8]. Therefore,
we present a sequence of 500000 image patches for 100ms to the network. Each
10 presentations a new image source and new patch coordinates are randomly
selected. After this selection the patch position underlies a random walk for 10
presentations, simulating microsaccadic eye movements (for details see [8]).

Evaluation We want to investigate the effectiveness of the proposed intrinsic
plasticity mechanism to regulate the mean and variance of the neuron activity.
To obtain the response statistic for each network neuron after learning, we turn of
all plasticity mechanisms and present 100000 randomly selected image patches
to the network. At the end of a presentation period (100ms), we record the
responses of the excitatory neurons and calculate the mean and variance for each
from its 100000 responses. For comparison, we further repeat the same analysis
for three model variations, where we: 1) turned off the intrinsic plasticity, 2) used
only the regulation of the mean, and 3) use only the regulation of the variance.
Further, we investigate the parameter development of θ, respectively a, and show
their distribution for the model with full intrinsic plasticity.

4 Results

The model with intrinsic plasticity shows normally distributed means (Fig. 2a,b)
and variances (Fig. 2e,f) for all layers. Whereas, the neurons of the model without
intrinsic plasticity have only in layer 4 normally distributed means and variances,
with a few neurons being much more active than the average (Fig. 2c,g). The
neurons in layer 2/3 have an exponential like distribution of their means and
variances (Fig. 2d,h). Here, a huge fraction of neurons shows nearly no activity
or variance and some have very high averages, indicating a strongly imbalanced
population encoding. The control experiments 2 and 3, with θ respectively a
regulation only, show that regulating each variable is effective and the distribu-
tion of the means, respectively variances, is comparable with the “full” intrinsic
plasticity model (Fig. 3). The other unregulated variable behaves as in the model
without intrinsic plasticity (Fig. 3b,c). However, the results are slightly better

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 107

a) b)

c) d)

e) f)

g) h)

Fig. 2. Histograms of the mean and variance of the neurons activity. The left column
(a, c, e, g) shows results from layer 4 neurons and the right from layer 2/3 neurons.
The mean of activity (a, b) and the variance of activity (e, f) are obtained with full
intrinsic plasticity. Whereas the subsequent row (c, d; g, h) shows the results obtained
without intrinsic plasticity.

Workshop New Challenges in Neural Computation 2015

108 Machine Learning Reports

a) b)

c) d)

Fig. 3. Histograms of the mean and variance of the neurons activity, regulating a single
variable. The left column (a, c) shows the results for layer 2/3 neurons regulating θ
and right shows the results regulating a.

a) b)

Fig. 4. Distribution of a) the threshold θ and b) the slope a for layer 4 neurons in the
model with full intrinsic plasticity.

as fewer inactive neurons are obtained. Which in turn indicates that regulating
the mean, respectively variance, is enough to preserve the neurons activity level
so that they still participate in the encoding. Furthermore, no neurons with very
high values are found for the unregulated variable. Hence, regulating a single
activity moment can effect other moments.

We investigated the stability of the intrinsic plasticity mechanism by visu-
alizing the two parameters θ and a (Fig. 4). The threshold of the neurons is

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 109

normally distributed around its origin in an adequate range with no extreme
values. The variable a shows a narrow normally distribution around its origin
too.

5 Conclusion

We argued that deep networks, based on unsupervised Hebbian learning, can suf-
fer from an imbalanced encoding of their neurons, amplifying in deeper layers.
We demonstrated this effect in a multilayer network of the early visual cortex
(V1). To overcome this issue we proposed a simple form of intrinsic plasticity,
regulating the first moments of activity, the mean and variance of a neuron.
We showed that this regulation leads to populations of neurons having similar
means and variances. Further, we showed that deeper layer benefit from this
regulation and developed a balanced representation of the input, where each
neuron is participating in the encoding. Besides, we demonstrated that the reg-
ulation mechanisms are effective in regulating their target value. However, the
regulation of one moment also influence the results of the other moment. An
important criteria for the regulation mechanism is its stability. The proposed
intrinsic plasticity mechanism is demonstrated to develop values in a suitable
range.

Acknowledgments. The work has been supported by the German Research
Foundation (DFG GRK1780/1) and by the US-German collaboration on com-
putational neuroscience (BMBF 01GQ1409).

References

1. R. J. Douglas and K. A. C. Martin. Neuronal circuits of the neocortex. Annu.
Rev. Neurosci., 27:419–51, Jan. 2004.

2. P. Földiák. Forming sparse representations by local anti-Hebbian learning. Biol.
Cybern., 237(5349):55–56, May 1990.

3. E. Oja. A simplified neuron model as a principal component analyzer. J. Math.
Biol., 15(3):267–273, 1982.

4. B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–9, 1996.

5. B. a. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a
strategy employed by V1? Vision Res., 37(23):3311–25, Dec. 1997.

6. T. C. Potjans and M. Diesmann. The Cell-Type Specific Cortical Microcircuit:
Relating Structure and Activity in a Full-Scale Spiking Network Model. Cereb.
Cortex, Dec. 2012.

7. D. L. Ringach and B. J. Malone. The operating point of the cortex: neurons as
large deviation detectors. J. Neurosci., 27(29):7673–83, July 2007.

8. M. Teichmann, J. Wiltschut, and F. H. Hamker. Learning invariance from natural
images inspired by observations in the primary visual cortex. Neural Comput.,
24(5):1271–96, May 2012.

Workshop New Challenges in Neural Computation 2015

110 Machine Learning Reports

9. A. M. Thomson and A. P. Bannister. Interlaminar connections in the neocortex.
Cereb. Cortex, 13(1):5–14, 2003.

10. J. Triesch. Synergies between Intrinsic and Synaptic Plasticity in Individual Model
Neurons. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Adv. Neural Inf. Process.
Syst. 17, pages 1417–1424. MIT Press, 2005.

11. G. Turrigiano. Too many cooks? Intrinsic and synaptic homeostatic mechanisms
in cortical circuit refinement. Annu. Rev. Neurosci., 34:89–103, Jan. 2011.

12. G. G. Turrigiano and S. B. Nelson. Homeostatic plasticity in the developing nervous
system. Nat. Rev. Neurosci., 5(2):97–107, Mar. 2004.

13. J. Wiltschut and F. H. Hamker. Efficient coding correlates with spatial frequency
tuning in a model of V1 receptive field organization. Vis. Neurosci., 26(1):21–34,
2009.

14. W. Zhang and D. J. Linden. The other side of the engram: experience-driven
changes in neuronal intrinsic excitability. Nat. Rev. Neurosci., 4(11):885–900, Nov.
2003.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 111

Identifying bank stress by deep learning of news

Samuel Rönnqvist1 and Peter Sarlin2

1 Turku Centre for Computer Science / Åbo Akademi University
2 Hanken School of Economics / RiskLab Finland, Arcada Univ. of Applied Sciences

sronnqvi@abo.fi, peter@risklab.fi

In the aftermath of the global financial crisis, machine-learning-based analysis
of financial stability gained considerable traction. A particular interest has been
the modeling of banks, to identify or forecast risks. Yet, problems pertaining to
data availability and quality persist. We explore the use of financial news text
as a novel data source in the study of bank distress events. This paper discusses
how deep learning may be used to take advantage of this new data source,
by modeling discussion related to banks in order to predict coinciding distress
events. We propose to employ unsupervised pre-training based on distributional
semantics to learn semantic vector representations of news articles as practical
low-dimensional, fixed-length features. Compared to conventional data sources
and methods, a particular advantage of using deep learning on text data for the
task is the qualitative information and explanation of events that it may provide.

To predict bank distress, most earlier works focus on accounting data and
the identification of early build-up of risk and imbalances (e.g., [1]), but they
suffer from data issues such as restricted access and infrequent and lagging re-
porting. By contrast, market data constitute a more accessible and timely source
of information, as a proxy for imbalances and stress (e.g., [2]). In this context,
text data like financial news represent an alternative source of information that
is readily accessible, abundant, timely and descriptive. The qualitative content
of text is not limited to its use as predictive input, but can provide descriptions
as a way of making models more interpretable, while market data does not in
itself offer descriptive information regarding events.

Although text data has not previously been used to predict bank stress, some
recent work use the source for related tasks. Dictionary-based sentiment anal-
ysis has been applied to study the tone in news as a sign of growing market
imbalances ([8, 5]). Likewise, data-driven approaches may provide more flexible
means of analyzing risk (e.g., [9]), although its results are not necessarily as
easy to interpret. We advocate a fully data-driven setup that is flexible, in the
sense that the distress event data alone define the type of risk to be modeled.
Yet, the semantic modeling involved should provide a good basis for interpre-
tation of results. While the dictionaries reflect elementary types of sentiment,
our approach can be though of as risk sentiment analysis targeted by event data
selection. Hence, this method may be applicable beyond the analysis of bank
distress events.

A common principle in deep learning is to learn abstractions of input data,
as a replacement for classical feature engineering [6]. Unsupervised pre-training
of abstraction layers in the deep neural network offers flexibility and can sup-
port supervised learning against signals (e.g., distress events). As [7] point out,

Workshop New Challenges in Neural Computation 2015

112 Machine Learning Reports

this flexibility is particularly useful in text analysis. Manually constructed fea-
tures used to introduce structure and generalizations into text tend to be over-
specified, incomplete and laborious to develop for specific tasks and languages.

Abstractions in our case are semantic representations of text, based on dis-
tributional semantics. Modeling of word-level semantics is performed based on
word contexts, and yields distributed representations as continuous word vec-
tors, providing a semantic vector space embedding that makes the symbolic text
input comparable. Mikolov et al. [4] have proposed a neural method able to learn
accurate word vectors that scales to massive data sets (billions of words). This
was extended by [3] to represent compositional semantics of sequences of words
of arbitrary length, which is claimed to provide state-of-the-art performance on
sentiment analysis of movie reviews. Similarly, their distributed memory method
(a 3-layer feed-forward network) may be applied on news articles to learn doc-
ument vectors as features in event prediction (by another 3-layer feed-forward
network). Thus, the semantic vector learning and predictive modeling constitute
two separate steps in training of the combined, deep neural network.

The semantic modeling reduces the dimensionality from the size of the vo-
cabulary (millions of words) to the vector length (e.g., 400), while also providing
a compositional representation of a sequence of words. In tentative experiments,
the features have shown positive results in prediction, when pre-trained on 260k
documents and then supervised against only 243 events. The approach holds
promise as a means of harnessing text data for identification – and description
– of bank distress, with little effort required for task-specific adaptations.

References
1. F. Betz, S. Oprică, T. A. Peltonen, and P. Sarlin. Predicting distress in european

banks. Journal of Banking & Finance, 45:225–241, 2014.
2. R. Gropp, J. Vesala, and G. Vulpes. Equity and bond market signals as leading

indicators of bank fragility. Journal of Money, Credit & Banking, 38:399–428, 2006.
3. Q. Le and T. Mikolov. Distributed representations of sentences and documents. In

Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1188–1196, 2014.

4. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. In Proceedings of Workshop at International Conference
on Learning Representations, 2013.

5. R. Nyman, D. Gregory, K. Kapadia, P. Ormerod, D. Tuckett, and R. Smith. News
and narratives in financial systems: exploiting big data for systemic risk assessment.
BoE, mimeo, 2015.

6. J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015.

7. R. Socher and C. Manning. Deep learning for natural language processing (without
magic). Keynote at NAACL2013: Human Language Technologies.

8. C. K. Soo. Quantifying animal spirits: news media and sentiment in the housing
market. Ross School of Business Paper No. 1200, 2013.

9. W. Y. Wang and Z. Hua. A semiparametric gaussian copula regression model for
predicting financial risks from earnings calls. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (ACL), 2014.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 113

Visualisation of heterogeneous data with simultaneous
feature saliency using Generalised Generative

Topographic Mapping

Shahzad Mumtaz, Michel F. Randrianandrasana, Gurjinder Bassi and Ian T. Nabney

System Analytics Research Institute (SARI),
Aston University, Birmingham, B4 7ET, United Kingdom.

Email: mumtazs;randrimf;t-bassig;i.t.nabney@aston.ac.uk

Abstract. Most machine-learning algorithms are designed for datasets with fea-
tures of a single type whereas very little attention has been given to datasets with
mixed-type features. We recently proposed a model to handle mixed types with
a probabilistic latent variable formalism. This proposed model describes the data
by type-specific distributions that are conditionally independent given the latent
space and is called generalised generative topographic mapping (GGTM). It has
often been observed that visualisations of high-dimensional datasets can be poor
in the presence of noisy features. In this paper we therefore propose to extend
the GGTM to estimate feature saliency values (GGTMFS) as an integrated part
of the parameter learning process with an expectation-maximisation (EM) algo-
rithm. The efficacy of the proposed GGTMFS model is demonstrated both for
synthetic and real datasets.

1 Introduction

Type-specific data analysis has been well studied in the machine learning commu-
nity [6]. In the recent couple of decades, the need to analyse mixed-type data is gaining
a lot of attention from machine learning experts because of the fact that real world
processes often generate a data of mixed-type. An example of such a mixed-type data
could be a hospital’s patients’ dataset where typical fields include age (discrete or con-
tinuous), gender (binary), test results (binary or continuous), height (continuous) etc. In
practice a number of ad-hoc solutions are used to handle mixed-type data [6]. However,
the ideal general solution for analysing such heterogeneous data is to specify a model
that builds a joint distribution with the assumption of an appropriate noise distribution
for each type of feature set (for example a Bernoulli for modelling binary, a multino-
mial for modelling multi-category features and a Gaussian for modelling continuous
features) and then fitting the model to data where the parameter estimates are used to
draw inferences [6].

In the literature there is no multivariate distribution that can model random vari-
ables of different types. However, one possible way of jointly modelling discrete and
continuous features is using a latent variable approach to understand the correlation be-
tween features of different types in combination. Type-specific latent variable models
have already been proposed such as a generative topographic mapping (GTM) appro-
priate for continuous features and a latent trait model (LTM) appropriate for discrete

Workshop New Challenges in Neural Computation 2015

114 Machine Learning Reports

type features [7] (an LTM was proposed as a generalisation of GTM model). This has
encouraged us to recently propose to combine GTM and LTM [13] in a probabilistic
non-linear latent variable model in a principled way to visualise mixed-type data on a
single continuous latent space under a unified proposed framework of conditional inde-
pendence criteria: we called this model a generalised-GTM (GGTM).

In principle, the machine learning algorithms assume to perform well in cases where
we have more information about data instances. This suggests that the use of more
features is important for the learning algorithms. However, in practice it is observed
that not all the features are important. It is therefore useful to select a subset of features
which are relevant thereby ignoring the irrelevant (noisy) features which compromise
performance of the learning algorithm [8,9]. An understanding of which features are
relevant is valuable in its own right. In the exploratory phases of analysis (which is
when data visualisation is most used) it is usual to measure as many variables as is
feasible, since it is not known which features are relevant to the task. Feature selection
then plays an important role in simplifying the task and making data collection cheaper
and faster.

Feature selection (FS) has been widely used in supervised learning problems where
the search is guided by the known target values. FS methods can be categorized into
four classes [1,14]: filters, wrappers, hybrid and embedded. Details of each of them are
given in [10,14]. FS for unsupervised learning algorithms is a challenging task as there
are no target values to guide the search. Very few attempts have been made to estimate
the importance of features in the unsupervised learning algorithms. A brief review of
feature selection in a clustering perspective is given in [1,4,8,14,18] and details of some
previous attempts in the latent variable formalism are given in [5,9,11,15,16,17]. To the
best of our knowledge, there is no similar approach in the literature for estimating fea-
ture saliency when modelling mixed-type data, though [4] did discuss this as a possible
extension in the clustering perspective.

Our focus in this paper is to demonstrate an extension of the GGTM model to esti-
mate feature saliency values not only for discrete type features but also for mixed-type
features in a dataset, as an integrated part of the parameter learning process, under the
latent variable formalism. The structure of the remainder of the paper is as follows.
In Section 2, we explain our proposed GGTMFS model and derive the EM parameter
learning process. Section 3 describes our experiments to demonstrate the effectiveness
of the proposed approach. We conclude the paper in Section 4.

2 A GGTM with Simultaneous Feature Saliency (GGTMFS)

The main goal of a latent variable model is to find an M -dimensional manifold, H,
(usually M = 2) for the distribution p(x) in a high-dimensional data space,D, with D-
dimensions. We write each observation vector, xn in terms of sub-vectors xRn , xBn and
xCn for continuous, binary and multi-category features respectively. In the rest of this
paper we use superscript R for continuous features, superscript B for binary features
and superscript C for categorical features. The symbol |.| is used to indicate the number
of features in each type of data space. We also useM to indicate eitherR or B or C.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 115

In this paper, we now propose an extension of the GGTM visualisation model de-
scribed in [10] to simultaneously estimate feature saliencies (we call this extension
GGTMFS) and learn the model parameters. To estimate feature saliency values, we
assume that each feature is independent of the component label under the appropriate
noise model distribution. As a special case for the Gaussian noise model, the feature in-
dependence assumption is modelled by adopting diagonal covariance matrices (as used
in [8,9]) instead of spherical covariance (as used in [3] and GGTM). Now the probabil-
ity density function of the GGTMFS model takes the form

p(xn|π,Θ) =

K∑
k=1

πk

∏
M

|M|∏
d=1

p(xMnd|ΘMkd)

 , (1)

where p(.|ΘMkd) is the probability density functions of the dth feature for the kth com-
ponent and πk is the mixing coefficient of the kth component and is taken to be fixed to
1
K for all the components in the mixture model andM ∈ {R,B, C}) indicates type of
data space (and the corresponding distributional assumption).

We make the definition that ΨM = (ψM1 , · · · , ψM|M|) (whereM ∈ {R,B, C}), is
the set of binary indicators ψMd = 1 for a relevant feature and ψMd = 0 otherwise.
Combining ψMd for each type of variable, we obtain Ψ = {ΨR, ΨB, ΨC}. Now the
probability density of our mixture model takes the form

p(xn|π,Θ, λ, Ψ) =
K∑
k=1

πk

∏
M

|M|∏
d=1

[p(xMnd|ΘMkd)]ψ
M
d [q(xMnd|λMd)](1−ψ

M
d)

 . (2)

The common distribution q(xMnd|λMd) is designed to explain all the data that is poorly
explained by the GGTM model. The notion of feature saliency is modelled as follows:
we first treat ψMd as a missing variable in the EM algorithm and as a second step we
estimate the feature saliency, ρMd = p(ψMd = 1), which is the probability that the dth
feature is relevant. The resulting model now takes the form,

p(xn|Ω) =

K∑
k=1

πk

∏
M

|M|∏
d=1

[ρMd p(xMnd|ΘMkd)] + [(1− ρMd)q(xMnd|λMd)]

 , (3)

whereΩ =
{
πk,
{
ΘMkd

}
,
{
λMd
}
,
{
ρMd
}}

is the set of all the parameters of the model.

A simple way to understand how Equation (3) is obtained is to observe that [p(xMnd|ΘMkd)]ψ
M
d

[q(xMnd|λMd)]1−ψ
M
d can be re-written as ψMd [p(xMnd|ΘMkd)] + (1 − ψMd)[q(xMnd|λMd)]

given thatψMd is a binary indicator variable (see the proof in [10,12]). The log-likelihood
now takes the form

L(Ω) =

N∑
n=1

ln p(xn|Ω). (4)

Workshop New Challenges in Neural Computation 2015

116 Machine Learning Reports

2.1 An EM algorithm for GGTMFS

The latent structure of the GGTM model can be exploited to estimate feature saliencies,
in a similar way as previously exploited for the standard GTM [9]. For this purpose, we
consider flipping of a biased coin with probability ρMd ; if the coin is a head then the
feature is generated from the mixture component, p(.|ΘMkd), otherwise the ‘background
component’ , q(.|λMd), is responsible.

We treat Y (i.e. component labels) and Ψ as missing variables and we can derive
an EM algorithm for estimating model parameters (see details in [10,12]). In the E-
step, we use the current set of parameters, Ω, to compute the posterior probability (i.e.
responsibility) rnk = p(yn = k|xn) using Bayes’ theorem,

πk

[∏
M

[∏|M|
d=1[ρ

M
d p(xMnd|ΘMkd)] + [(1− ρMd)q(xMnd|λMd)]

]]
∑K
k=1 πk

[∏
M

[∏|M|
d=1[ρ

M
d p(xMnd|ΘMkd)] + [(1− ρMd)q(xMnd|λMd)]

]] . (5)

The responsibility matrix, R, is used to compute uMnkd = p(ψMd = 1, yn = k|xMn),
which is a measure of the importance of the nth data point relating to the kth component
using the dth feature of theM type observation space and vMnkd = p(ψMd = 0, yn =
k|xMn).

uMnkd =
ρMd p(xMnd|ΘMkd)

ρMd p(xMnd|ΘMkd)] + [(1− ρMd)q(xnd|λMd)
rnk, (6)

vMnkd = rnk − uMnkd. (7)

M-step: We can use UM to re-estimate the weight matrix WM (i.e.M indicate type
of observation space) using a set of linear equations. Both for binary and multinomial
cases we use gradient-based approach as used in [7]. The weight vector wMd of each
dth feature can be updated using

ŵRd = (ΦTERd Φ)−1ΦTURd x
R
d , (8) ∆wBd ∝ ΦT

[
UBdx

B
d −EBd g

B(ΦwBd)
]
,

(9)

∆WC
Sd
∝ ΦT

[
UCdX

C
Sd
−ECdg

C(ΦWC
Sd
)
]
, (10)

where Φ is a K×L matrix, UMd is a K×N matrix calculated using Equation (6), xMd
is an N × 1 data vector of real/binary values (the XCSd

is binary encoded matrix of dth
multi-category feature) and the diagonal matrix EMd has values eMkkd =

∑N
n=1 u

M
nkd.

Now we can straightforwardly re-estimate parameters of the mixture model using
the re-estimated weight matrix of each type, ŴM: first we re-estimate the centres (for
each type features) of the mixture model in the data space (see Equations (11), (12) and
(13))

̂MeanΘRk = m̂Rk = Φ(zk)ŴR, (11)

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 117

m̂Bk = gB(Φ(zk)ŴB), (12) m̂CkSd
= gC(Φ(zk)w

C
Sd
), (13)

where m̂Mk is a 1× |M| vector, gB(.) is a logistic sigmoid and gC(.) is a softmax func-
tion. We use re-estimated centre to update the diagonal Gaussian width in each direction
(for each continuous feature): see Equation (14) (similar to standard GTMFS [9])

1

β̂Rd

=

∑
k

∑
n u
R
nkd(x

R
nd − m̂Rkd)2∑

k

∑
n u
R
nkd

. (14)

Common density parameters, λRd , can be updated using

̂MeanλRd =

∑
n(
∑
k v
R
nkd)x

R
nd∑

nk v
R
nkd

. (15)

M̂eanλBd =

∑
n(
∑
k v
B
nkd)x

B
nd∑

nk v
B
nkd

. (16) ̂MeanλCSd
=

∑
n(
∑
k v
C
nkd)x

C
nSd∑

nk v
C
nkd

. (17)

V̂ arλRd =

∑
n(
∑
k v
R
nkd(x

R
nd − ̂MeanλRd)

2∑
nk v

R
nkd

. (18)

For the feature saliency parameter update, we use prior distributions for each type of
variable separately as explained in [12]. The resultant feature saliency updates are

ρ̂Rd =
max(

∑
nk u

R
nkd − KP

2 , 0)

max(
∑
nk u

R
nkd −

KP
2 , 0) + max(

∑
nk v

R
nkd −

T
2 , 0)

, (19)

where P and T are the number of parameters in ΘRkd and λRd respectively.

ρ̂Bd =
max(

∑
nk u

B
nkd + αd − 1, 0)

max(
∑
nk u

B
nkd + αd − 1, 0) + max(

∑
nk v

B
nkd + βd − 1, 0)

. (20)

ρ̂Cd =
max

(∑
nk u

C
nkd −

K(cd−1)
2 , 0

)
max

(∑
nk, u

C
nkd −

K(cd−1)
2 , 0

)
+max

(∑
nk v

C
nkd −

(cd−1)
2 , 0

) , (21)

where cd represents number of categories for the dth feature. We also extend GGTMFS
by deriving an expectation-maximisation (EM) variant to incorporate missing values
(for details see the technical report [12]).

3 Experiments

A series of experiments was performed to demonstrate the effectiveness of the proposed
GGTMFS model for both synthetic and real datasets. Each weight sub-matrix (i.e. WR,
WB and WC) was initialised using principal component analysis (PCA). On average,
500 iterations of EM were sufficient for convergence. We used a latent grid of size 8×8
and an RBF grid of size 4× 4.

Workshop New Challenges in Neural Computation 2015

118 Machine Learning Reports

3.1 Synthetic data
A synthetic data was used to assess the GGTMFS model: a combination of continuous
and binary features. A comparison of the resulting projections with those given by the
GGTM model is also shown on both complete and incomplete data where 10% of the
data was removed at random for each observation space. We first generated 2 feature
dataset with 2000 data points from an equiprobable mixture of four Gaussians (for
details see technical report [12]) and then generated 8 noisy features (where each feature
was sampled independently from N (0, I) distribution) and combined them yielding a
10-feature dataset. We then generated a binary dataset of 100 features where the first
40 features were drawn from four equiprobable clusters and the remaining 60 features
are noisy (with random distribution of 1s). A small amount of noise (5%) was added
by inserting random 0s in the informative features. For the uninformative features, we
added a random distribution of 1s with different percentages by 20%, 40%, 60%, 80%
and also with no or all 1s in the uninformative features (and we report here results
of binary uninformative features with no 1s). We then combined both continuous and
binary features yielding a dataset with 110 features.

Visualisation results for GGTM and GGTMFS and saliency values estimated from
the GGTMFS are presented in Figure 1 for both complete and incomplete data.

(a) GGTM (complete) (b) GGTMFS (com-
plete)

(c) GGTM (missing) (d) GGTMFS (miss-
ing)

(e) Complete data (f) Complete data (g) Missing data (h) Missing data

Fig. 1. GGTM and GGTMFS visualisations and saliencies of the synthetic mixed-type complete
and missing datasets with 10 continuous and 100 binary features. 10% of the continuous and
binary complete data have been randomly removed to produce the missing data. GGTMFS visu-
alisations quite often show more compact clusters compared to GGTM visualisations. Saliencies
plots show results as error bars from our cross-validation results. (e) and (g) show FS values of
continuous features whereas (f) and (h) show FS values of binary features.

3.2 Real-world data: oil exploration
We applied the GGTMFS to two sets of oil exploration data from the Barents Sea:
oil maturity and environmental parameters. The maturity data consists of 17 continu-

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 119

ous features with a large fraction (34%) of missing values and the environment data
contains 13 continuous features with 16% of missing values. Both datasets consist of
168 samples. All the variables in the maturity dataset are important except feature 7,
which has an environment influence that might make it behave differently, and feature
17, which is an environmental parameter. The features in the environment data are a
combination of geochemical properties with variable importance. Features 6, 7, 11 and
12 are more influenced by maturity than environment and hence their saliency values
should be low.

The resulting GGTMFS visualisation and saliency values plots are shown in Fig-
ure 2. The GGTMFS plots are superimposed with magnification factor plots which en-
able the user to observe the amount of stretching of the data-space manifold at different
parts of the latent space [2]. This is useful to understand how the data is embedded in
the data space, detect outliers and separate clusters. The magnification factors are rep-
resented by colour shading in the projection manifold: the lighter the colour, the more
stretch in the projection manifold. The GGTMFS visualisations on the oil data show

(a) Projection (matu-
rity)

(b) Projection (envi-
ronment)

(c) Saliencies (matu-
rity)

(d) Saliencies (envi-
ronment)

Fig. 2. GGTMFS plot of the maturity (see (a)) and environment data (see (b)) and estimated
feature saliency values of continuous features (see (c) and (d)).
that there is relatively little discrete structure (no clear clusters) in the data. The model
was able to give a sensible saliency value (0.675) to the feature 17 in the maturity data
as this variable is actually an environmental parameter. However, feature 1 should have
a high saliency value according to the domain experts. In the environment data, the low
saliency values of the features 6 and 7 make sense given that these features have a strong
maturity influence. However, features 11 and 12 should also have low saliecny values,
and feature 10 should have a high saliency value.

4 Conclusion

We derived a non-linear model for visualising a mixed-type dataset to simultaneously
estimate saliency values both for complete and incomplete datasets. We called this
model a generalised GTM with simultaneous feature saliency estimation (GGTMFS).
Experimental visualisation results for both synthetic and real mixed-type datasets have
shown that this model, unlike GGTM, provided more compact clusters especially in
the presence of missing values and irrelevant features. More detailed results with other
datasets are available in a technical report [12].

Workshop New Challenges in Neural Computation 2015

120 Machine Learning Reports

References
1. S. Alelyani, J. Tang, and H. Liu. Feature selection for clustering: A review. In Data Cluster-

ing: Algorithms and Applications, pages 29–60. Chapman and Hall/CRC, 2013.
2. C. Bishop, M. Svensén, and C. K. I. Williams. Magnification factors for the GTM algorithm.

In In Proceedings IEE Fifth International Conference on Artificial Neural Networks, pages
64–69, 1997.

3. C. M. Bishop and M. Svensen. GTM: The generative topographic mapping. Neural Compu-
atation, 10(1):215–234, 1998.

4. N. Bouguila. On multivariate binary data clustering and feature weighting. Comput. Stat.
Data Anal., 54(1):120–134, 2010.

5. I. O. Caparroso. Variational Bayesian algorithms for generative topographic mapping and
its extensions. PhD thesis, Universitat Politècnica de Catalunya, 2008.

6. A. R. de Leon and K. C. Chough. Analysis of Mixed Data: Methods & Applications. Taylor
& Francis Group. Chapman and Hall/CRC, 2013.

7. A. Kabán and M. Girolami. A combined latent class and trait model for the analysis and visu-
alization of discrete data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(8):859–872, 2001.

8. M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain. Simultaneous feature selection and
clustering using mixture models. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26(9):1154–1166, 2004.

9. D. M. Maniyar and I. T. Nabney. Data visualization with simultaneous feature selection. In
Computational Intelligence and Bioinformatics and Computational Biology, 2006. CIBCB
’06. 2006 IEEE Symposium on, pages 1–8, 2006.

10. S. Mumtaz. Visualisation of bioinformatics datasets. PhD thesis, Aston University, 2015.
11. S. Mumtaz, I. T. Nabney, and D. R. Flower. Novel visualization methods for protein data.

In IEEE Symposium on Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB), 2012, pages 198 –205, May 2012.

12. S. Mumtaz, M. F. Randrianandrasana, and I. T. Nabney. Mixed-type data visualisation and
simultaneous feature saliency estimation using generalised generative topographic mapping.
Technical report, Systems Analytics and Research Institute (SARI), Aston University, Birm-
ingham, United Kingdom, 2015.

13. M. F. Randrianandrasana, S. Mumtaz, and I. T. Nabney. Visualisation of heterogeneous data
with the generalised generative topographic mapping. In Proceedings of the Tenth Inter-
national Conference on Information Visualization Theory and Application, pages 233–238,
2015.

14. C. M. V. Silvestre, M. M. G. Cardoso, and M. A. T. Figueiredo. Clustering and selecting
categorical features. In EPIA, volume 8154 of Lecture Notes in Computer Science, pages
331–342. Springer, 2013.

15. A. Vellido. Preliminary theoretical results on a feature relevance determination method
for generative topographic mapping. Technical report, Universitat Politecnica de Catalunya
(UPC)LSI-05-13-R, Barcelona, Spain, 2005.

16. A. Vellido. Assessment of an unsupervised feature selection method for generative topo-
graphic mapping. In Proceedings of the 16th International Conference on Artificial Neural
Networks - Volume Part II, ICANN’06, pages 361–370, Berlin, Heidelberg, 2006. Springer-
Verlag.

17. A. Vellido, P. J. G. Lisboa, and D. Vicente. Robust analysis of MRS brain tumour data using
t-GTM. Neurocomputing, 69(7-9):754–768, 2006.

18. X. Wang and A. Kabán. Finding uninformative features in binary data. In Intelligent Data
Engineering and Automated Learning - IDEAL 2005, volume 3578 of Lecture Notes in Com-
puter Science, pages 40–47. Springer Berlin Heidelberg, 2005.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 121

Incremental Class Learning and Novel Class
Detection of Gestures Using Ensemble

Husam Al-Behadili1,2, Arne Grumpe2, Christian Dopp2, and Christian Wöhler2

1 Engineering College, University of Mustansiriyah
Baghdad Al-Mustansiriyah, Box 46007, Iraq

2 Image Analysis Group, TU Dortmund University
Otto-Hahn-Str. 4, D–44227 Dortmund, Germany

Abstract. We propose a novel classification system which has the abil-
ity to integrate new classes into its class structure and thus updates the
classifier architecture. The proposed algorithm uses the Mahalanobis dis-
tance in conjunction with the confidence bands of a polynomial classifier
to obtain class labels for new unlabeled training samples even if they
do not belong to the known classes. If a new sample belongs to existing
classes, it will be automatically included into the training set, otherwise
a new label will be assigned to the “novel” sample, and a new class will
be added to the existing classes in the training set. Samples belonging to
random motion patterns rather than meaningful gestures are rejected as
they do not occur repeatedly in a similar manner. Since the Mahalanobis
metric depends on the sample mean and covariance matrix, we derive a
relation for recursively updating the covariance of the training set with
new training samples. Our experimental evaluation shows that a new
class can be successfully identified and added to the classifier structure
and that the overall recognition rate of the proposed semi-supervised
learning approach is lower by only a minor amount than that of the
supervised version of the algorithm.

Keywords: Gesture recognition; Dynamic Time Warping; semi-supervised
learning; distance measure; Nearest Class Mean; Addition of classes

1 Introduction

The recognition of gestures has become an important element of human-machine
interaction. This work focusses on the automatic recognition of 3D emblematic
gestures performed with the arm acquired with a Kinect sensor. Commonly, ges-
tures of the same class are performed in a different manner by different persons,
such that it is usually not possible to train the system with all instances of a
gesture that may in principle occur. Even if a gesture classification system is
trained in a fully supervised manner on a large variety of gestures, a new user
who is unknown to the system will have to adapt his/her way to perform the
gestures such that it corresponds to the “knowledge” of the system.

As an alternative to such a closed-world gesture recognition system, we intend
to build a classification system which adapts itself to new users without the

Workshop New Challenges in Neural Computation 2015

122 Machine Learning Reports

need for intervention of a human operator, such that each user can train the
system with a set of own favored gestures and add new gesture classes over
time. Hence, when the system perceives new gestures under specific conditions,
it will construct a new class and add it to the training data, while otherwise,
if the gesture category has already been seen in the training phase, the new
sample will be added to the specific class in the training data according to the
self-learning paradigm [29].

Various approaches have been developed that increment the database by
new samples or new classes without the need for processing again the previously
acquired training data, but they still need labelled data (e.g. [28, 6]).

Metric learning is important in a variety of unsupervised learning approaches,
like k-nearest neighbor (kNN), where the distance from the test sample to each
sample in the training set is determined [5], or prototype-based learning with
adaptive distance metric [17]. Similarly, the Nearest Class Mean (NCM) ap-
proach described in [26] uses the Mahalanobis distance of the test sample from
the training samples, obtained based on the covariance matrix of the training
set, for determining similarities between samples. The Nearest Class Mean Multi-
class Logistic Discrimination (NCMML) framework introduced in [12] extends
the NCM method in that an optimal projection is determined that enforces the
sample within the same class to be closer to its class mean than samples from
other classes.

In this study, we use the class-specific Mahalanobis distance to compute the
distance between a test sample or unlabeled sample and each class, similar to
the NCM framework. Based on several thresholds (one for each class) which are
optimized by the greedy algorithm, the sample is assigned to a certain class.
If the distance does not meet any threshold criterion, it will be considered a
possibly “novel” sample. If additionally the confidence band width of a polyno-
mial classifier exceeds a given threshold, the sample will be marked as “novel”.
After several samples have been marked as “novel”, they will either be assigned
to a new class or considered as random movements (“outliers”) based on the
mutual Mahalanobis distances between the novel samples. A new class will be
constructed if the number of accordingly determined novel samples exceeds a
minimum number. The new class is given a label and is included into the train-
ing set in the same way as the other newly labelled samples of the known classes,
and the classifier is re-trained on this updated training set.

2 Data Acquisition and Feature Extraction

A well-known database of gestures acquired with the Kinect sensor is described
in [15]. These gestures, however, are mainly performed with both hands simul-
taneously. The database in [10] comprises emblematic gestures of the hand and
forearm performed on a plane. In order to be able to develop a classification
system that copes with 3D trajectories but avoids the additional complexity of

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 123

two-arm gestures, we used the data set by [1] which comprises 3D trajectories
performed with a single hand3.

The gestures in this data set were performed by ten persons. The samples
belong to nine classes, where each person performed between 15 and 20 gestures
of each class, half of them with the right and with the left hand, respectively. The
data set contains 1662 gestures altogether. The classes of emblematic gestures
are “circle”, “point”, “stop”, “come here”, “go away”, “up”, “down”, “wave”,
and “wave vertically”; this structure was also adopted by [18] and may e.g. be
useful for transferring commands to a mobile robot. These gestures had been
already segmented by using the idea of the spotting algorithm [20]. The first
three features correspond to the mean 3D position of the moving wrist in the
specific gesture. The second three features are the extensions of the gesture in
x, y and z direction. The Dynamic Time Warping (DTW) algorithm [13] is
applied to each gesture to normalize it in the time domain. The DTW approach
aims for warping a temporal sequence of data points such that it optimally
corresponds with a reference sequence. The cost value corresponding to such
a transformation can be viewed as a distance and depends on the sequence of
the mutual assignments between the points of the sequences (“warping path”).
It is minimized by Dynamic Programming (see [13] for details). Accordingly,
the seventh feature is the minimum DTW distance between a gesture and the
templates and the eighth feature is the class label of the most similar class
according to that distance.

3 Novelty Detection

3.1 Support vector data description (SVDD)

Tax and Duin [22] proposed a kernel-based algorithm called support vector data
description (SVDD) for detecting the outliers of a known class, thus representing
a one-class classifier. In the SVDD approach, the novelty boundary of the class is
obtained by computing the hypersphere of minimal volume enclosing all possible
samples of the known class. Tax and Laskov [23] proposed an incremental SVDD
method which allows for adding new samples to or deleting old samples from
the trained classifier. Support vector based novelty detection has been examined
in detail in [3]. Tavakkoli et al. [21] mentioned the limitations of the SVDD for
large training data sets due to the optimization process. To solve this problem
several extensions of SVDD have been proposed in different applications [e.g.
8, 11, 2, 14, 21].

3.2 The Proposed Semi-supervised Learning Framework with
Adaptive Class Structure

The proposed algorithm is supposed to have the ability to classify new samples
according to whether they belong to known classes or belong to a “novel” class

3 The dataset is available at http://www.bv.e-technik.tu-dortmund.de

Workshop New Challenges in Neural Computation 2015

124 Machine Learning Reports

which is unknown so far. The novel gestures are collected in order to construct a
new class which is added to the database, where real gestures need to be distin-
guished from random movements (outliers). Independent of whether the sample
belongs to a new or to a known class, it is included into the training set, which
is then used for re-training the classifier. The classification itself is performed by
a polynomial classifier [19, 7] and metric learning using Mahalanobis distance
[26]. According to [19], the discriminant function of the polynomial classifier is

d(x,w) = wT · p(x). (1)

where w is the model parameters vector and the p(x) represents the polynomial
basis vector which it constructed from input feature vector x depending on the
polynomial degree k. As shown in [19], if e.g. the input vector x = [x1 x2]T and
k = 2 the polynomial basis vector will be

p(x) = [1 x1 x2 x21 x1x2 x22]T . (2)

The model parameter vector w is calculated using the training data and their
labels. The polynomial classifier output (decision value) is real value between 0
and 1 which used as the probabilities of x belong to each of known classes [19].
Additionally the confidence band of the polynomial classifier is used as derived
in [1] based on the linear method described in [9].

The sample x is considered belong to a specific class depending on the min-
imum Mahalanobis distance between the sample and the classes’ centroid. De-
pending on a class-specific distance threshold whose optimization is described
later in this section, the sample is considered as a “novel-candidate” gesture if it
is found to not belong to any known class. The candidate novelty is then assigned
to the known class associated with the largest decision value of the polynomial
classifier only if the inequality

p1 − p2 ≥ α(η1 + η2) (3)

is fulfilled (as proposed in [16]), where p1 and p2 are the largest and second
largest decision value of the polynomial classifier, η1 and η2 the corresponding
confidence band widths and α is a given constant. The remaining candidate
novelties are passed to the next step to check if they belong to the novel class
or are just outliers.

The covariance matrix of the above novel-candidates distribution in the fea-
ture space is computed when a sufficient number of novel samples has been
identified, i.e. at least two times the number of features (here 2 × 8). Based on
this covariance matrix, it is possible to reject a novel sample as a random move-
ment if the Mahalanobis distance from their mean exceeds a given threshold.
According to this rule, a new class is opened up only if an unknown gesture type
occurs several times in a similar form. The training set is then extended by the
new class and used to re-train the polynomial classifier.

The described scheme depends on number of thresholds whose number cor-
responds to the number of known classes plus one for the newly constructed

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 125

Fig. 1. Illustration of the definition of the “novel” class and random movements (out-
liers).

class. These thresholds are always positive as they represent distances or confi-
dence band widths, and an upper limit of 500 has been determined based on the
available data set.

Suppose the total number of samples which belong to the newly constructed
class is N total

new , and the number of samples in the newly constructed class but ac-
tually belonging to one of the known classes or representing random movements
or gestures (outliers) is N false

new . To optimize the thresholds θi, N
total
new should be

maximized while at the same time N false
new should be minimized. This approach

leads to the error term

E = (−N total
new + β ·N false

new)/(1 + β) (4)

where the parameter β denotes the relative importance of the maximisation of
the number of novel samples vs. the minimization of the number of erroneously
assigned novel samples. In our experiments we assumed both criteria as equally
important, resulting in β = 1. The definition of the novel class is illustrated in
Fig. 1.

To find the optimal configuration of thresholds we first apply the golden sec-
tion algorithm [4] to each threshold successively while keeping the other thresh-
olds constant. This procedure is repeated two or three times. The lower limits of
the resulting section intervals are used as initial values for a greedy optimization
scheme [4]. In our approach we employ the greedy algorithm as described in
[27]. Accordingly, each threshold θi is successively increased and decreased by a
predefined amount ∆θ. If the error decreases after changing the threshold θi, the
new value is kept, otherwise the value of θi remains unchanged. This procedure
is repeated until the error stops decreasing.

Since computing the Mahalanobis distance requires knowledge about the
mean and the covariance of the n-dimensional training data only but not the
training data themselves, we implement our training approach as an online
scheme and update the mean and covariance matrix recursively. For this purpose
we derive a relation for the mean µtotal and the covariance matrix Ctotal of a set

Workshop New Challenges in Neural Computation 2015

126 Machine Learning Reports

of mtotal = mold +mnew samples based on the mean µold and covariance matrix
Cold of the subset of the first mold samples and the mean µnew and covariance
matrix Cnew of the subset of the last mnew samples. For µtotal one obtains

µtotal =
1

mtotal

mtotal∑
i=1

xi =
1

mtotal

[
mold∑
i=1

xi +

mtotal∑
i=mold+1

xi

]

=
1

mtotal
(mold · µold +mnew · µnew) (5)

as shown in [19], where xi denotes the ith sample vector in the ordered combined
dataset, i.e. the last mnew samples are the added samples. For the covariance
matrix one obtains

Ctotal =
1

mtotal

[
mold∑
i=1

(xi − µtotal)(xi − µtotal)
T

+

mtotal∑
i=mold+1

(xi − µtotal)(xi − µtotal)
T

]
. (6)

Some simplifications yield

Ctotal =
mold

mtotal
Cold+

mnew

mtotal
Cnew+

moldmnew

m2
total

(µnew−µold)(µnew−µold)T . (7)

When one single sample is added at a time, Eq. (7) further reduces to

Ctotal =
mold

mold + 1
Cold +

mold

(mold + 1)2
(x− µold)(x− µold)T . (8)

The scheme of Eqs. (6)–(8) is related to but different from [19], where a direct
incremental estimation of the inverse covariance matrix is derived.

4 Experiments and Results

Since it difficult to find a benchmark classifier that has the capability of incre-
mental learning, novelty detection, and construction of new classes, we performed
two experimental evaluations. In the first evaluation the ability of our proposed
algorithm of constructing a new class is compared with a fully supervised clas-
sifier. The second experiment evaluates the ability of the classifier to detect all
outliers and compares it with the SVDD classifier.

4.1 Evaluation of the New Class Construction

In this experiment an evaluation of the performance of the developed algorithm
is performed regarding two scenarios. The first scenario corresponds to the fully
supervised approach, which serves as a reference, and in the second scenario we

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 127

Table 1. Results of the proposed semi-supervised learning algorithm in comparison
to the results of the fully supervised approach making use of all available manually
set labels. The average values were computed over 100 training runs each, the error
intervals correspond to plus/minus one standard deviation.

Excluded P [%] Size ratio
class semi-sup. supervised semi-supervised supervised

class 1 97.6 ± 2.2 100.0 ± 0.0 99.7 ± 0.7 99.9 ± 0.3
class 2 89.0 ± 8.4 87.3 ± 3.7 49.9 ± 14.5 96.3 ± 1.4
class 3 93.1 ± 3.9 97.6 ± 2.1 93.1 ± 1.8 93.5 ± 2.3
class 4 95.4 ± 3.6 94.1 ± 2.0 70.2 ± 6.1 94.2 ± 4.1
class 5 99.9 ± 0.3 99.6 ± 0.5 96.0 ± 2.2 99.2 ± 0.6
class 6 68.6 ± 11.1 92.3 ± 3.6 21.0 ± 6.4 97.1 ± 1.5
class 7 98.4 ± 2.4 100.0 ± 0.0 99.3 ± 1.5 100.0 ± 0.0
class 8 99.1 ± 1.6 100 ± 0.0 99.9 ± 0.5 100.0 ± 0.2
class 9 92.4 ± 3.1 95.4 ± 1.7 85.3 ± 4.9 85.0 ± 4.4

Table 2. Overall recognition rate of the proposed semi-supervised learning algorithm
compared to the recognition rate of fully supervised learning. The average values were
computed over all 900 training runs, the error intervals correspond to plus/minus one
standard deviation.

Overall recognition Overall recognition Novel class recognition Novel class recognition
(semi-supervised) (supervised) (semi-supervised) (semi-supervised)

94.5% ± 3.0 96.1% ± 0.7 79.4% ± 26.69 96.1% ± 5.11

used our developed algorithm. The available data were divided into three sets:
the initial training set, the learning data set for which class labels are generated
by our algorithm, and the test set. Each set comprises one third of the overall
data set.

The training scheme is repeated in 9 sets of 100 runs each, where for the kth
set all samples of class k are excluded from the initial training set of our algorithm
while the dataset is kept complete for the supervised approach. The excluded
class is considered as the novel class. In each run the data are divided into initial,
learning and test data set in a different random manner. Initially, both classifiers
are trained as fully supervised with their own initial training set. Labels are then
generated for the learning (unlabeled) data set, and the corresponding samples
are included into the training set together with the labels estimated by the
classifier. The fully supervised classifier is trained on all classes. Hence, it can
classify all samples in the learning set. In contrast, there are some samples in the
learning set belonging to the unseen (excluded) class of our algorithm. However,
it will classify them as “novel” and it will construct a new class containing some
of these novel samples which fulfil the conditions of the new class, and it rejects
the other novel gestures by assigning them as random movements (outliers). Let
Nk the total number of samples in the learning set belonging to the excluded
class k, and let N total

new and N true
new be the total amount of samples in the newly

constructed class and the samples in the newly constructed class belonging to

Workshop New Challenges in Neural Computation 2015

128 Machine Learning Reports

class k, respectively. The results of the first stage of our algorithm, measured by
the “purity” P = N true

new /N
total
new and the size ratio of the newly constructed class

to the total size of class k (N total
new /Nk), are shown in Table 1. In the case of the

fully supervised classifier, the purity parameter of class k is the ratio between
the correct classifier assignments to that class and its total number of samples.
The size ratio of class k is computed by dividing the number of samples assigned
to that class by Nk.

The obtained purity values are reasonably high (between 89% and 99.9%) for
all novel classes except class 6. That class is also characterized by a low size ratio
of only 21%, while for all other classes except class 2 the size ratio exceeds 70%
and even reaches values larger than 99% for classes 1, 7 and 8. The purity values
obtained by supervised learning, which is trained using samples of the novel class
and is thus able to recognize the novel class, correspond to within a few percent
to those obtained by the proposed semi-supervised method except for class 6.
Regarding the size ratio, the comparison between the semi-supervised and the
fully supervised learning results is quite encouraging since the recognition rate
of supervised learning significantly exceeds that of the semi-supervised approach
only for the apparently “difficult” classes 2, 4 and 6.

For the same 900 training runs of our algorithm, Table 2 shows the recognition
rate achieved by our semi-supervised algorithm in comparison to the recognition
rate of the same classifier trained in a fully supervised manner based on the same
training and test data, where the average difference is only about 2.5% in favor
of the fully supervised scenario. A larger difference of about 15% is observed for
the recognition rate of the novel class.

This result is not unexpected since if a high purity of the novel class is desired
using the employed Mahalanobis distance criterion, a considerable fraction of the
possible novel samples may to be rejected as random movements (outliers). If it
is desired to include more gestures into the new class, it is necessary to increase
the corresponding threshold, which in turn will lead to a decreased purity. All
in all, it depends on the application scenario if a large number of assigned novel
samples or a high purity of the newly constructed class is desired.

4.2 Oulier Detection

The data has been divided in the same manner of the first experiment. In ad-
dition a small number of oultiers has been added to the test data. The outliers
samples doesn’t belong to any of gesture classes and it has been created using
the function “gendatout”. This function and the function “multic”, which it used
together with the SVDD classifier to make it applicable in a multi-class system,
are proposed by Tax [24] in the data description, outlier and novelty detection
toolbox (ddtools)4. Both classifiers (the proposed classifier and the SVDD clas-
sifier) are trained on the training data and then they classify the test data. The
proposed classifier assigns the test sample to one of three cases, which are: la-
belling it with the label of one of the known classes, indicate it as an outlier, or

4 http://prlab.tudelft.nl/david-tax/dd tools.html [25]

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 129

Table 3. Results of the proposed semi-supervised learning algorithm in comparison to
the results of the SVDD classifier. The average values were computed over 100 training
runs each, the error intervals correspond to plus/minus one standard deviation.

Known Classes Total Unknown Newly Con- Outliers
Excluded Samples structed Class

class semi-sup. SVDD semi-sup. SVDD semi-sup. semi-sup.

Class 1 93,1 ± 1,1 36,8 ± 19,9 99,6 ± 0,6 72,6 ± 41,0 100,0 ± 0,0 95,0 ± 7,1
Class 2 94,1 ± 1,1 36,7 ± 20,8 54,6 ± 11,6 55,6 ± 33,6 50,5 ± 12,7 96,4 ± 5,3
Class 3 93,8 ± 0,9 34,7 ± 23,2 97,8 ± 1,2 61,1 ± 43,1 96,1 ± 1,6 97,1 ± 5,2
Class 4 93,7 ± 1,0 41,4 ± 19,4 77,6 ± 4,5 35,5 ± 18,2 76,1 ± 4,9 92,7 ± 8,6
Class 5 93,0 ± 1,0 47,0 ± 2,3 95,8 ± 2,3 59,8 ± 6,6 95,7 ± 2,4 97,4 ± 4,6
Class 6 94,0 ± 1,0 41,6 ± 17,5 27,7 ± 5,6 48,1 ± 23,0 21,2 ± 6,1 96,0 ± 6,3
Class 7 92,7 ± 1,2 35,3 ± 18,6 99,2 ± 1,1 63,1 ± 34,8 99,5 ± 1,1 95,9 ± 6,2
Class 8 92,8 ± 1,1 34,3 ± 19,3 99,7 ± 0,5 73,4 ± 43,8 100,0 ± 0,0 96,6 ± 6,3
Class 9 93,1 ± 1,0 37,6 ± 21,9 92,2 ± 3,2 64,0 ± 39,6 92,0 ± 3,4 91,9 ± 8,1

indicate it as belonging to a new class. The SVDD classifier assigns it either as
one of the known classes or as an outlier. Hence, the result is computed as the
accuracy regarding the known classes and the accuracy of detecting unknown
classes and outliers. These two measures are computed for both classifiers.

Another two measures are computed for the proposed classifier only, which
are the accuracy of the newly constructed class and the accuracy of the re-
jected samples. The outliers which are added to the test data using the function
“gendatout” of the ddtools toolbox [25] are considered as a reference to the
outliers (rejected samples) of the proposed algorithm in computing the outlier
detection accuracy. Consequently, the test samples which belong to the excluded
class in the training data are considered as references to the newly constructed
class.

The experiment was run 900 times. The summary of the results is shown
in Table 3. The advantage of the proposed algorithm over the SVDD algorithm
is clearly apparent from this table. Again both algorithms have difficulties in
detecting the outliers of classes 2 and 6 as they strongly overlap with the other
classes.

5 Summary and Conclusion

We have described a method for gesture recognition which has the ability to con-
struct new classes in addition to the existing class structure by automatically
extending the architecture of the classifier accordingly. Only mutually similar
novel motion patterns repeatedly occurring in a similar manner may be consid-
ered as belonging to a new class, while random movements (outliers) are rejected.
At each addition of an unlabeled sample to the training set, the class-specific
mean and covariance matrix required to compute the corresponding Mahalanobis
distance are updated in a computationally efficient recursive manner. Our exper-
imental evaluation based on a set of gestures acquired with a Kinect sensor shows

Workshop New Challenges in Neural Computation 2015

130 Machine Learning Reports

that the new class can be identified fully autonomously with a quite reasonable
average accuracy of about 80%, where the success rate of the new class may
vary rather strongly for different novel classes. The overall recognition rate of
our semi-supervised approach is only 2.5% lower than that of a fully supervised
version of the learning algorithm.

References

[1] Al-Behadili, H., Wöhler, C., Grumpe, A.: Semi-supervised learning of em-
blematic gestures. AT-AUTOMATISIERUNGSTECHNIK 62(10), 732–739
(2014)

[2] Chen, S., He, H.: Towards incremental learning of nonstationary imbalanced
data stream: a multiple selectively recursive approach. Evolving Systems
2(1), 35–50 (2011)

[3] Clifton, L.A.: Multi-Channel Novelty Detection and Classifier Combination.
Ph.D. thesis, University of Manchester, Manchester (2007)

[4] Cormen, T.H.: Introduction to algorithms. MIT press (2009)
[5] Cover, T., Hart, P.: Nearest neighbor pattern classification. Information

Theory, IEEE Transactions on 13(1), 21–27 (1967)
[6] Ditzler, G., Muhlbaier, M.D., Polikar, R.: Incremental learning of new

classes in unbalanced datasets: Learn++. udnc. In: Multiple classifier sys-
tems, pp. 33–42. Springer (2010)

[7] Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic
Press Professional, Inc., San Diego, CA, USA (1990)

[8] Hua, X., Ding, S.: Incremental learning algorithm for support vector data
description. Journal of Software 6(7), 1166–1173 (2011)

[9] Kardaun, O.J.: Classical methods of statistics: with applications in fusion-
oriented plasma physics, vol. 1. Springer Science & Business Media (2005)

[10] Liu, L., Shao, L.: Learning discriminative representations from rgb-d video
data. In: Proceedings of the Twenty-Third international joint conference
on Artificial Intelligence. pp. 1493–1500. AAAI Press (2013)

[11] Lütz, A., Rodner, E., Denzler, J.: I want to know moreefficient multi-class
incremental learning using gaussian processes. Pattern recognition and im-
age analysis 23(3), 402–407 (2013)

[12] Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Large scale metric
learning for distance-based image classification on open ended data sets.
In: Advanced Topics in Computer Vision, pp. 243–276. Springer (2013)

[13] Müller, M.: Dynamic time warping. Information retrieval for music and
motion pp. 69–84 (2007)

[14] Polikar, R., Upda, L., Upda, S.S., Honavar, V.: Learn++: An incremental
learning algorithm for supervised neural networks. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews 31(4),
497–508 (2001)

[15] Ruffieux, S., Lalanne, D., Mugellini, E., Khaled, O.A.: Gesture recognition
corpora and tools: A scripted ground truthing method. Computer Vision
and Image Understanding 131, 72–87 (2015)

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 131

[16] Sakic, D.: Semiüberwachtes Lernen mit Ensemble-Methoden zur Erkennung
von Gesten. Diplom thesis, Faculty of Computer Science, TU Dortmund
University (2012)

[17] Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learn-
ing vector quantization. Neural Computation 21(12), 3532–3561 (2009)

[18] Schumacher, J., Sakič, D., Grumpe, A., Fink, G.A., Wöhler, C.: Active
learning of ensemble classifiers for gesture recognition. Springer (2012)

[19] Schürmann, J.: Pattern classification: a unified view of statistical and neural
approaches. Wiley Online Library (1996)

[20] Seki, S., Takahashi, K., Oka, R.: Gesture recognition from motion images
by spotting algorithm. In: Proc. ACCV. vol. 2, pp. 759–762 (1993)

[21] Tavakkoli, A., Nicolescu, M., Nicolescu, M., Bebis, G.: Incremental SVDD
training: Improving efficiency of background modeling in videos. In: Pro-
ceedings of the 10th IASTED International Conference. vol. 623, p. 092
(2008)

[22] Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine learn-
ing 54(1), 45–66 (2004)

[23] Tax, D.M., Laskov, P.: Online SVM learning: from classification to data
description and back. In: Neural Networks for Signal Processing, 2003.
NNSP’03. 2003 IEEE 13th Workshop on. pp. 499–508. IEEE (2003)

[24] Tax, D.: One-class classification: concept-learning in the absence of counter-
examples. Ph.D. thesis, TU Delft, Delft University of Technology (2001)

[25] Tax, D.: Ddtools, the data description toolbox for matlab (June 2015),
version 2.1.2

[26] Webb, A.R.: Statistical pattern recognition. John Wiley & Sons (2003)
[27] Williams, D.J., Shah, M.: A fast algorithm for active contours and curvature

estimation. CVGIP: Image understanding 55(1), 14–26 (1992)
[28] Zhang, B.F., Su, J.S., Xu, X.: A class-incremental learning method for multi-

class support vector machines in text classification. In: Machine Learning
and Cybernetics, 2006 International Conference on. pp. 2581–2585. IEEE
(2006)

[29] Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Syn-
thesis lectures on artificial intelligence and machine learning 3(1), 1–130
(2009)

Workshop New Challenges in Neural Computation 2015

132 Machine Learning Reports

Attention as cognitive, holistic control of the
visual system

Frederik Beuth, Fred H. Hamker

Technische Universität Chemnitz, Artificial Intelligence,
Strasse der Nationen 62, 09111 Chemnitz, Germany

{beuth,fhamker}@cs.tu-chemnitz.de

http://www.tu-chemnitz.de/informatik/KI/

Abstract Visual attention is classically seen as a selection process, pick-
ing the relevant information from the vast amount of sensory data. How-
ever, recent neuroscience studies suggest a more general role of atten-
tion as a cognitive control process that tunes the visual system for the
task at hand. The process modulates the whole visual system, thus we
denote its influence as holistic. This holistic control concept is not in-
cluded in current computer vision systems, although it seems beneficial.
We demonstrate the concept at the example of an object localization
task, in which a given target has to be searched in a scene (guided vi-
sual search). State-of-the-art computer vision systems solve this task via
the classical view of attention (saliency models): attention constitutes a
spatial pre-selection stage for a subsequent recognition stage. Yet, this
approach has the problem that selection and recognition operate in sep-
arate stages although the two processes depend on each other. The issue
is solved by the holistic attention approach as it controls selection and
recognition in parallel. We benchmark our model on a realistic object
localization setup, using 100 different target objects, 1000 scenes, and
three backgrounds. The model achieves a localization accuracy of 92%
at black backgrounds. Generalization to white-noise or real-world back-
grounds changes the accuracy to 71% and 42% respectively. Our results
demonstrate that attention as cognitive, holistic control is able to solve
realistic computer vision problems.

Keywords: Visual attention; Object localization; Guided visual search;
Cognitive, holistic control; Top-down saliency model

1 Introduction

Visual attention is classically seen as a selection process to pick the relevant
information among the vast amount of incoming sensory data [1]. This idea has
led to the development of saliency models in the domain of object localization
[2]. Object localization is here understood as the task to search a given target
object in a scene (guided visual search [3]). Saliency models use attention to
pre-select some regions of interest (ROIs) from the image and pass them to a
subsequent, sophisticated recognition module. Top-down saliency models select

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 133

the ROIs via top-down attention to target features. Firstly, they extract from
the image a number of low-level feature maps and integrate them, weighted with
the top-down attention signal, to a saliency map. Afterwards, ROIs are selected
around the highest activity in the saliency map. The top-down weights encode if
a particular feature is part of the target object, thus the resulting saliency map
contains high activity at the location of potential target objects.

However, the separation between selection and recognition does not exist in
the primate brain, and attention has also not the role of a solely pre-selection
stage [4]. To solve these issues, we will review recent neuroscience studies and
will illustrate that attentional processing spans a top-down control network,
modulating neuronal activity for the current task. The network targets the whole
visual system, thus we see attention as a cognitive, holistic control process.

The attentional processing of the primate brain is already simulated by many
neuro-computational models, yet only a few have been applied to realistic ob-
ject localization tasks due to their ability to handle whole objects and real-world
scenes [5,6,7,8,9]. We improve these studies in two points: Firstly, they have been
evaluated only in relatively easy setups with a small number of object categories
(2 - 16), thus we evaluate our model in realistic and large setup with 100 cat-
egories. Secondly, we address more precisely and deeply the role of attention,
leading to our novel proposal of attention as holistic, cognitive control.

2 Model

We will first review the attentional processing network in the primate brain and
propose our concept of attention as cognitive, holistic control. Afterwards, we
will present our attention model and the implementation of the holistic control.

2.1 Attention as holistic, cognitive control of the visual system

We see attention as a cognitive and holistic control of the visual system, which
tunes the whole visual processing for the task at hand. Before explaining this
view, we recapitulate the primate visual system [10,13]. It consists of a feed-
forward and feedback processing network (Fig. 1a), from which we model the
relevant areas for object localization: ventral stream (V1, V4, IT), FEF, and
PFC (Fig. 1b). The ventral stream [13] consists of the primary visual cortex
(V1) encoding very local and simple features like edges, disparities, motion, or
color contrasts; of the fourth visual cortex (V4) encoding complex shapes; and of
the inferior temporal cortex (IT) encoding objects. The frontal eye field (FEF)
encodes spatial [14] and the prefrontal cortex (PFC) task information [15].

Our novel view of attention results from the following findings. Miller &
Buschman [11] illustrate that attention is transmitted via the feedback network
originating from the PFC. As that area encodes task information [15], we reason
that the network influences neuronal activity for the current task. The network
targets the whole visual cortex, so we denote its influence as holistic.

At physiology level, attention has several effects on the neuronal responses
[16]. Most prominently, it amplifies the response of neurons encoding the

Workshop New Challenges in Neural Computation 2015

134 Machine Learning Reports

Figure 1. a) Schematic sketch of the visual attention system in primates. Adapted from
[10], whereby LIP and PFC are added from [11]. The arrows denote the ventral (green)
and dorsal streams (blue) of the visual cortex plus their connections to frontal cortices
(FEF and PFC). Their primary functions are to process the type (green, ventral) and
location of an object (blue, dorsal; [12]). Bottom-up processing is denoted by arrows
from left to right, top-down processing by arrows from right to left. The top-down
connections mediate attention signals [11]. b) Areas and connections simulated in the
attention model. They are printed in bold in a). These relevant areas are explained in
the main text, and the remaining in [10,11].

attended stimulus, and suppresses the response of neurons encoding unattended
stimuli. The attended stimulus is per definition task-relevant, so attention mod-
ulates neuronal activity for the current task by increasing the response to task
relevant stimuli and by suppressing irrelevant ones. We combine these findings
together and argue that attention is a cognitive, holistic control, modulating
neuronal activity for the current task.

2.2 Model overview

We simulate the cortical attention network in a novel system-level model of atten-
tion. The model has been developed for the upcoming doctoral thesis of the first
author. An overview about the model is given in this section, whereby anatomical
and physiological background can be found in the thesis, and its mathematical
description in the following supplementary material: www.tu-chemnitz.de/cs/
KI/supplement/BeuthHamker2015b/.

The system-level model of attention (Fig. 2) consists of the visual cortices V1
and HVA, the frontal eyefield (FEF), and the prefrontal cortex (PFC). Firstly,
the image is processed by a primary visual cortex model (V1), encoding oriented
edges (O), red-green (L - M), and blue-yellow color contrasts (S - LM). The
next stage HVA (Higher Visual Area) contains view-tuned cells representing a
single view of an object. This stage is an abstraction of the cortical areas V4 and
IT. HVA is simulated by a recently-developed microcircuit model of attention
[16]. The model provides physiologically accurate modulation of the neuronal
responses by attention as it replicates a vast amount of physiological data sets.
Layer 4 of the circuit recognizes object views and layer 2/3 pools spatially over

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 135

Figure 2. The novel system-level model of visual attention. The processing is illus-
trated at the task to localize and recognize the “bottle”, indicated by the red cross. See
main text for details.

a particular region of layer 4 activities to increase spatial invariance. Each view
of an object is encoded by the connection weights between V1 and HVA layer 4,
so each neuron in layer 4 reacts to a specific pattern of V1 neurons. The weights
are determined in an off-line training phase using trace learning [5] as explained
in the supplementary material.

The object localization task implies feature-based attention towards the tar-
get object, implemented by activating a particular object neuron in the prefrontal
cortex (PFC). The object neurons in PFC are connected via learned weights to
view-tuned cells in HVA layer 2/3 and further to layer 4. These connections
amplify all view-tuned cells encoding the target, which leads to an increased
neuronal activity of all target related neurons in both HVA layers.

The frontal eye field (FEF) processes spatial information and selects the tar-
get location. It is based on the model of Zirnsak et al. [14] and is divided, accord-
ing to the physiological cell types, into three layers: FEFv, FEFvm, and FEFm.
Functionally, FEFv encodes possible locations of the target (white blobs in Fig.
2), whereas FEFvm and FEFm indicate the final target location. FEFvm codes
the target location during the normal attentional processing, whereas FEFm
represents an upcoming eye movement (saccade) towards the target. The FEFv
is computed by taking the maximum activity over all the features in HVA. The

Workshop New Challenges in Neural Computation 2015

136 Machine Learning Reports

signal from FEFv to FEFvm implements a soft-competition between locations by
applying a Gaussian filter to reinforce adjacent ones and by long-range inhibition
to suppress remote ones. The FEFvm projects back to HVA layer 4, forming a re-
current processing loop: HVA layer 4→HVA layer 2/3→FEFv→FEFvm→HVA
layer 4. The competition is continuously executed within the loop, leading to
the selection of a single target location. The FEFm uses a similar competition
to generate a saccade target. The FEFm competition concentrates neuronal ac-
tivity to a single area over time. If this activity reaches a threshold, a saccade
is triggered towards this target location which designates the final result of the
localization process.

2.3 Implementation of the holistic, cognitive control

Our model implements the holistic control network via top-down attention sig-
nals from PFC to the visual cortex, i.e HVA, and further to the FEF. The
connections from PFC to HVA layer 2/3 and downwards to layer 4 implement
feature-based attention. It controls the visual system based on the encoded fea-
ture of a cell, whereby a feature stands for an object view in HVA and an object
type in PFC. The task of object localization specifies the target object via its
type. We simulate this task instruction by activating the appropriate target ob-
ject cell in PFC. Afterwards, attention controls the visual system based on this
cell’s activity by top-down feature-based amplification: it amplifies all HVA neu-
rons encoding a target view. This mechanism is combined with feature-based
suppression, implemented via inhibitory connections within HVA, to decrease
the response of HVA neurons encoding other views. This suppresses neuronal
noise, originating from distractors or background clutter.

Spatial attention controls the system based on spatial information. It is im-
plemented via the recurrent processing loop between HVA and FEF. Spatial
attention has the effect to amplify the response of all HVA neurons at the tar-
get location (spatial amplification) and to suppress HVA neurons at all other
locations (spatial suppression). The spatial processing relies on the HVA activ-
ity that was modulated according to the given feature of the task. It so realizes
the task instruction as it determines the target location for the given feature.
Spatial attention has the functions to focus neuronal activity on the target loca-
tion, to inhibit the location of distractors or background clutter, and to segment
the target from them. Besides these functions, spatial attention synchronizes the
spatial information in FEF and the feature information in HVA [8,10].

Therefore, attention controls the system for the current task demands via the
four attention mechanisms. The control process operates in all areas in parallel
to realize the holistic property of the concept.

3 Results

We will first demonstrate that the approach is able to perform realistic object
localization tasks, and afterwards shed light on its advantages over top-down
saliency models.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 137

Figure 3. Exemplary
test scenes with black,
white-noise, and real-
world backgrounds
(from left to right).

3.1 Performance of the model

We evaluated the model on three large and realistic object recognition test sets,
consisting of 1000 different scenes with either a) black, b) colored white-noise,
or c) real-world backgrounds (Fig. 3). The sets can be downloaded via: http:
//ai.informatik.tu-chemnitz.de/projects/ObjectRecAttention/. A sepa-
rate set with black backgrounds was used to train the model. Each scene contains
five different objects from a set of 100 objects under 72 different rotations (COIL-
100 data set [17]). The model’s task was to search for one of these five objects
and to report its location. To evaluate the model, we measure how often this lo-
cation was reported correctly (localization accuracy). A location was counted as
correctly if the reported position was within the object borders or not more than
50 pixels Euclidean distance away from them. The value of 50 pixels corresponds
roughly to the half of an object. The model achieves on the black background
test set a localization accuracy of 92%. This set contains similar backgrounds as
used for the training of the model. If the model has to generalize to white-noise
or real-world backgrounds, the accuracy changes to 71% and 42% respectively.

Mislocalizations occur in the black background set mainly when a distractor
is similar to the target and more salient than the target. These conditions are
the typical problematic ones [2], even for humans [3]. They occur more often in
the white-noise set as the noise reduces the neuronal representation of the target.
Additionally in this set, mislocalizations take place if an object is similar to the
background noise. In the real-world backgrounds, mislocalizations occur mostly
if the background is similar and more salient than the target.

An existing study reported a similar performance with a saliency model.
Elazary & Itti [18] benchmarked a probabilistic top-down saliency model on
scenes composed from the same objects before black background. They reported
a localization accuracy of 97%. The slightly higher accuracy might be attributed
to the fact that their model uses supervised learning, whereby our trace learning
is unsupervised. We use the trace learning approach for biological plausibility
and are aware that supervised learning approaches might achieve a higher per-
formance as they additionally exploit the object class information.

In summary, our model achieves a similar performance as a state-of-the-art
approach, demonstrating that the holistic attention approach is able to solve
realistic object localization tasks.

Workshop New Challenges in Neural Computation 2015

138 Machine Learning Reports

3.2 Advantages compared to top-down saliency models

The approach of attention as holistic, cognitive control has the advantage that
object recognition and attention are closely intertwined, a goal already sug-
gested by Frintrop et al. [4]. Attention operates no longer as a solely spatial
pre-selection stage; instead, it controls in parallel recognition as well as spatial
selection. The parallel processing solves the interdependency problem of object
recognition and selection, which is unsolved in the saliency model approach. Se-
lection needs knowledge about the properties of the target object and so depends
on a successful recognition. However, recognition requires beforehand selection
to segment the object from the background [5]. Spatial selection is achieved in
our model via localization in the frontal eye field.

As another advantage, the holistic approach allows to select an object via
high-level features instead of low-level features as in the top-down saliency mod-
els. These models deploy attention directly to the low-level features, which allows
a selection only via them. This concept is only suitable in some tasks, for example
Mitri et al. deploy attention to the feature ‘red’ to recognize a red ball in a soccer
scenario [19]. They use the low-level feature ‘red’ as the ball color was uniquely
in their scenario. However in many tasks, the target objects cannot be selected
uniquely by low-level features [20]. Therefore, attention has to be deployed to
more complex visual representations. These range from mid-level representation,
view-tuned cells (e.g. HVA), to object-category representations (e.g. PFC) in the
holistic models (ours, [5,6,7,8,9]). Selection is then based on these high-level rep-
resentations. The high-level representations are also utilized for the recognition
and thus are shared between recognition and selection. Walther & Koch [9] de-
note this concept as feature-sharing.

Summed up, the cognitive, holistic approach has the advantages of parallel
recognition and selection, and of a selection via high-level feature descriptors.

4 Conclusion

In this work, we propose the view of attention as a cognitive, holistic control
process. The process is mediated by a top-down network targeting the whole
visual cortex. The network modulates neuronal activity for the current task and
tunes so the visual system to the task demands. We simulate the network in a
novel system-level model of attention and realize the neuronal modulation with
a physiological-grounded microcircuit model of attention.

We demonstrate the model on a realistic object localization task and illustrate
its advantages over the state-of-the-art computer vision approach of top-down
saliency models. Our model achieves an accuracy of 92% at black backgrounds.
Generalization to white-noise or real-world backgrounds changes the accuracy
to 71% and 42%. These results demonstrate the successfulness of the holistic
approach for a realistic computer vision task. Therefore, the approach might
be an alternative to top-down saliency models, especially in conditions where
those might fail. Such conditions enclose tasks in which the recognition and
selection processes depend on each other, and tasks in which the target cannot
be distinguished via simple feature from the distractors or the background.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 139

Acknowledgments. This work has been supported by the European Project
“Spatial Cognition” (No. 600785), and partly by the Research Training Group
“CrossWorlds” (No. GRK1780) founded by the German Research Foundation.

References
1. Carrasco, M.: Visual attention: the past 25 years. Vision Res 51, 1484–525 (2011)
2. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans Pattern

Anal Mach Intell 35(1), 185–207 (2013)
3. Wolfe, J.M.: Guided search 2.0 a revised model of visual search. Psychon Bull Rev

1(2), 202–238 (1994)
4. Frintrop, S., Rome, E., Christensen, H.: Computational visual attention systems

and their cognitive foundations: A survey. ACM TAP 7(1), 1–39 (2010)
5. Antonelli, M., Gibaldi, A., Beuth, F., Duran, A.J., Canessa, A., Chessa, M.,

Hamker, F.H., Chinellato, E., Sabatini, S.P.: A hierarchical system for a distributed
representation of the peripersonal space of a humanoid robot. IEEE Trans Auton
Mental Develop 6(4), 259–273 (2014)

6. Beuth, F., Wiltschut, J., Hamker, F.H.: Attentive Stereoscopic Object Recognition.
In: Villmann, T., Schleif, F.M. (eds.) Proc Workshop New Challenges in Neural
Computation 2010 - NCNC 2010, Machine Learning reports 04/2010, AG Compu-
tational Intelligence, University of Leipzig, pp. 41–48 (2010)

7. Chikkerur, S., Serre, T., Tan, C., Poggio, T.: What and where: a Bayesian inference
theory of attention. Vision Res 50(22), 2233–47 (2010)

8. Hamker, F.H.: The emergence of attention by population-based inference and its
role in distributed processing and cognitive control of vision. Comput Vis Image
Underst 100, 64–106 (2005)

9. Walther, D.B., Koch, C.: Attention in hierarchical models of object recognition.
Prog Brain Res 165, 57–78 (2007)

10. Jamalian, A., Hamker, F.H.: Biologically-Inspired Models for Attentive Robot Vi-
sion: A Review. In: Pal, R. (ed.) Innovative Research in Attention Modeling and
Computer Vision Applications - In press. IGI Global (2015)

11. Miller, E.K., Buschman, T.J.: Cortical circuits for the control of attention. Curr
Opin Neurobiol 23(2), 216–222 (2013)

12. Ungerleider, L., Haxby, J.: ’What’and ’where’in the human brain. Curr Opin Neu-
robiol 4, 157–165 (1994)

13. Serre, T.: Learning a dictionary of shape-components in visual cortex: Comparison
with neurons, humans and machines. Ph.D. thesis (2006)

14. Zirnsak, M., Beuth, F., Hamker, F.H.: Split of spatial attention as predicted by a
systems-level model of visual attention. Eur J Neurosci 33(11), 2035–45 (2011)

15. Sakai, K.: Task set and prefrontal cortex. Annu Rev Neurosci 31, 219–45 (2008)
16. Beuth, F., Hamker, F.H.: A mechanistic cortical microcircuit of attention for am-

plification, normalization and suppression. Vision Res (2015), in Press
17. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100).

Technical Report CUCS-006-96 (1996)
18. Elazary, L., Itti, L.: A Bayesian model for efficient visual search and recognition.

Vision Res 50(14), 1338–1352 (2010)
19. Mitri, S., Frintrop, S., Pervölz, K., Surmann, H.: Robust object detection at regions

of interest with an application in ball recognition. In: Proc IEEE Int Conf Robotics
and Automation 2005 - ICRA 2005. pp. 126–131 (2005)

20. Xu, T., Chenkov, N.: Autonomous switching of top-down and bottom-up atten-
tion selection for vision guided mobile robots. In: Proc IEEE/RSJ Conf Intelligent
Robots and Systems 2009 - IROS2009. pp. 4009–4014 (2009)

Workshop New Challenges in Neural Computation 2015

140 Machine Learning Reports

Learning Conditional Mappings
between Population-Coded Modalities

Fabian Schrodt and Martin V. Butz

Cognitive Modeling, Department of Computer Science,
University of Tübingen, Germany

{tobias-fabian.schrodt,martin.butz}@uni-tuebingen.de

Abstract. It is still an open question how the brain manages to map
various modalities onto each other. We introduce a tripartite neural net-
work architecture that is able to learn non-linear mappings between
topological, population-encoded modalities. The neural network gains
this capability by creating sparse modal correlation maps. By applying
factorization, the correlation maps serve as mutually conditional trans-
formations onto a third modality. We show that such a combination is
able to solve the locally linear task of learning forward velocity kinemat-
ics of a simple arm. In comparison to other approaches, the architecture
is robust and predictable in terms of learning performance and efficient
in terms of model complexity. The model is neurally plausible, mimick-
ing coordinate transformations known to be computed in parietal cortex,
and may serve as a basic building block to model non-linear mappings
between population-encoded modalities, which are typically grounded in
different frames of reference.

Keywords: Gain-Field Encodings, Population Coding, Factorization,
Sparse Coding, Non-Linear Mappings, Neural Networks

1 Introduction

The brain is able to combine information of various modalities and frames of
reference to learn predictive models about its body and its interaction with the
environment. Typically, sensory input can be assumed to be encoded by popu-
lations of locally receptive cells with tunings to specific stimulus characteristics
[1]. To eventually establish a body model, conditionals of multiple population-
coded stimuli have to be learned to resolve non-linearities and minimize sur-
prise about action outcomes. In parietal cortex, mappings between population-
encoded modalities have been suggested to be established by means of gain-fields
[2, 3].

One example of a tripartite mapping problem is learning a combined model of
kinematic and dynamic bodily control: Given the proprioception of a limb, what
effect does a change in its posture (or a motor command) have in terms of visually
perceived motion? In this question, two modal sources of information have to
be mapped onto a third one, resulting in a locally linear, conditional mapping

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 141

problem. A neurocognitively plausible model may learn such a forward model
by means of supervised training because the outcomes of actions are directly
observable [4]. Once a forward model has been learned, it is possible to derive
an inverse mapping, which is typically ambiguous due to redundancies, that is,
extra degrees of freedom, in the system. Population codes have the potential
to resolve resulting uncertainties [5]. For many degrees of freedom, however,
classical gain-field models are not applicable due to the resulting huge network
sizes, diminishing their cognitive plausibility when no modularization is applied
[6]. We asked the question how such mappings can be learned considering the
conditional, tripartite nature of this problem (and others) while keeping the
computational effort minimal.

In the following, we describe the Conditional Mapping Architecture (CMA)
and show that it is able to learn a combined model of forward dynamics and
kinematic control. The architecture relies on pair-wise multiplications in modal
modules instead of tensor products and is thus easily differentiable and computa-
tionally more efficient than related approaches inspired by gain-field encodings.
In subsequent experiments, we show that the model features fast and predictable
learning performance that is adjustable via a single topological parameter.

2 Conditional Mapping Architecture

CMA is a tripartite architecture sketched in Fig. 1. Two of the parts serve as
input to the network, each fed by data of a different modality. The third part
is defined as the output modality. We assume that there is a non-linear, but
distinct dependency of the output modality on the inputs. That said, the output
is determined by a many-to-one mapping from the first input modality to the
output modality, under the condition of the second input modality – or vice
versa.

2.1 Population Coding

Each modal information is assumed to be limited to a hyperrectangular range
in RDm

, m ∈ {1, 2, 3}1. Each component or dimension dm ∈ {1..Dm} in a
modal space is represented separately by a population of N neurons2, providing
regularly distributed tuning prototypes in the range of this component. Then,
given a modal input sensation sm,dm ∈ [sm,dm

max , sm,dm

min], m ∈ {1, 2}, each neuron
i ∈ {1..N} in an input population responds in the form of a unit Gaussian radial
basis function defined by:

am,dm

i = exp

−1/2

(
pm,dm

i − sm,dm

bm,dm

)2
 , m ∈ {1, 2} , (1)

1 Superscripts of scalars or vectors denote descriptors, while subscripts denote indices
(with the exception of ‘min’ and ‘max’).

2 We assume that each modal component is represented by the same number of neurons
for reasons of simplicity.

Workshop New Challenges in Neural Computation 2015

142 Machine Learning Reports

Π
Π

Π
Π

Π Π
Π

Π
Π

Π

Factorization

q
1

q
2q̇

1

......

q̇
2

ẋ
1

ẋ
2

Correlation Correlation

f 3

f 2f 1

C 1 C 2

W 3

...
...

...

W 1
W 2

Fig. 1. Connection scheme of the tripartite mapping architecture applied to learning
a forward model of endeffector motion ẋ, given angles q and angular velocities q̇. Free
parameters are shown in red.

where pm,dm

i is the prototype in the range of the modal component and bm,dm

is
the breadth of the tuning of neurons in the population representing information
in dimension dm of modality m. The breadth depends on an a-priori range of
the modal component:

bm,dm

=
sm,dm

max − s
m,dm

min

2N
, m ∈ {1, 2, 3} . (2)

For output populations (m = 3 in the following), each neuron i ∈ {1..N} re-

sponds linearly to upstreamed signals, resulting in activities am,dm

i (see Eq. 7).

Given a target sensation or observation sm,dm ∈ [sm,dm

max , sm,dm

min], an error term

δm,dm

i can be calculated suitable for backpropagation:

δm,dm

i = tm,dm

i − am,dm

i , m = 3 (3)

where target activities tm,dm

i are determined analogously to Equation 1.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 143

2.2 Correlating Modalities

To build a processing architecture that is able to learn conditional, tripartite
mappings, we at first employ a correlation map between all dimensions of each
input modality. This correlation map is realized by all pair-wise products of single
activations of cells in unequal populations, resulting in N2 · Dm · (Dm − 1)/2

multiplications. Thus, the activation cm,dm,em

i,j of a multiplicative unit correlating
activations i and j of dimension dm and em of modality m is given by

cm,dm,em

i,j = am,dm

i · am,em

j , (4)

where dm 6= em ∈ {1..Dm}, i, j ∈ {1..N}. This is similar but not equivalent
to tensor products often used in gain-field models, because our approach does
not require Dm-fold multiplications, which reduces the number of parameters
drastically. For Dm = 2, this approach is equivalent to the outer product of
population activity vectors. Note that only the two input modalities have to be
correlated independently.

2.3 Factorization

The resulting correlation maps in our architecture can each be considered a 2D
image Cm with width N ·Dm · (Dm− 1)/2 and height N , reflecting all possible,
pair-wise logical AND interactions. By nature, image processing methods are
applicable – the aim is to find a suitable and yet sparse connectivity that is able
to realize image transformations systematically, whereas one modality can be
considered the input image, and the other can be considered a warp. Allowing
all possible mappings from the two correlation maps to the output modality
would result in a three-way interaction tensor with cubic number of parame-
ters. However, it has been shown that factorization can reduce the number of
parameters drastically, given that local regularities in the mapping exist [7].

Factorization is realized by learning a triplet of linear transformations Wm:
Two of them factorize given input images each onto a modal factor vector fm ∈
RF , and the third transforms the elementwise multiplication (denoted �) of the
modal factors to the output image. The factors are represented by linear hidden
units. This yields the factor cell activations

fm = Wm · Cm,m ∈ {1, 2} (5)

fm = f1 � f2, m = 3 . (6)

The transformation matrices Wm are the only free parameters of the architec-
ture, resulting in F ·N ·

(
N ·D1 · (D1 − 1)/2 +N ·D2 · (D2 − 1)/2 +D3

)
param-

eters overall. Finally, f3 is transformed to the concatenated output activations,
effectively including a projection of the combined correlation maps:

(am,1, ... ,am,Dm

) = Wm · fm, m = 3 . (7)

Training the architecture is possible by means of error gradient descent by back-
propagation, since all parameters are differentiable. In the next section, we eval-
uate the architecture.

Workshop New Challenges in Neural Computation 2015

144 Machine Learning Reports

q
1

q
2

ẋ

q̇
2

q̇
1

Fig. 2. Simulation of a 2-DOF arm with angular constraints.

3 Evaluation Setup

We evaluate the architecture on the task of approximating the forward velocity
kinematics of a simple 2 DOF arm with two limbs with unit length and an
endeffector in a 2D positional space, resulting in Dm = 2 ∀m. A sketch of the
arm is shown in Fig. 2. The learning objective is the prediction of endeffector

velocities ẋ
!
= s3, given angular velocities q̇ = s1 under the condition of angular

postures q = s2. Given the condition, this mapping is onto and locally linear.
All modal components were represented each by N = 10 population neurons.

For evaluation, three Conditional Mapping Architectures with different number
of parameters were compared to three Multilayer Perceptrons (MLP) with three
hidden layers (HL) consisting of neurons with hyperbolic tangent activation func-
tions and biases, resulting in approximately the same number of free parameters
(FP):

– CMA-16: F = 16 factor units ⇒ 3520 FP. Learning rate 0.001.
– MLP-30: 30 neurons per HL ⇒ 3690 FP. Learning rate 0.001.
– CMA-49: F = 49 factor units ⇒ 10780 FP. Learning rate 0.004.
– MLP-60: 60 neurons per HL ⇒ 10980 FP. Learning rate 0.002.
– CMA-99: F = 99 factor units ⇒ 21780 FP. Learning rate 0.008.
– MLP-90: 90 neurons per HL ⇒ 21870 FP. Learning rate 0.003.

Learning rates were optimized heuristically and separately for each network, all
momenta were set to 0.8. Small learning rates are required for learning this pre-
diction online to avoid catastrophic inference and forgetting of already learned,
locally linear mappings [8]. Fig. 1 shows a CMA architecture example for N = 4
and F = 7 applied to the above learning task. A classical computational gain-
field as originally described by Zipser and Andersen [9] would have 200k free
parameters in this configuration. It would however not be possible to train it for
higher-dimensional problems.

For sampling the training data, we set goal postures qg randomly distributed
in posture space and moved the arm according to the normalized postural dis-
tance

q̇(t) =
qg(t)− q(t)

||qg(t)− q(t)||
· U2(0.1) (8)

where U2(0.1) is a 2-dimensional, uniformly distributed random variable in the
interval [0, 0.1] rad. By adding noise to each angular movement, we could enforce

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 145

local variance both in the direction and velocity of the movement of the end-
effector. By targeting goal postures randomly, we could ensure that the whole
postural space was uniformly sampled throughout the training procedure. As
soon as the Euclidean distance ||qg(t)− q(t)|| between the current posture vec-
tor and the goal posture vector fell below 0.2, a new goal posture was set. Goal
postures were restricted by the angular constraint qi ∈ [0, π]. The resulting modal
ranges for angular and endeffector velocities were set accordingly.

We trained each network for 107 time steps in 6 independent trials, includ-
ing normally distributed parameter initialization with mean 0 and variance 0.1
with different random seeds. After training, we averaged the performance in a
50k time steps evaluation phase without parameter adaptation to test for local
overadaptation to the target mapping. The results are shown and interpreted in
the following.

4 Results

The output components a3,d3

provided by a network were used to decode the pre-
dicted directional endeffector velocity ẋ by polling their prototypes and weight-
ing them according to their activation for each modal output component dm,
yielding:

ẋd
m

=

∑N
i=1 x

m,dm

i · am,dm

i∑N
i=1 a

m,dm

i

, dm ∈ {1..Dm}, m = 3 (9)

Then, the prediction ẋ was compared to the actual observation s3. To evaluate
the networks’ performances, we derived two measuring units from this compar-
ison: First, we compared the angular error in the direction of the predicted
endeffector motion, defined by

∆α = acos

(
ẋ • s3

||ẋ|| · ||s3||

)
· 180

π
(10)

where • is the scalar product. Secondly, we defined an exponential velocity error

∆v =

∣∣∣∣log

(
||ẋ||
||s3||

)∣∣∣∣ (11)

The development of these two error measures over time in comparison of the
different network types is shown in Fig. 3(a) and Fig. 3(b).

At first, it has to be noted that finding a working MLP configuration for the
task at hand was not trivial. Since it can be considered a highly non-linear clas-
sification problem, at least three hidden layers (resulting in 5 consecutive linear
transformations) were required for decent performance. We achieved our best
results using hidden layers of equal size. All MLPs had a rather slow learning
progress early on: Training began to have a noticeable effect only after about
80k time steps. At this time, CMAs already reached an acceptable performance

Workshop New Challenges in Neural Computation 2015

146 Machine Learning Reports

(a)

time step t
100 1000 10000 100000 1e+06 1e+07

d
ir
e

c
ti
o

n
 e

rr
o

r
∆
α

 (
°

)

1

10

100 CMA-16: 2.5264°
CMA-49: 1.0649°
CMA-99: 0.83508°
MLP-30: 1.0379°
MLP-60: 1.0015°
MLP-90: 0.87827°

(b)

time step t
100 1000 10000 100000 1e+06 1e+07

le
n

g
th

 e
rr

o
r

∆
 v

0.1

1

CMA-16: 0.099885
CMA-49: 0.039839
CMA-99: 0.032896
MLP-30: 0.025488
MLP-60: 0.026537
MLP-90: 0.023124

Fig. 3. Log-log plots of the deviation of (a) the predicted endeffector movement direc-
tion from the actual movement direction in degree and (b) the predicted endeffector
movement speed from the actual movement direction in exponential relation. Horizon-
tal lines represent the average error levels while testing for local overfitting, which is
also indicated in the legends, respectively.

e.g. with angular errors between 2.5 and 5. However, upon reaching a specific
leverage point, the errors decreased about dual-logarithmically. When increasing
the learning rate, MLPs tended to strong overadaptation to the locally linear
forward dynamics, resulting in worse performance after all. Interestingly, as the
results show, increasing the number of hidden neurons did not improve the con-
vergence rate nor final performance significantly. MLPs with larger hidden layers
however seemed slightly less prone to overfitting.

In comparison, CMAs can especially be characterized by superior rate of
learning progress during the early training period. This suggests that the solu-
tion spaces of CMAs are more convex than for MLPs, such that they were able
to outperform MLPs at least for a finite time span. Also, CMAs did not tend to
overfit that much when increasing the learning rate. Instead of using a hierar-
chy of non-linear classifiers, CMA relies on pair-wise multiplications of (linear)
factors only, making them easy and robust to train. In contrast to MLP, CMA’s
performance increases with F as the only topological parameter of the architec-
ture. Thus, using CMAs seems suitable to quickly find an approximate solution

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 147

without challenging topological parameters. Considering the results, though, we
cannot draw the conclusion that CMAs were able to outperform MLPs in terms
of the attainable error limit.

5 Conclusions

In the course of this ongoing investigation, we introduced an architecture that
is able to learn online an approximation of population-coded forward dynamics
in about 80k time steps with accuracy. Transforming pair-wise correlation maps
of two modal input populations is sufficient to solve this problem. In contrast
to conservative gain-fields, our approach is potentially able to handle higher-
dimensional problems (e.g. 7 DOF forward dynamics) with a reasonable number
of parameters. The applied factorization can also be considered a fusion of a
pair of two-dimensional gain-field mappings onto a third modality. Just as hier-
archical gain-fields can be used to reduce the number of parameters [6], apply-
ing hierarchical factorizations of correlation maps could thus result in further
reduction of the number of parameters, particularly when applied to higher-
dimensional problems. Specifically relating to the task of learning forward dy-
namics, adding recurrences from angular changes to angles might provide the
network with further capabilities. In future work, also opportunities to resolve
the inverse dynamics could be investigated based on this architecture. Moreover,
the factorization structure should be analyzed further, in which case we expect
to uncover dimensional properties of the outside environment.

References

1. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes.
Nature Reviews Neuroscience 1 (2000) 125–132

2. Andersen, R.A., Essick, G.K., Siegel, R.M.: Encoding of spatial location by posterior
parietal neurons. Science 230 (1985) 456–458

3. Salinas, E., Sejnowski, T.J.: Correlated neuronal activity and the flow of neural
information. Nature reviews neuroscience 2 (2001) 539–550

4. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal
teacher. Cognitive science 16 (1992) 307–354

5. Doya, K.: Bayesian brain: Probabilistic approaches to neural coding. MIT press
(2007)

6. Kneissler, J., Butz, M.V.: Learning spatial transformations using structured gain-
field networks. In: Artificial Neural Networks and Machine Learning–ICANN 2014.
Springer (2014) 683–690

7. Memisevic, R., Hinton, G.E.: Learning to represent spatial transformations with
factored higher-order boltzmann machines. Neural Computation 22 (2010) 1473–
1492

8. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. Psychology of learning and motivation 24 (1989)
109–165

9. Zipser, D., Andersen, R.A.: A back-propagation programmed network that simulates
response properties of a subset of posterior parietal neurons. Nature 331 (1988)
679–684

Workshop New Challenges in Neural Computation 2015

148 Machine Learning Reports

Nyström approximation toolbox

Andrej Gisbrecht1 and Frank-Michael Schleif2

1 CITEC centre of excellence, Bielefeld University, 33615 Bielefeld, Germany
2 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

agisbrec@techfak.uni-bielefeld.de schleify@cs.bham.ac.uk

One common challenge in many research areas is the increasing complexity
of the data. Such data can no longer be represented in vectorial form, but in-
stead specifically designed (dis-)similarity measures have to be introduced. For
similarities a large variety of kernel-based techniques can be used [4], but there
are also techniques which can work with dissimilarities, such as e.g. [1]. Unfortu-
nately, (dis-)similarity measures result from domain specific considerations and
therefore often do not stem from Euclidean spaces. In this case, kernel methods
can not be used, since they require valid positive semi-definite kernel matrices.
Distance-based techniques usually still work, but no convergence guaranties can
be given. There are transformation techniques which can make these data Eu-
clidean, but they are very demanding with the computational complexity cubic
in the number of data points [3]. This leads to the next problem of (dis-)si-
milarity data: the pairwise relations between every pair of data points have to
be evaluated, resulting in squared memory complexity and at least squared run-
time complexity for the associated techniques. Thus, working with data sets with
already as few as ten thousand points becomes infeasible in practice.

To overcome the problem of the squared complexity the Nyström approxi-
mation was proposed for the kernel based techniques [5]. However, it was limited
to positive semi-definite matrices only, which made it inaccessible for dissimi-
larities and indefinite similarities. Later it was shown [2], that the Nyström ap-
proximation can also be applied to arbitrary symmetric matrices. Moreover, the
transformations described in [3], which allow to transform the (dis-)similarities
into each other, as well as to perform Euclidean correction, can be combined
with this approximation and thus carried out in linear time [2]. The toolbox
presented here implements these approximated transformations and can be used
to design techniques capable of dealing with large (dis-)similarity data sets.

The idea of the Nyström technique is to approximate the given matrix S by
a low rank matrix [5]:

S ≈ SN,mS†
m,mS>

N,m (1)

where SN,m is a linear part of the full matrix, which consists of the (dis-)simi-
larities between all N points and m randomly selected points, also called land-
marks. The matrix S†

m,m denotes the pseudo-inverse matrix calculated on the
(dis-)similarity matrix between the landmarks. This way only a small part of the
matrix, which is linear in the number of data points, has to be computed and
any algorithm in which the matrix is used only in vector-matrix products can
be carried out in linear time if the matrices are multiplied in the optimal order:
vS ≈

(
(vSN,m)S†

m,m

)
S>
N,m.

Workshop New Challenges in Neural Computation 2015

Machine Learning Reports 149

S D

K(S*)

transformation
conventionally O(N2), approximated O(m2N)

double centering
conventionally O(N2), approximated O(m2N)

e
ig

e
n
v
a
lu

e
 c

o
rr

e
ct

io
n

co
n
v
e
n
ti

o
n
a
lly

 O
(N

3
)

 a
p

p
ro

x
im

a
te

d
 O

(m
2

N
)

Eucli
dean embedding

co
nventio

nally
 O

(N
3), a

pproxim
ated O

(m
2 N)

m
e
tr

ic
 s

p
a
ce

n
o
n
-m

e
tr

ic
 s

p
a
ce

Fig. 1. Transformations between metric and non-metric (dis-)similarities. The Nyström
approximation allows linear complexity.

The toolbox implements the transformations as shown schematically in Fig-
ure 1. It is possible to e.g. start with non-metric dissimilarities, convert them
to similarities, perform eigenvalue correction to construct a valid kernel, and
then convert the kernel back to dissimilarities, which then have properties of
Euclidean distances. It is also possible to perform out-of-sample extension, i.e.
if an algorithm was trained on corrected dissimilarities and should be evaluated
on the uncorrected test set, it is possible to correct the new data in the same
way as the training data.

The toolbox is available online at www.cit-ec.de/en/tcs/research. For
detailed mathematical background on the transformations please refer to [3], for
details regarding the approximation of indefinite matrices see [2]. Also if you use
this toolbox please cite [2].

Acknowledgments: Financial support from the Cluster of Excellence 277
Cognitive Interaction Technology funded by the German Excellence Initiative is
gratefully acknowledged. F.-M. Schleif was supported by a Marie Curie Intra-
European Fellowship (IEF): FP7-PEOPLE-2012-IEF (FP7-327791-ProMoS).

References

1. Andrej Gisbrecht, Bassam Mokbel, and Barbara Hammer. Relational generative
topographic mapping. Neurocomputing, 74(9):1359–1371, 2011.

2. Andrej Gisbrecht and Frank-Michael Schleif. Metric and non-metric proximity trans-
formations at linear costs. Neurocomputing, 167:643–657, 2015.

3. Elzbieta Pekalska and Robert P.W. Duin. The Dissimilarity Representation for
Pattern Recognition. Foundations and Applications. World Scientific, 2005.

4. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis and Dis-
covery. Cambridge University Press, 2004.

5. Christopher Williams and Matthias Seeger. Using the Nyström method to speed up
kernel machines. In Advances in Neural Information Processing Systems 13, pages
682–688. MIT Press, 2001.

Workshop New Challenges in Neural Computation 2015

150 Machine Learning Reports

MACHINE LEARNING REPORTS

Report 03/2015

Impressum
Machine Learning Reports ISSN: 1865-3960
▽ Publisher/Editors

Prof. Dr. rer. nat. Thomas Villmann
University of Applied Sciences Mittweida
Technikumplatz 17, 09648 Mittweida, Germany
• http://www.mni.hs-mittweida.de/

Dr. rer. nat. Frank-Michael Schleif
University of Bielefeld
Universitätsstrasse 21-23, 33615 Bielefeld, Germany
• http://www.cit-ec.de/tcs/about

▽ Copyright & Licence
Copyright of the articles remains to the authors.

▽ Acknowledgments
We would like to thank the reviewers for their time and patience.

Machine Learning Reports
http://www.techfak.uni-bielefeld.de/∼fschleif/mlr/mlr.html

