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New Challenges in Neural Computation

NC2 – 2011

Barbara Hammer1 and Thomas Villmann2

1 – Cognitive Interaction Technology – Center of Excellence,
Bielefeld University, Germany

2 – Faculty of Mathematics / Natural and Computer Sciences,
University of Applied Sciences Mittweida, Germany

The workshop New Challenges in Neural Computation, NC2, takes place
for the second time, this year in connection to the prestigious DAGM confer-
ence in Frankfurt am Main. Again, the workshop centers around exemplary
challenges and novel developments of neural systems covering recent research
concerning theoretical issues as well as practical applications of neural research.
This year, among general contributions, a special focus topic was chosen: au-
tonomous learning, which deals with the central problem of how machines can
learn as autonomously as humans in unknown environments without the neces-
sity of dedicated focussed tasks or a teacher with shapes the problems such that
the machine can solve it easily. We are happy to have two well-known invited
speakers in this area: Marc Toussaint, who is also one of the main investiga-
tors of a corresponding priority program of the German Research Foundation,
presents an overview about recent developments to autonomously learn by means
of relational representations in statistical environments. Jochen Steil, managing
director of the CoR-Lab Research Institute for Cognition and Robotics, presents
novel ways in which robots can learn autonomously inspired by cognitive learning
processes. The invitation of invited speakers became possible due to the generous
sponsoring of the European Neural Networks Society (ENNS). Correspondingly,
the workshop was not only supported by the working group Neural Networks of
the German Computer Society but also by the German chapter of the ENNS,
the GNNS.

Besides these invited talks, a large number of regular contributions demon-
strates the active research in the field of neural networks. Interestingly, all con-
tributions can be linked to complex learning problems beyond simple classical
supervised learning, demonstrating the relevance of the special focus topic. A
number of contributions centers around the question of how to represent com-
plex signals in a sparse cognitively plausible way: Sven Hellbach et al. present
a very general approach how to decompose motion into basic constituents by
means of non-negative matrix factorization. Jens Hocke et al. use similar princi-
ples to represent image data. The contributions by Xibin Zhu et al. and Marika
Kästner and Thomas Villmann deal with a sparse prototype based representa-
tion of data, thereby focussing on different complex non-vectorial data formats.
A second set of papers centers around the question how learning paradigms be-
yond simple supervised classification can be canonically formalized, focussing
on semi-supervised learning in the contribution by Oliver Beyer and Philipp

New Challenges in Neural Computation - 2011 1



Cimiano, perceptual grouping in the approach of Martin Meier et al. and data
visualization in the proposal by Wouter Lueks et al. Time plays an essential role
in learning processes and, therefore, should be treated explicitly in the frame
of autonomous learning. Michael Glodek et al. extend classical hidden Markov
models to advanced models which can reliably deal with complex activities.
Similarly, the approaches of Alexandra Barchunova et al. and Matthias Rolf and
Jochen Steil deal with motion trajectories of the hand, autonomously recognizing
and producing, respectively, complex hand trajectories. Being one of our most
powerful senses, vision plays a central role in learning processes. The last three
contributions of Johannes Lohmann and Martin V. Butz, Hannes Schulz and
Sven Behnke, and Marco K. Müller et al. deal with different facets of how to
connect this sense to other modes, or to solve complex tasks such as segmentation
and recognition with cognitively plausible architectures.

Altogether, these contributions constitute promising steps into the direction
of complex autonomous information processing with neural systems by providing
new paradigms, concepts, and models.
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Challenges of exploration, learning and goal-directed

behavior in relational worlds

Keynote talk: Prof. Dr. Marc Toussaint, Machine Learning and Robotics Lab,
FU Berlin

Abstract: Natural environments composed of many manipulable objects can
be described in terms of probabilistic relational models. Autonomous learning,
exploration and planning in such environments is generally hard, but can be
tackled when exploiting the inherent relational structure. I will first cover some
basic research of our lab in the area of planning by inference before I address in
more detail our recent advances in relational exploration, learning and planning,
with emphasis on robotics applications. The question of how neurons could do
such kind of “inference in relational representations” is rather puzzling to me -
but I conjecture that animals and humans in some way or another have to do
such kinds of computations.
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Neurons Driving Cognitive Robots

Keynote talk: Prof. Dr. Jochen J. Steil, CoR-Lab, Bielefeld University

Abstract: Cognitive Robotics is one major application domain for neural learn-
ing methods, whereas robustness to environmental conditions, learning in inter-
action with human partners, and developmental learning are ideal and challeng-
ing playgrounds. We will discuss recent progress using brain-inspired learning
and architecture with focus on three important questions: how to get from sim-
ple movement to rich motor skills? What do human inspired computational
architectures contribute? How shall interaction with human users be shaped?
Application examples will include the child-like iCub, the commercial humanoid
Nao and the Honda humanoid robot. Finally, we will illustrate that the de-
veloped methods are also highly relevant for tomorrow’s much more flexible
automation technology.
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Learning Motion Primitives using Spatio-Temporal NMF

Sven Hellbach1, Christian Vollmer1, Julian P. Eggert2, and Horst-Michael Gross1

1 Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Labs,
POB 10 05 65, 98684 Ilmenau, Germany
christian.vollmer@tu-ilmenau.de

2 Honda Research Institute Europe GmbH, Carl-Legien-Strasse 30,
63073 Offenbach/Main, Germany
julian.eggert@honda-ri.de

1 Introduction

The understanding and interpretation of movement trajectories is a crucial component in dynamic
visual scenes with multiple moving items. Nevertheless, this problem has been approached very
sparsely by the research community. Most approaches for describing motion patterns, like [1],
rely on a kinematic model for the observed human motion. This causes the drawback that the
approaches are difficult to adapt to other objects. Here, we aim at a generic, model-independent
framework for decomposition, classification and prediction.

Consider the simple task for a robot of grasping an object which is handed over by the hu-
man interaction partner. To avoid a purely reactive behaviour, which might lead to ‘mechanical’
movements of the robots, it is necessary to predict the further movement of the human’s hand.

In [2] an interesting concept for a decomposition task is presented. Like playing a piano a
basis alphabet – the different notes – are superimposed to reconstruct the observation (the piece
of music). Regarding only the information, when a base primitive was active, gives rise to an
instance of the so called ’piano model’ which is a very low-dimensional and sparse representation
and which can be exploited for further processing. While the so-called piano model relies on a set
of given basis primitives, our approach is able to learn these primitives from the training data.

We use [3], a blind source separation approach in concept similar to PCA and ICA. The system
of basis vectors which is generated by the NMF is not orthogonal. This is very useful for motion
trajectories, since one basis primitive is allowed to share a common part of its trajectory with
other primitives and to specialize later.

2 Non-negative Matrix Factorization

Like other approaches, e. g. PCA and ICA, non-negative matrix factorization (NMF) [3] is meant
to solve the source separation problem. Hence, a set of training data is decomposed into basis
primitives W and activations thereof H:

V ≈W ·H (1)

Each training data sample is represented as a column vector Vi within the matrix V. Each
column of the matrix W stands for one of the basis primitives. In matrix H the element Hj

i

determines how the basis primitive Wj is activated to reconstruct training sample Vi.
For generating the decomposition, optimization-based methods are used. Hence, an energy

function E has to be defined:

E(W,H) =
1

2
‖V −T ·W ·H‖2 + λ

∑
i,j

Hj
i (2)

By minimizing the energy equation, it is now possible to achieve a reconstruction using the matrices
W and H. This reconstruction is aimed to be as close as possible to the training data V. In
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Fig. 1. Motion Trajectories are transferred into a grid representation. A grid cell is set to 1 if it is in the
path of the trajectory and set to zero otherwise. Each dimension has to be regarded separately. During
the prediction phase multiple hypotheses can be gained by superimposing several basis primitives. This is
indicated with the grey trajectories on the right side of the grid.

addition the basis primitives are intended to be allowed to move, rotate and scale freely. This
is achieved by adding a transformation matrix T to the decomposition formulation [4]. For each
allowed transformation the corresponding activity has to be trained individually. To avoid trivial
or redundant solutions a further sparsity constraint is necessary. Its influence can be controlled
using the parameter λ [5].

The minimization of the energy function can be done by gradient descent. The factors H and
W are updated alternately with a variant of exponentiated gradient descent until convergence.

3 Decomposing Motion Trajectories

For being able to decompose and to predict the trajectories of the surrounding dynamic objects,
it is necessary to identify them and to follow their movements. For simplification, a tracker is
assumed, which is able to provide such trajectories in real-time. A possible tracker to be used is
presented in [6]. The given trajectory of the motion is now interpreted as a time series T with
values si = (xi, yi, zi) for time steps i = 0, 1, . . . , n− 1:

T = (s0, s1, . . . , sn−1). (3)

It is now possible to present the vector T directly to the NMF approach. But this could result
in an unwanted behaviour, while trying to reconstruct the motion by use of the basis primitives.
Imagine two basis primitives, one representing a left turn and another representing a right turn.
A superposition of those basis primitives would result in a straight movement.

The goal is to have a set of basis primitives, which can be concatenated one after the other.
Furthermore, it is necessary for a prediction task to be able to formulate multiple hypotheses. For
achieving these goals, the x-t-trajectory is transferred into a grid representation, as it is shown in
figure 1. Then, each grid cell (xi, tj) represents a certain state (spatial coordinate) xi at a certain
time tj . Since most of the state-of-the-art navigation techniques rely on grid maps, the prediction
can be integrated easily. Grid Maps were first introduced in [7]. This 2D-grid is now presented
as image-like input to the NMF algorithm. Using the grid representation of the trajectory also
supports the non-negative character of the basis components and their activities.

It has to be mentioned, that the transformation to the grid representation is done for each
of the dimensions individually. Hence, the spatio-temporal NMF has to be processed on each of
these grids. Regarding each of the dimensions separately is often used to reduce the complexity
of the analysis of trajectories (compare [8]). However, the algorithm’s only limitations to handle
multi-dimensional grid representation is the increase of computational effort.

While applying an algorithm for basis decomposition to motion trajectories it seems to be
clear that the motion primitives can undergo certain transformations to be combined to the whole
trajectory. For example, the same basis primitive standing for a straight move can be concatenated
with another one standing for a left turn. Hence, the turning left primitive has to be moved to the
end of the straight line, and transformation invariance is needed while decomposing motion data.
For our purposes, we concentrate on translation. This makes it possible to reduce the complexity
of the calculations and to achieve real time performance.

The sparse coding constraint helps to avoid trivial solutions. Since the input can be compared
with a binary image, one possible solution would be a basis component with only a single grid cell
filled. These can then be concatenated one directly after another. So, the trajectory would simply
be copied into the activities.
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Fig. 2. Training with Spatio-Temporal NMF. Given is a set of training samples in matrix V. The described
algorithm computes the weights W and the corresponding activities H. Only the weights are used as basis
primitives for further processing.

Training Phase: The goal of the training phase is to gain a set of basis primitives which allow
to decompose an observed and yet unknown trajectory (see Fig. 2). As it is discussed in section
3, the training samples are transferred into a grid representation. These grid representations are
taken as input for the NMF approach and are therefore represented in matrix V. On this matrix
V the standard NMF approach, extended by the sparsity constraint and by translation invariance,
is applied. The algorithm is summarized in [9].

Beside the computed basis primitives, the NMF algorithm also provides the information of how
each of the training samples can be decomposed by these basis primitives.

Application Phase: As it is indicated in Fig. 3, from the training phase a set of motion primitives
is extracted. During the application phase, we assume that the motion of a dynamic object (e. g.
a person) is tracked continuously. For getting the input for the NMF algorithm, a sliding window
approach is taken. A certain frame in time is transferred into the already discussed grid like
representation. For this grid the activation of the basis primitives is determined by trying to
reconstruct the input.

The standard approach to NMF implies that each new observation at the next time step
demands a new random initialization for the optimization problem. Since an increasing column
number in the grid representation stands for an increase in time, the trajectory is shifted to the
left while moving further in time. For identical initialization, the same shift is then reflected in
the activities after the next convergence. To reduce the number of iterations until convergence,
the shifted activities from the previous time step are used as initialization for the current one.

To fulfil the main goal discussed in this paper – the prediction of the observed trajectory into
the future – the proposed algorithm had to be extended. Since the algorithm contains the trans-
formation invariance constraint, the computed basis primitives can be translated to an arbitrary
position on the grid. This means that they can also be moved in a way that they exceed the
borders of the grid. Up to now, the size of reconstruction was chosen to be the same size as the
input grid. Hence, using the standard approach means that the overlapping information has to
be clipped. To be able to solve the prediction task, we simply extend the reconstruction grid to
the right – or into the future (see Fig. 3). So, the previously clipped information is available for
prediction.

New Challenges in Neural Computation - 2011 7
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Fig. 3. The basis primitives W, which were computed during the training, are used to reconstruct (matrix
R) the observed trajectory V. This results in a set of sparse activities – one for each basis primitive –
which describe on which position in space and time a certain primitive is used. Beside the reconstruction
of the observed trajectory (shown in Fig. 3), it is furthermore possible to predict a number of time steps
into the future. Hence, the matrix R is extended by the prediction horizon P.
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Image Deconvolution with Sparse Priors

Jens Hocke1, Thomas Martinetz1, and Erhardt Barth1

1Institute for Neuro- and Bioinformatics, University of Lübeck

August 16, 2011

Abstract

Optical systems used for image acquisition are usually not perfect and
leading to degraded images. A typical degradation is image blur. Building
perfect optics is not always possible due to physical limitations, cost,
size or weight. Therefore, there is interest in computational solutions to
remove these degradations. By knowing the sources of distortion it is
possible to remove them.

Image blur can be removed by deconvolution, however, the problem
which has to be solved is underdetermined. For solving these ill-posed
problems additional assumptions have to be considered. Recently, many
advances were made in the investigation of underdetermined systems of
equations [1] in cases where the solution can be sparsely encoded. The
sparseness constraint is used to select a plausible solution out of an infinite
set of possible solutions. This method is applied to the deconvolution
problem.

Similar to other approaches to deconvolution based on sparse coding,
for speed and memory efficiency we apply the fast Fourier transform and
the fast wavelet transform to model the convolution and provide a sparse
basis [2]. For the convolution, boundary areas are cut to avoid wrong
modelling due to the cyclic nature of the Fourier transform. By cutting
the boundary areas the system of equations becomes underdetermined.

We apply this approach to a pinhole camera setting. Using a simulated
pinhole camera, we look at the influence of sparseness and the robustness
to noise. First tests have also been made using a real pinhole camera.

References

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of sys-
tems of equations to sparse modeling of signals and images,” SIAM Review,
vol. 51, no. 1, pp. 34–81, 2009.

[2] M. A. T. Figueiredo and R. D. Nowak, “A bound optimization approach to
wavelet-based image deconvolution,” in IEEE International Conference on
Image Processing – ICIP’2005, (Genoa, Italy), pp. 782–785, 2005.
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Learning vector quantization

for classification of dissimilarity data

Xibin Zhu, Frank-Michael Schleif, Barbara Hammer
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Bielefeld University, CITEC-Centre of Excellence

D-33594 Bielefeld, Germany

August 17, 2011

Abstract

Prototype models offer an intuitive interface to given data volumes

because they represent the model in terms of typical prototypes which can

directly be inspected by the user. Popular supervised prototype methods

such as learning vector quantization suffer from its restriction to Euclidean

vectors. Thus, they are not suited to deal with general dissimilarity data

which occurs more and more often in applications. In this contribution

two extensions of supervised prototype based methods to deal with general

dissimilarity data are proposed.

1 Introduction

Machine learning techniques have revolutionized the possibility to deal with
large electronic data sets. Prominent methods like the support vector machine
provide highly accurate models, but they often constitute black box mechanisms
such that their decision process can hardly be inspected by humans. In contrast,
prototype-based methods represent decisions in terms of typical representatives,
which can easily be inspected by humans in the same way as data points.

Different methods have been proposed to infer prototypes from given data,
such as variants of k-means and topographic mapping and statistical counter-
parts [3, 2, 5]. One of the most popular supervised prototype based method
is given by learning vector quantization (LVQ). Modifications and extensions
thereof relate the model to explicit cost functions or statistical models [2, 8, 4],
with excellent generalization ability [6, 7].

In modern applications, data are often addressed using non-Euclidean dis-
similarities such as dynamic time warping for time series or alignment for sym-
bolic strings. In such cases, a Euclidean representation of data is not possible.
Rather, data are given implicitly in terms of pairwise dissimilarities or relations.
Standard LVQ and its variants cannot be used in such cases.
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In this contribution, we provide relational extensions of generalized LVQ
(GLVQ) and robust soft LVQ (RSLVQ) [8, 4] such that supervised prototype
based classification for dissimilarity data becomes possible. Thereby, we refer
to techniques which have recently been established in unsupervised settings
[9, 10]: prototypes are represented implicitly as linear combinations of data in
the so-called pseudo-Euclidean embedding. The relevant distances of data and
prototypes can be computed without an explicit reference to the vectorial data
representation. This principle holds for every symmetric dissimilarity matrix
and thus, allows us to formalize a valid objective of RSLVQ and GLVQ for
relational data.

In this contribution, we review GLVQ and RSLVQ first, which are subse-
quently extended to relational data and tested on several benchmarks.

2 Prototype based clustering and classification

Assume data ~xi ∈ R
n, i = 1, . . . ,m, are given. Prototypes are contained in the

same space ~wj ∈ R
n, j = 1, . . . , k. They decompose data into receptive fields

R(~wj) = {~xi : ∀k d(~xi, ~wj) ≤ d(~xi, ~wk)} based on a dissimilarity measure, e.g.
the Euclidean distance d(~xi, ~wj) = ‖~xi − ~wj‖2 .

In supervised settings, ~xi and ~wj are equipped with class labels c(~xi) ∈
{1, . . . , L} and c(~wj), respectively. A data point is assigned to the class of its
closest prototype. The classification error is given by

∑

j

∑

~xi∈R(~wj)
δ(c(~xi) 6=

c(~wj)) with the standard delta function δ. Since this cannot efficiently be op-
timized directly, LVQ and its extensions rely on a heuristic or alternative cost
function which relates to the classification error [2]. The cost function of Gen-
eralized LVQ (GLVQ) [8] is given by

EGLVQ =
∑

i

Φ

(

d(~xi, ~w+(~xi))− d(~xi, ~w−(~xi))

d(~xi, ~w+(~xi)) + d(~xi, ~w−(~xi))

)

where Φ is a differentiable monotonic function such as the hyperbolic tangent,
and ~w±(~xi) refers to the closest, equally (+) or differently (−) labeled prototype
to ~xi. The error of a point ~xi is smallest if d(~xi, ~w+) < d(~xi, ~w−), leading to
a correct classification. The cost function emphasizes the hypothesis margin of
the classifier by summing over the differences of the distances. Usually, the cost
function is optimized by a stochastic gradient descent with random initialization
of the prototypes. Given a data point ~xi, the udate of ~w± is given by:

∆~w±(~xi) ∼ ∓ Φ′(µ(~xi)) · µ±(~xi) · ∇~w±(~xi)d(~x
i, ~w±(~xi))

where

µ(~xi) =
d(~xi, ~w+(~xi))− d(~xi, ~w−(~xi))

d(~xi, ~w+(~xi)) + d(~xi, ~w−(~xi))
, µ±(~xi) =

2 · d(~xi, ~w∓(~xi))

(d(~xi, ~w+(~xi)) + d(~xi, ~w−(~xi))2
.

For the squared Euclidean norm, we get ∇~wjd(~xi, ~wj) = −2(~xi − ~wj).

New Challenges in Neural Computation - 2011 11



Robust soft LVQ (RSLVQ) [4] is an alternative statistical approach, which in
the limit of small bandwidth leads to updates similar to LVQ. For non-vanishing
bandwidth, soft assignments of data points to prototypes take place. Each ~wj

and induces a Gaussians p(~xi|~wj) = K · exp(−d(~xi, ~wj)/2σ2) with variance
σ ∈ R and normalization constant K = (2πσ2)−n/2. Assuming equal prior for
each ~wj , we obtain the overall and class dependent probability, respectively, of
~xi by

p(~xi) =
∑

~wj

p(~xi|~wj)/K, p(~xi, c(~xi)) =
∑

~wj :c(~wj)=c(~xi)

p(~xi|~wj)/K .

The cost function of RSLVQ is induced by the quotient of these probabilities

ERSLVQ = log
∏

i

p(~xi, c(~xi))

p(~xi)
=
∑

i

log
p(~xi, c(~xi))

p(~xi)

E is optimized by means of a stochastic gradient descent, i.e. for given ~xi:

∆~wj ∼ −
1

2σ2
·

(

p(~xi|~wj)
∑

j:c(~wj)=c(~xi)
p(~xi|~wj)

−
p(~xi|~wj)

∑

j p(~x
i|~wj)

)

· ∇~wjd(~xi, ~wj)

if c(~xi) = c(~wj) and

∆~wj ∼
1

2σ2
·

p(~xi|~wj)
∑

j p(~x
i|~wj)

· ∇~wjd(~xi, ~wj)

if c(~xi) 6= c(~wj). In the limit of small bandwidth, the soft assignments become
crisp values, leading to the standard LVQ update in case of mistakes of the
classifier.

3 Dissimilarity data

In typical applications, often, data are described by means of a dedicated dissim-
ilarity measures to account for the complexity of the data. Standard supervised
prototype techniques are restricted to Euclidean vector spaces. Recently unsu-
pervised prototype methods have been extended to more general formats [9].
Following this approach, we extend GLVQ and RSLVQ to relational variants.

We assume that data ~xi are characterized by pairwise symmetric dissimilar-
ities dij = d(~xi, ~xj), with dii = 0. D refers to the corresponding dissimilarity
matrix1. We do not require that d refers to a Euclidean data space, i.e. D does
not need to be Euclidean embeddable, nor does it need to fulfill the conditions
of a metric.

As argued in [10, 9], every such data can be embedded in a pseudo-Euclidean
vector space the dimensionality of which is limited by the number of points.

1It is easy to transfer similarities to dissimilarities and vice versa, see [10].
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The pseudo-Euclidean vector space is a real-vector space with the bilinear form
〈~x, ~y〉p,q = ~xtIp,q~y where Ip,q is a diagonal matrix with p entries 1 and q entries
−1. The tuple (p, q) is the signature of the space; q determines how far the
standard Euclidean norm has to be corrected by negative eigenvalues to arrive
at the given dissimilarity measure. The data are Euclidean if and only if q = 0.
For a givenD, its pseudo-Euclidean embedding can be computed by means of an
eigenvalue decomposition of the related Gram matrix. It yields explicit vectors
~xi such that dij = 〈~xi − ~xj , ~xi − ~xj〉p,q holds for every pair of data points.

Based on this observation, we embed prototypes in this pseudo-Euclidean
vector space. We restrict prototypes to linear combination of data points of the
form

~wj =
∑

i

αji~x
i with

∑

i

αji = 1 .

In this case, dissimilarities can be computed implicitly by means of the formula

d(~xi, ~wj) = [D · αj ]i −
1

2
· αt

jDαj

where αj = (αj1, . . . , αjn) is a vector of coefficients describing ~wj implicitly [9].
Based on this observation, we can transfer the Euclidean cost function to the
relational case.

The costs of relational GLVQ (RGLVQ) are:

ERGLVQ =
∑

i

Φ

(

[Dα+]i −
1

2
· (α+)tDα+ − [Dα−]i +

1

2
· (α−)tDα−

[Dα+]i −
1

2
· (α+)tDα+ + [Dα−]i −

1

2
· (α−)tDα−

)

,

where the closest correct and wrong prototype coefficients are referred to using
α+ and α−, respectively. Adaptation of the coefficients α± in RGLVQ is given
by:

∆α±
k ∼ ∓ Φ′(µ(~xi)) · µ±(~xi) ·

∂
(

[Dα±]i −
1

2
· (α±)tDα±

)

∂α±
k

where µ(~xi), µ+(~xi), and µ−(~xi) are as above. The partial derivative yields

∂
(

[Dαj ]i −
1

2
· αt

jDαj

)

∂αjk
= dik −

∑

l

dlkαjl

Similarly, the costs of RSLVQ can be extended

ERRSLVQ =
∑

i

log

∑

αj :c(αj)=c(~xi)
p(~xi|αj)/k

∑

αj
p(~xi|αj)/k

where

p(~xi|αj) =
exp

(

−
(

[Dαj ]i −
1

2
· αt

jDαj

)

/2σ2
)

K
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Stochastic gradient descent leads to the updates

∆αjk ∼ −
1

2σ2
·

(

p(~xi|αj)
∑

j:c(αj)=c(~xi)
p(~xi|αj)

−
p(~xi|αj)

∑

j p(~x
i|αj)

)

·
∂
(

[Dαj ]i −
1

2
αt
jDαj

)

∂αjk

if c(~xi) = c(αj) and

∆~wj ∼
1

2σ2
·

p(~xi|αj)
∑

j p(~x
i|αj)

·
∂
(

[Dαj ]i −
1

2
αt
jDαj

)

∂αjk

if c(~xi) 6= c(αj).
For both, RGLVQ and RRSLVQ, each adaptation is followed by a normal-

ization:
∑

i αji = 1. The prototypes are initialized randomly with small values
for αij with

∑

i αji = 1. It is possible to take class information into account by
setting all αij to zero which do not correspond to the class of the prototype.

An out of sample extension of the classification to novel data points is imme-
diate based on an observation made in [9]: given a novel data point ~x character-
ized by its pairwise dissimilarities D(~x) to the data used for training, the dissim-
ilarity of ~x to a prototype represented by αj is d(~x, ~w

j) = D(~x)t ·αj−
1

2
·αt

jDαj .

4 Experiments

We evaluate the algorithms for several benchmark data sets where data are
characterized by pairwise dissimilarities. We consider eight data sets used also
in [1]: Amazon47, Aural-Sonar, Face Recognition, Patrol, Protein and Voting.
Further we consider the Cat Cortex from [13], the Copenhagen Chromosomes
data [11] and one own data set, the Vibrio data. The last one consists of
1,100 samples of vibrio bacteria populations characterized by mass spectra. The
spectra contain approx. 42,000 mass positions. The full data set consists of 49
classes of vibrio-sub-species. The preprocessing of the Vibrio data is described
in [12] and the underlying similarity measures in [14, 12].

Since some of these matrices correspond to similarities rather than dissimi-
larities, we use standard preprocessing as presented in [10]. For every data set,
a number of prototypes which mirrors the number of classes was used, repre-
senting every class by one or two prototypes, see Tab. 1. Initialization of LVQ
is done randomly; training takes place for 100 epochs with learning rate 0.1.
The parameter σ is optimized on the training set. The evaluation of the results
is done by means of the classification accuracy as evaluated on the test set in a
ten fold repeated cross-validation with ten repeats The results are reported in
Tab. 1. In addition, we report the best results obtained by SVM after diverse
preprocessing techniques as reported in the article [1].

Interestingly, in most cases, results which are comparable to the best SVM
as reported in [1] can be found by relational GLVQ, while relational RSLVQ
leads to a slightly worse accuracy. Note that GLVQ is used directly for the
respective dissimilarity matrix, while SVM requires preprocessing to guarantee
positive definiteness, see [1].
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#pt L RGLVQ RRSLVQ SVM [1] |{~wj}|
Amazon47 204 47 0.810(0.014) 0.830(0.016) 0.82 94
Aural Sonar 100 2 0.884(0.016) 0.609(0.048) 0.87 10
Face Rec. 945 139 0.964(0.002) 0.96 139
Patrol 241 8 0.841(0.014) 0.850(0.011) 0.88 24
Protein 213 4 0.924(0.019) 0.530(0.011) 0.97 20
Voting 435 2 0.946(0.005) 0.621(0.010) 0.95 20
Cat Cortex 65 5 0.930(0.010) 0.910(0.022) n.d. 12
Vibrio 4200 22 1.000(0.000) 0.941(0.077) n.d. 49
Chromosome 1100 49 0.927(0.002) n.d. 63

Table 1: Mean results of prototype based classification in comparison to SVM,
the standard deviation is given in parenthesis.

5 Conclusions

We have presented an extension of prototype-based techniques to general pos-
sibly non-Euclidean data sets by means of an implicit embedding in pseudo-
Euclidean data space and a corresponding extension of the cost function of
GLVQ and RSLVQ to this setting. As a result, a very powerful learning algo-
rithm can be derived which, in most cases, achieves results which are comparable
to the SVM with the respective best preprocessing technique. Unlike the latter,
relational LVQ does not require preprocessing of the data since relational LVQ
can directly deal with possibly non-Euclidean data whereas SVM requires a pos-
itive semidefinite Gram matrix. Similar to SVM, relational LVQ has quadratic
complexity due to its dependency on the full dissimilarity matrix. A speed-up to
linear techniques e.g. by means of the Nyström approximation for dissimilarity
data similar to [15] is the subject of ongoing research.2
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In this paper we introduce online semi-supervised growing neural gas (OS-
SGNG), a novel online semi-supervised learning (SSL) approach for growing
neural gas (GNG). Semi-supervised learning exploits both labelled and unla-
belled data and has been successfully applied to many clustering and classifi-
cation tasks. Existing semi-supervised approaches for GNG process the labelled
and unlabelled training data in two separate phases in order to perform a clas-
sification. They are offline in the sense that each neuron of the network gets
labelled after the GNG training ended and therefore it is necessary to store the
complete training data. We present an approach that is able to simultaneou-
usly process labelled and unlabelled examples of the training data, using online
labelling and prediction strategies. Both labelled and unlabelled examples are
processed during the learning process of GNG without the need to store any of
the training examples explicitly. As main contribution we show that our online
approach does perform as good as previous semi-supervised learning extensions
of growing neural gas.

In particular, we offer the following contributions:

1. We extend the original GNG algorithm by an on-the-fly labelling step and
an on-the-fly prediction step, in order to provide the online processing of
labelled and unlabelled data.

2. We compare OSSGNG with SSGNG 1 as baseline on a classification task and
show that the online extension of GNG does not deteriorate the classification
performance compared to SSGNG, but even outperforms SSGNG in 75% of
our experiments.

3. We show that OSSGNG is competitive with respect to other semi-supervised
classification approaches 2 .

In order to extend growing neural gas to a semi-supervised classifier, we add two
steps (step 4 and 5) to the original GNG algorithm, as shown in Figure 1. In
the first step (1), the algorithm starts with two neurons, randomly placed in the
feature space. (2) The first stimulus x ∈ Rn of the input space (first training
example) is presented to the network. (3) The two neurons s1 and s2 which mini-
mize the euclidean distance towards x are determined as first and second winner.
In step (4), a label for x is predicted according to a label prediction strategy,

1 Zaki, S.M. & Yin, H (2008) A Semi-Supervised Learning Algorithm for Growing
Neural Gas in Face Recognition. Journal of Mathematical Modelling and Algorithms,
7(4):425-435

2 Chapelle, O. & Schölkopf, B. & Zien, A. (2006) Semi-Supervised Learning, MITPress
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in case that x belongs to the unlabelled examples. The prediction strategy used
is called single-linkage prediction 3. According to this prediction strategy a new
datapoint dnew is labelled with category c of the neuron n that minimises the
distance to this new example:

l(dnew) = arg min
c

(arg min
n∈N(c)

|n− dnew|2)

where N(c) = {n ∈ N | l(n) = c} is the set of all neurons labelled with cat-
egory c according to the used labelling strategy. In step (5), the label of the
presented stimulus is assigned to the winner neuron in each iteration of GNG.
The label assignment is performed by an online labelling function, which will be
described in the following. We denote the winner neuron for a datapoint d by
w(d). The labelling strategy itself is local in the sense that it does not consider
any neighbouring neurons besides the winner neuron w(d). The labelling is per-
formed during the training process, which means that the label assigned to a
neuron can change over time. Thus, the online labelling function is dependent
on the number of examples the network has seen and has the following form:
l : N ×T → C. We simply write lt(ni) to denote the label assigned to neuron ni
after having seen t datapoints. We use the relabelling method as online labelling
strategy, as it has been shown that this strategy has a good performance in
classification tasks 3. According to this very simple strategy, the winner neuron
w(d) corresponding to d adopts the label of d:

lt(ni) = lt(d), where ni = w(d)

(6) The age of all edges that connect s1 to other neurons is increased by 1. In
step (7), the local error variable ws1 of s1 is updated. This error variable will
be used later in order to set the location for a newly inserted node. In step (8),
s1 and its topological neighbours will be adapted towards x by fractions eb (for
s1) and en. (9) A new connection between s1 and s2 is created and the age of
the edge is set to 0. (10) All edges with an age greater than amax, as well as
all neurons without any connecting edge, are removed. (11) Depending on the
iteration and the parameter λ, a new node r is inserted into the network. It
will be inserted half-way between the neuron q with the highest local error and
its topological neighbour f having the largest error among all neighbours of q.
In addition, the connection between q and f is removed and both neurons are
connected to r. In step (12), the error variables of all nodes are decreased by a
factor β. (13) The algorithm stops, if the stop criterion is met, which is the size
of the network in our case.

Table 1 shows the classification results of our algorithm compared to SS-
GNG 1 and six standard semi-supervised learning benchmark data sets proposed
by Chapelle et al. 2. The results show, that OSSGNG outperforms SSGNG in
75% of all experiments. They further show, that OSSGNG is competitive with
respect to state-of-the-art SSL approaches.

3 Beyer, O. & Cimiano P. (2011) Online labelling strategies for growing neural gas.
In Press: Proceedings of the 12th International Conference on Intelligent Data En-
geneering and Automated Learning
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Online semi-supervised learning for growing neural gas (OSSGNG)

1. Start with two units i and j at random positions in the input space.
2. Present an input vector x ∈ Rn from the input set or according to input distribution.
3. Find the nearest unit s1 and the second nearest unit s2.
4. If the label of x is missing, assign a label to x according to the present prediction

strategy.
5. Assign the label of x to s1 according to the present labelling strategy.
6. Increment the age of all edges emanating from s1.
7. Update the local error variable by adding the squared distance between ws1

and x.
8. Move s1 and all its topological neighbours (i.e. all the nodes connected to s1 ∆error(s1) =
|ws1 − x|

2 by an edge) towards x by fractions of eb and en of the distance:

∆ws1
= eb(x− ws1

)

∆wn = en(x− wn)

for all direct neighbours of s1.
9. If s1 and s2 are connected by an edge, set the age of the edge to 0 (refresh). If there is no such

edge, create one.
10. Remove edges with their age larger than amax. If this results in nodes having no emanating

edges, remove them as well.
11. If the number of input vectors presented or generated so far is an integer or multiple of a

parameter λ, insert a new node r as follows:
Determine unit q with the largest error.
Among the neighbours of q, find node f with the largest error.
Insert a new node r halfway between q and f as follows:

wr =
wq + wf

2

Create edges between r and q, and r and f . Remove the edge between q and f .
Decrease the error variable of q and f by multiplying them with a constant α. Set the error r
with the new error variable of q.

12. Decrease all error variables of all nodes i by a factor β.
13. If the stopping criterion is not met, go back to step (2). (For our experiments, the stopping

criterion has been set to be the maximum network size.)

Fig. 1. GNG algorithm with extension for online semi-supervised learning

TSVM Cluster-Kernel Data-Dep. Reg. LDS SSGNG OSSGNG

g241c/10 75.29 51.72 58.75 71.15 41.53 58.09
g241c/100 81.54 86.51 79.69 81.96 60.37 61.85
g241d/10 49.92 57.95 54.11 49.37 63.75 51.16
g241d/100 77.58 95.05 67.18 76.26 63.36 64.49
Digit1/10 82.23 81.27 87.51 84.37 91.84 87.23
Digit1/100 93.49 96.21 97.56 96.54 96.86 97.04
USPS/10 74.80 80.59 82.04 82.43 92.47 93.99
USPS/100 90.23 90.68 94.90 95.04 95.23 93.93
COIL/10 32.50 32.68 36.35 38.10 71.06 76.35
COIL/100 74.20 78.01 88.54 86.28 87.52 89.61

BCI/10 50.85 51.69 49.79 50.73 55.00 51.38
BCI/100 66.75 64.83 52.53 56.03 69.37 70.43

Average/10 60.93 59.32 61.43 62.69 69.28 69.70
Average/100 80.63 85.23 80.07 82.02 78.79 79.56

Table 1. Classification accuracy of a 12-fold cross-validation for the different SSL
algorithms performed on the 6 datasets (g241c, g24d, Digit1, USPS, COIL, BCI),
trained with 10 and 100 examples of labelled training data (best SSGNG vs. OSSGNG
results are marked in each line).
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Abstract

In this paper we present an approach towards cognitive reasonable fig-
ure amendments utilizing the Gestalt-based dynamics of the Competitive
Layer Model.

1 Introduction

When a human perceives incomplete shapes, for example the ones from Fig. 1, no
effort is needed to recognize the meant geometric primitives, although they are
far from being complete. In this paper, we propose an human-like approach to fill
these “gaps”. Based on Gestalt Theory (e.g. see [1] for an overview), especially
the law of continuity, we strive to amend these sparse informations through
modelling missing parts utilizing the neural dynamics of the Competitive Layer
Model (CLM).

The CLM [3] has been proven feasible in a wide spectrum of recognition
tasks. Previous works successfully applied the CLM to simulate various grouping
tasks based on Gestalt Laws like contour grouping in noisy settings [5] or action
segmentation [2].

Based on the approaches for contour grouping, we make use of the internal
binding dynamics of the CLM to evaluate the quality of hallucinated features
with respect to previously grouped contours.

Figure 1: Gestalt Law of continuity: Although the shapes are not complete,
they are easily recognized as a rectangle, triangle and circle.
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2 The Competitive Layer Model

The CLM uses an internal recurrent dynamics to group similar features. To this
end, a set of L×N linear threshold units are arranged in L neuron layers. We
denote the activity of a neuron with xrα, where r = 1..N denotes the feature
index and α = 1..L the layer index. Hence, for each feature r exists a column
of neurons across all L layers. The significance of a feature r is determined by
the external input hr (cf. Fig. 2(a)).

Within each layer a lateral interaction frr′ is defined according to the com-
patibility or similarity of features vr and vr′ . If both features are considered
similar, a positive connection weight between xrα and xr′α is used, realizing
a positive feedback loop. This compatibility measurement is domain specific
for the type of used features v and must therefore be explicitly specified in a
symmetric interaction function:

frr′ = f(vr, vr′) = f(vr′ , vr) (1)

This mutually reinforces activity of neurons representing similar features. All
layers employ the same lateral interaction weights.

Grouping of features is realized by collecting positive neuronal activity within
layers. To enforce activation of a neuron related to a particular feature vr within
a single layer only, the lateral layer-wise interaction is augmented by a column-
wise winner-takes-all (WTA) interaction. The combination of the vertical WTA
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x21
x31
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x22
x32

layer 2

x1N

x2N
x3N

layer N

vertical
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(a) Competitive Layer Model

vr

(b) Compatibility for oriented
edges

Figure 2: (a) The Competitive Layer Model with three inputs h1...3 and the
corresponding neurons xrα in each layer. (b) Compatibility for oriented edges.
Emanating from the centered feature vr, dark filled edges indicate a high com-
patibility whereas unfilled edges indicate low compatibility.
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dynamics and the lateral interactions leads to a linear threshold dynamics of

·
xrα = −xrα + σ(J(hr −

∑
β

xrβ) +
∑
r′

frr′xr′α) (2)

with σ(x) = max(0, x), where hr−
∑
β xrβ represents the vertical WTA interac-

tion, weighted by a (usually small) constant J and
∑
r′ frr′xr′α represents the

lateral interaction.
Since the lateral interactions frr′ are identical in each layer, they can be

calculated once and stored in a symmetric interaction matrix

Mrr′ = f(vr, vr′) (3)

An exemplary interaction function is shown in Fig. 2(b), displaying the inter-
action of oriented edges. Starting from the centered feature vr, features with
a similar orientation w.r.t. to their distance have a higher compatibility than
nearly perpendicular features in close proximity.

3 Hallucinating Features

We strive to use the CLM binding dynamics to “imagine” well matching amend-
ments for sparse geometric shapes. In order to achieve this goal, we apply the
CLM to a set of geometric shapes, let it converge and then induce hallucinated
features to evaluate their compatibility using the binding dynamics.

The induction of hallucinated features is currently done without a priori
knowledge about the distribution of known features from the CLM grouping.
Therefore the search space is narrowed to a finite set and the search for well
matching hallucinated features is currently done with a “brute force” approach.
For each possible element the compatibility to the existing groups is evaluated.

To evaluate the compatibility of a new feature vector vnew, an interaction
vector

m = (f(vnew, v0), f(vnew, v1), . . . , f(vnew, vr))
T (4)

is created to extend the interaction matrix Mrr′ :

Mnew =

(
Mrr′ m

mT 1

)
(5)

The support for the hallucinated feature from the existing neurons is then cal-
culated as:

xvnewα = mT · ~xα (6)

4 Preliminary Results

To evaluate the proposed approach, we applied a CLM with ten layers to a set
of sparse circles composed of oriented edges, as depicted in Fig. 3(a), with an
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Figure 3: (a) CLM grouping of three sparse circles. (b) Activity of hallucinated
features merged over all layers. (c) Activation from hallucinated features for a
single layer after applying a threshold of 0.5. (d) Local maximum in a 5 × 5
neighbourhood with known features from group 1. (e) Known features sub-
tracted from previous maxima. (f) Best matching features in unoccupied areas
for all layers with known features from (a).

oriented edge defined by a 2D position (x, y) and orientation θ. Different layers
are represented with different colors. For each position in the 100 × 100 input
space 36 features with different orientations in a range from 0◦ to 175◦ were
imagined and evaluated for their compatibility with existing groups.

Fig. 3(b) shows the maximal activity at each position (x, y) over all possible
orientations θ. Please note that Fig. 3(b) is furthermore a combination of all
layers.

To reduce the noise from not well matching hallucinated features, a single
layer is selected in Fig. 3(c) and a threshold is applied, which sets every activity
smaller than 0.5 to zero.

To narrow down the result of the thresholding, a filter which selects the
maximum in a 5 × 5 neighbourhood is utilized. This new local maximum is
then used as point of origin for a new filtering step in which already visited
positions are omitted. This enables the filter to “follow” local maxima. Of
course hallucinated features in close proximity to already known features are
selected by this filter, too. This is shown in Fig. 3(d), where the result of the
filtering process is overlaid with group 1 from Fig. 3(a).

In an additional step depicted in Fig. 3(e), hallucinated features in close prox-
imity to existing groups are removed, leaving only good amendments. Fig. 3(f)
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shows the above mentioned steps for all groups, including the original CLM
grouping results of from Fig. 3(a). In the interests of clarity, all groups are
displayed with the same symbols.

These results show the feasibility of using the CLM dynamics in conjunction
with hallucinated features to amend sparse informations.

5 Conclusion

Inducing hallucinated features into the CLM opens an interesting foundation
to amend sparse informations, which is not only limited to the completion of
geometric shapes but can also be generalized to much more complex scenarios.
For example given the action segmentation from [2], it is imaginable to use the
CLM for action generation, given a set of incomplete action segments.

It also introduces a lot of new questions for research, e.g. how to overcome
the current “brute force” approach to initially generate hallucinated features,
as well as a more general technique to finally find good amendments in contrast
to the feature specific method presented here.

Also of interest will be a combination of learning the lateral interactions as
presented in [4] with amendment through hallucinated features to gain a better
generalization.
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1 Introduction

The amount of electronic data available today as well as its complexity are
becoming larger and larger in virtually all application domains. In consequence,
humans can no longer directly deal with such collections by inspecting the text
files. Rather, automated tools are required to support humans to extract the
relevant information. One core technology is given by data visualization: relying
on one of the most powerful senses of humans, it offers the possibility to visually
inspect large amounts of data at once and to infer relevant information based on
the astonishing cognitive capabilities of humans in visual grouping and similar.

Dimensionality reduction techniques constitute one important method in un-
derstanding high-dimensional data because they directly produce a low-dimen-
sional visualization from high dimensional vectorial data. Consequently, many
dimensionality reduction techniques have been proposed in recent years. In
the beginning, these methods were primarily linear, like principal component
analysis (PCA), corresponding to low cost dimensionality reduction techniques
with a well founded mathematical background. However, linear techniques can-
not preserve relevant nonlinear structural elements of data. Therefore, recently,
more and more non-linear methods like Isomap [1], locally linear embedding
(LLE) [2] and stochastic neighbor embedding (SNE) [3] have become popular,
see the overview article [4], for example.

With more and more dimensionality reduction techniques being readily avail-
able, the user faces the problem which of the methods to choose for the current
application. Usually, different techniques can lead to qualitatively very different
results. In addition, virtually all recent techniques have parameters to control
the mapping. Hence, depending on the parameters of the method, even a single
DR technique can lead to qualitatively very diverse results. It is usually not
clear whether the different results correspond to different relevant structural as-
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pects in the data which are possibly partially contradictory in low dimensions,
or whether some of the methods and model parameters are less suited to pre-
serve the relevant structural aspects in the given data set. At the same time,
it is very hard for humans to judge the quality of a given mapping and the
suitability of a specific technique and choice of parameters by visual inspection:
the original data set is not accessible to the user due to its high dimensionality
such that a human cannot compare a given visualization to ground truth easily.
Therefore, there is a need to develop formal measures which judge the quality
of a given mapping of data. Such formal measures should evaluate in an auto-
mated and objective way in how far structure of the original data corresponds
to the structure observed in the low dimensional representation.

Several quality criteria to evaluate dimensionality reduction have been pro-
posed in recent years, see [5] for an overview. As for dimensionality reduction
itself, the problem to define formal evaluation criteria for dimensionality reduc-
tion suffers from the ill-posedness of the task: it is not clear a priori which
structural aspects of the data should be preserved in a given task. Most quality
measures which have been proposed recently measure in some way in how far
ranks of data points or neighborhood relationships correspond to each other in
the original space and the projection. Two recent quality measures offer a gen-
eral approach and constitute frameworks that include earlier measures as special
cases [5, 6]. Regarding this general framework, it becomes apparent that also
the quality measure eventually depends on the needs of the user since the user
can specify depending on the task which aspects of the data are particularly
relevant.

Therefore, there is a need for intuitive and easily accessible quality measures
which allow the user to determine the precise form of the measure based on the
current application. The co-ranking matrix [5] already goes into this direction
by pointing out the relevance of the neighborhood rank which the user believes
is important. We will discuss that the global quality measure which has been
derived based on this framework in the work [5] does not correspond to an
intuitive interpretation by the user: on the one hand, it depends on absolute
values of the ranks rather than the deviation of the ranks, i.e. the actual ‘errors’
made by a DR method. On the other hand, it relies on a single parameter only,
the size of ranks taken into account, which controls both aspects, which errors
are tolerated and which neighborhood relations are considered interesting for
the mapping. We show in a simple example that this error measure leads to
unexpected values which do not correspond to an intuitive understanding.

As an alternative, based on the co-ranking framework, we propose a different
family of quality criteria which are based on the values of the rank errors rather
than the absolute values of the ranks. This family is parameterized by two
parameters which control the size of errors which are tolerated on the one hand
and the size of the neighborhood of points which should be mapped faithfully
by the dimensionality reduction on the other hand. This way, the user can
intuitively control the resulting quality measure. We also propose an intuitive
way to link formal quality criteria to a given visualization such that the user
can immediately see which parts of the mapping are trustworthy.
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2 Dimensionality Reduction and Quality Mea-

sures

Dimensionality reduction techniques are used for visualization by mapping a
high-dimensional dataset Ξ = {ξ1, . . . , ξN} to a low-dimensional dataset X =
{x1, . . . , xN}. By design and via parameters DR methods specify which prop-
erties should be maintained by the mapping. Some techniques are based on
global mappings such as linear techniques, which determine a matrix to reduce
the dimensionality of the data set by a linear transformation, or topographic
mapping such as the self-organizing map [7] which parameterize a mapping by a
lattice of prototypes in the data space. Many modern non-linear techniques are
non-parametric: they map a given set of data points directly to their respective
projections without specifying a functional form. This way, the mapping has
large flexibility and highly non-linear effects can be obtained.

Non-parametric dimensionality reduction is often based on a cost function or
objective, which evaluates in how far characteristics of the original data ξi are
preserved by the projections xi. Appropriate projections are then determined
minimizing this objective with respect to the parameters xi. For example, t-
SNE maintains the neighborhood probabilities in both spaces, while LLE tries
to place points in such a way that locally linear neighborhoods are maintained.
See e.g. the article [8] for a general formalization of popular non-parametric
dimensionality reduction techniques in this way.

Thus, for non-parametric DR methods, there is often a close relationship of
an objective function which in some way or the other evaluates the quality of
a mapping, and a DR algorithm which actually finds projections such that the
quality is optimized. Here we are interested in a quality criterion which evaluates
the quality of DR mappings in a uniform and intuitive way, and which provides
a parameterization which can intuitively be controlled by the user. Thereby, it
is irrelevant whether the resulting objective also leads to a simple optimization
scheme. First approaches in this direction have been proposed based on the
co-ranking framework in the work [5].

2.1 The Co-ranking Framework

Here we introduce the co-ranking framework as proposed by Lee and Verley-
sen [5]. Let δij be the distance from ξi to ξj in the high-dimensional space.
Analogously, dij is the distance from xi to xj in the low-dimensional space.
From these distances we can compute the ranks of the neighbors for each point.
The rank of ξj with respect to ξi in the high-dimensional space is given by

ρij = |{k | δik < δij or (δik = δij and 1 ≤ k < j ≤ N)}|,

where |A| is the cardinality of the set A. Analogously, the rank of xj with
respect to xi in the low-dimensional space is given by

rij = |{k | dik < dij or (dik = dij and 1 ≤ k < j ≤ N)}|.
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Figure 1: Weighting scheme for the co-ranking matrix: Points which are out-
side the relevant region (lower right rectangle) are disregarded. In the original
framework as proposed by Lee and Verleysen [5] (left), points which stay within
K neighborhoods are considered as correct projections. Conversely, the points
the rank error of which is small enough are considered as correct in the new
proposal (right).

Many existing quality criteria measure in how far ranks of points are preserved
while projecting to a low dimensional space. This way, local relationships are
evaluated without referring to irrelevant issues such as e.g. scaling of the data.

To generalize such measures, the co-ranking matrix Q [9] is defined by

Qkl = |{(i, j) | ρij = k and rij = l}|.

Errors of a DR mapping correspond to off-diagonal entries of this co-ranking
matrix. A point j that gets a lower rank with respect to a point i in the low-
dimensional space than in the high-dimensional space, i.e. ρij > rij , is called an
intrusion. Analogously, if ξj has a higher rank in the low-dimensional space it is
called an extrusion. As shown in Figure 1, intrusions and extrusions correspond
to off-diagonal entries in the upper or lower triangle, respectively.

Usually, a DR mapping is not used to map all relationships of data faith-
fully. Rather, the preservation of local relationships is important. Hence Lee
and Verleysen distinguish two types of intrusions/extrusions, those within a K-
neighborhood, which are benevolent, and those moving across this boundary,
which are malign with respect to quality.

Based on this setting, a simple quality measure can be defined: it counts the
number of points that remain inside the K-neighborhood while projecting, i.e.,
all points which keep their rank, and all mild in- and extrusions:

QNX(K) =
1

KN

K
∑

k=1

K
∑

l=1

Qkl. (1)
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The normalization ensures that the quality of a perfect mapping equals one.1

The quality criterion is very similar to the local continuity meta-criterion (LCMC)
that was proposed by Chen and Buja [10]. Note that the range of this quality
measure depends on K, i.e. the size of the neighborhood which should be pre-
served by a DR mapping. Often, a graph of the quality values over all possible
K (or a sufficient selection thereof) is plotted.

This co-ranking framework offers a very elegant framework to formalize qual-
ity criteria based on rank errors. However, it has a severe drawback: The

quality (1) depends on the number of rank errors in a region of interest only

disregarding the size of rank errors.

Let us have a look at the evaluation measure (1). A region of interest, i.e. a
rank K is fixed, following the idea that ranks which are very large (larger than
K) are not meaningful in the data space and the projection space and thus, they
can be disregarded. The second role of K is to define what is regarded an error:
an error occurs if and only if the region of interest in the original space and
the projection space does not coincide. Hence the actual size of the rank error
is not important. Rather, it is checked whether ranks ≤ K keep this property
while projecting and vice versa. As an extreme case, points which change their
rank from 1 to K are not counted as an error, while points which change their
rank from K to K + 1 do.

This choice of QNX(K) can lead to curious situations, which demonstrate the
unintuitive character of the parameter K. Consider the pairwise swapping of
points that is shown in Figure 2. The number of points can be chosen arbitrarily.
Examining the structure quickly shows that the maximum rank error between
these permutations is at most 4 (for example, when the base point moves left,
and the other point moves right)2. Intuitively, if we consider rank error sizes up
to 4 as acceptable, this mapping is perfect. This is, however, not the case when
looking at QNX(5): there are still errors. In fact, for every value of K there will
be some point that moves from, for example, rank K to a slightly higher rank,
and therefore be counted as an error. This is also confirmed by the graph in
Figure 3(a) which displays the quality. Even for large K, this does not reach
1 as long as K is strictly smaller than the number of data points. It is hardly
possible to intuitively predict QNX(K) even for simple mappings.

A look at the co-ranking matrix in Fig. 2 indicates the underlying structure
in this case. Since the rank error is always smaller than 5, only 4 off-diagonals
of the co-ranking matrix are non-vanishing. The quality measure (1), however,
only sums over rectangular parts of the co-ranking matrix. This observation
also suggests how the quality (1) can be altered to lead to a more intuitive pa-
rameterization: rather than rectangular parts only, it should focus on a limited
number of off-diagonals corresponding to the size of the rank deviation which is
considered acceptable.

Now, we will formalize this consideration by first reformulating the quality

1Instead of expressing the quality, one could define a measure of error analogously as
1−QNX().

2Note that in case of a tie in distances, the point with the lowest alphabetical letter gets
the lowest rank.
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Figure 2: On the left is an example mapping from a one-dimensional set of
points to a slight reordering. Since the points are only pairwise swapped, the
changes in rank-distances are rather small. For the same setup with 20 points,
this is confirmed by the co-ranking matrix that is shown on the right. White
indicates a zero value, while black corresponds to the maximum value in the
matrix.

(1) such that the two different roles ofK become apparent, and then generalizing
this formalization such that an explicit control of the region of interest and the
tolerated rank error becomes possible.

Formally, the first role of K can be captured by a rank-significance function
ws : R × R → [0, 1] that determines, for any pair of points i and j the extent
ws(ρij , rij) to which their rank error should be taken into account.

ws(ρij , rij) =

{

0 ρij > K ∧ rij > K

1 otherwise.

To describe the second role of K, we use a function wt : R×R → [0, 1] that
determines the weight of the rank error Eij for points i and j based on their
ranks ρij and rij .

wt(ρij , rij) =

{

1 ρij ≤ K ∧ rij ≤ K

0 otherwise.

This counts the overlap of the K neighborhoods in the original space and the
projection space, respectively. The quality is proportional to the number of
points in the region of interest which are benign:

QNX(K) =
1

2KN

N
∑

i=1

N
∑

j=1

ws(ρij , rij) · wt(ρij , rij). (2)

As discussed before, a problem is that this function depends on the actual
ranks and not on the rank error. Directly examining Figure 1 confirms this. A
point with high-dimensional rank 1 and low-dimensional rank K is acceptable,
although it has an absolute rank error of K−1. On the other hand, a point that
has high-dimensional rank K and low-dimensional rank K+1 is not acceptable,
although its rank error is only 1.
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Figure 3: The figure shows quality evaluations for the mapping presented in
Figure 2, on the left with the established measure, on the right with the proposed
new measure. Both are evaluated for all possible parameter settings K and
(κs, κt) respectively. The particular position of K = 5 is highlighted on the
graph in the left figure. QNX(K) with K ≥ 5 does not yield a value of 1, which
seems rather unintuitive for the given problem. As expected, the matrix for
Q′

NX
(κs, κt) does have ones, for all κs ≥ 5.

2.2 A quality measure based on rank errors

Because of this fact, we propose the following alternative failure tolerance func-
tion

wt(ρij , rij) =

{

1 |ρij − rij |≤ κt

0 otherwise,

that depends on the rank error rather than the value of the ranks. The cut-off
value κt determines which error sizes are accepted. We use the same rank-
significance function ws as we derived from [5], but substitute the parameter
K by the the cut-off parameter κs. Following equation (2) we then get a new
quality measure:

Q′
NX

(κs, κt) =
1

2κsN

N
∑

i=1

N
∑

j=1

ws(ρij , rij) · wt(ρij , rij). (3)

Because of the normalization, quality values are in the interval [0, 1] with 1
corresponding to a perfect mapping. Figure 1 shows the region of the co-ranking
matrix which is taken into account in this quality measure. One might also
consider more complex or smooth functions for ws and wt than simple cut-offs
with κs and κt respectively and corresponding normalization factors.

The new quality measure Q′
NX

(κs, κt) depends on two parameters instead
of only one K which allow an intuitive access to the parameters: κt determines
which size of the rank errors which are tolerated, while κs singles out which
ranks fall into the region of interest. This function can be displayed in a 3
D surface or colored matrix, where the position (κs, κt) is assigned the value
Q′

NX
(κs, κt), see Figure 3(b) for an example. The matrix in Figure 3(b) shows
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all values of Q′
NX

(κs, κt) for the example in Figure 2. It clearly shows that the
maximum quality is reached for all κs > 4.

3 Local quality Assement

The quality criteria introduced in the previous section average the contributions
of all points. It can be useful to visually represent the error of a single point, in
order to gain insight into local qualitative changes, especially when the deviation
of the quality of the mapping in the single parts is very high. This principle has
been used, for example, to visualize the topographic distortion of self-organizing
maps, where one can display the distance between neurons in the data space
as a color in the topographic map, see [7]. Similarly, in the approach [11], the
local topographic reliability of dimensionality reduction is displayed.

The quality measure as introduced above naturally gives rise to a local qual-
ity which, given a single points, displays the trustworthiness of the map in this
area. We propose to use the following error function which sums the contribu-
tion of a data point to the quality measure in symmetrized form:

Qi =
1

4κsN

N
∑

j=1

[ws(ρij , rij) · wt(ρij , rij) + ws(ρji, rji) · wt(ρji, rji)] . (4)

As an example, in Figure 4(a), we show the popular ’swiss roll’ benchmark
data set. The data is mapped by t-SNE using a high perplexity parameter which
produces an ’unfolded’ view of the manifold, with some local tearing and distor-
tion, see Figure 4(b). The coloring clearly reveals the tears within the manifold
as well as the larger rank errors that occur at the rightmost points caused by
’unrolling’ and putting the inner end of the belt far away from its original neigh-
bors on the next spiral loop level. In a real world scenario, where the original
data is high-dimensional and its detailed structure is unknown to the user, the
coloring of the mapped points may help to understand local characteristics of
the mapping.
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Recognizing Human Activities Using a Layered HMM
Architecture

Michael Glodek Lutz Bigalke Günther Palm
Friedhelm Schwenker
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The development of so-called computer systems shows a tendency towards being aware
of the user and the environment, offering a broad variety of interactions with the user. It
is already feasible to detect faces, estimate the pose of the user, recognize emotion from
speech, be aware of the environment and augment it with additional information [VJ02,
KBKL09, WLBN06, SOSP08]. In this context, Oliver et al. proposed a layered cognitive
system to detect human activities based on a multitude of modalities [OHG02]. The archi-
tecture detects complex activities based on a stream of crisp class assignments rendered
by classifiers on the preceding layer. The current study investigates the possible increase
in performance by passing the uncertainty of the class decision instead of crisp class as-
signments to the next layer. Oliver et al. utilized hidden Markov models (HMM) to detect
the class on each layer. In order obtain a distribution over classes an alternative classifier,
namely the conditioned HMM (CHMM) has been examined. The CHMM has the same
structure as the latent-dynamic conditional random fields (LDCRF) [MQD07]. Unlike
the LDCRF, which is based on a Markov network, the CHMMM is based on a directed
graph. Compared to the HMM each latent random variable is additionally influenced by
a class node. The input-output hidden Markov model (IOHMM) proposed by Bengio et
al. [BF96] is, except of two aspects, also closely related to the CHMM. On the one hand,
the IOHMM has additional edges connecting the class with the observation node for each
time step. On the other hand, the CHMM models in analogy to the HMM and in contrast
to the IOHMM the observations as emissions. The strong relation to HMM has the advan-
tage that scientific contributions achieved for HMM can be applied without effort to the
CHMM.

1 Layered Architecture

Every layer of the architecture detects sequential patterns and passes the classification
results to the next layer which is then used as an input to detect complexer patterns. To
obtain a sequence on every layer a sliding window is utilized such that the concatenated
outputs of a layer render a new sequence for the next layer. Hence, each layer compresses
the information given such that a classification on a larger time-scale is tractable.

Oliver et al. utilized crisp class decisions achieved by comparing the likelihoods of the
HMM to feed the next layer and suggested log-likelihoods to be used in order to incorpo-
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rate the uncertainty of the decision in the next layer. However, using log-likelihoods will
lead to serious numerical problems since they are ranging potentially over R and tend to
take very large negative values. According to our previous experience, it is difficult to train
a layer based on the log-likelihoods in our numerical experiments. However, a distribution
over classes is better suited to pass the uncertainty to the next layer.

The presented study focuses on the comparison of crisp class assignments and probability
distribution over classes. To obtain a crisp class decision by the means of HMM, for each
class y a HMM λy=y is trained and the class having the highest likelihood is chosen by
evaluating

ỹ = argmaxy∈y

(
p(X̃|λy=1)p(y = 1), . . . , p(X̃|λy=|y|)p(y = |y|)

)
where X̃ denotes the windowed observations of the underlying layer and p(y = y) the
class prior. The concatenated class assignments ỹ is then used to feed the discrete HMM
of the next layer. The CHMM λ on the other side renders a distribution over classes
p(y = y|X, λ) such that the distribution itself can be passed to the next layer in form of a
vector

ỹ =
(
p(y = 1|X̃, λ), . . . , p(y = |y| |X̃, λ)

)
.

2 Conditioned HMM

The CHMM extends the HMM by additional random variables y which are directly influ-
encing the latent random variables w. The Markov chain of the CHMM is illustrated in
Figure 1. The nodes colored in dark gray represent the always accessible observations X

Figure 1: Markov chain of the CHMM.

while the light gray nodes represent the sequence of labels y corresponding to the observa-
tions which are only given at training. The white nodes are the hidden states w mediating
between the labels and the observations. The joint probability is given by

p(X,w|y, λ) = p(w1 = w1|π) ·
( T∏

t=2

p(wt = wt|wt−1 = wt−1,A)
)

·
( T∏

t=1

p(xt = xt|wt = wt, θ)p(wt = wt|yt = yt,C)
)
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where λ = {π,A,C, θ} denotes the set of parameters of the corresponding probabili-
ties. Exact inference can be performed using the forward-backward algorithm and can be
used to determined the parameters of the model utilizing the expectation-maximization
algorithm [KF09]. The conditioned distribution over the classes is obtained by

p(y|X) =
p(X|y)p(y)∑
y∈y p(X|y)p(y)

.

3 Experiment

Our experiments aim at detecting complex activities based on actions detected on a lower
layer. The lower layer recognizes the actions based on the positions of the head, hand and
a specific object i.e. a cup. The extracted features consists of the pairwise inter object
distances and the velocity of movement of each object with direction, represented as an
angle, and magnitude The considered classes for the activities in this application are: drink
from cup (DC), relocate cup (CR) and other activity (OA2). These activities are composed
by different atomic actions, i.e. grab cup (GC), move cup (MC), incline cup (IC), release
cup (RC), scratch head (SH) and other action (OA1). For example the activity drink from
cup is composed of the actions grab cup, move cup, incline cup, move cup and release
cup. Two distinct data sets have been created for training and testing. The pre-segmented
data set consists of labeled sequences for each layer and has been used for training and
finding a valid model. Testing is performed using an uncut data set such that a real-time
application is simulated and a sliding window is required.

The results of the pre-segmented and uncut data set for HMM and CHMM are shown in
Table 1. The left hand side of the table shows the error rate of the training set using a ten-
fold cross-validation. Although the results of the training set are promising, the test set

Table 1: Validation and test results (pre-segmented and uncut data set respectively). Error rates
(standard deviation) in percent and F1 measures of discrete HMM and CHMM for each layer.

Pre-segmented data set Uncut data set
First layer

HMM CHMM HMM CHMM
Error% 4.63 (0.74) 3.82 (1.30) 48.88 50.24
F1 GC 0.96 (0.02) 0.96 (0.02) 0.42 0.27
F1 MC 0.94 (0.01) 0.95 (0.02) 0.59 0.57
F1 IC 0.98 (0.03) 0.98 (0.02) 0.23 0.27
F1 RC 0.94 (0.02) 0.95 (0.02) 0.41 0.26
F1 SH 0.98 (0.03) 0.99 (0.03) 0.46 0.26
F1 OA1 0.97 (0.02) 0.98 (0.02) 0.65 0.65
Second layer

HMM CHMM HMM CHMM
Error% 0.00 (0.00) 1.96 (0.00) 66.62 35.93
F1 CD 1.00 (0.00) 1.00 (0.00) 0.35 0.70
F1 CR 1.00 (0.00) 1.00 (0.00) 0.18 0.20
F1 OA2 1.00 (0.00) 1.00 (0.00) 0.43 0.70
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(right hand side) reveals that the real-time application is by far more challenging. While
the HMM based on the crisp class assignments achieves only an error rate of 66.62% the
CHMM, which detects the activities based on the uncertainty of the lower layer, obtains
an error rate of 35.93%.

Future work will aim at exploring the presented architecture in a complexer setting with
a focus on human-computer interaction. The outputs of the layered architecture shall fur-
thermore be integrated in a framework which incorporates uncertainty into symbolic in-
formation processing. A promising approach to be investigated here is the Markov logic
network (MLN) [TD08].

Acknowledgement The presented work was developed within the Transregional Collab-
orative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical
Systems” funded by the German Research Foundation (DFG).
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Abstract
We propose a procedure for unsupervised segmentation of bimanual high-level object manipulation operations

in multimodal data. The presented procedure applies a two-stage segmentation and a selection step to observation
sequences. We employ an unsupervised Bayesian method to identify homogeneous segments which correspond to
primitive object manipulation operations. The data is recorded using a contact microphone, a pair of Immersion
CyberGloves and ten pressure sensors positioned on the fingertips.

The assessment of the temporal correctness and structural accuracy of the segmentation procedure has showed
satisfactory results. We have achieved an average error of 0.25 seconds in comparison to the actual segment borders.
The examination of the structural accuracy for a given parameter combination has showed only insignificant
deviation of the generated segmentation structure from the corresponding test data.

Finally, we sketch an application of our method to unsupervised learning and representation of object manip-
ulations.

1 Introduction
An important objective of today’s robotics research is to enable robots to interact with humans in everyday scenarios.
Within this area, we focus on the topic of autonomous learning and identification of bimanual object manipulations
from sequences. In order to participate in a simple interaction scenario or learn from a human, a robot needs the
ability to autonomously single out relevant parts of the movement executed by a human. It also needs a mechanism to
identify and organize these parts. In order to address this requirement, we propose a novel approach for unsupervised
identification of high-level bimanual object manipulation operations within action sequences. Inspired by the fact,
that humans employ different information sources – like hearing, proprioception, haptics and vision – to fulfill this
task, we propose a multi-modal approach to segment and identify action sequences. To this end we consider an audio
signal, tactile sensor readings from all finger tips, and hand postures acquired by CyberGloves [1].

Analysis of various sensor readings describing the human hand dynamics during manual interaction have been
conducted recently by different researchers [2, 3, 4]. In general, one is interested in autonomous identification of
action primitives in the context of imitation learning and human-machine interaction [5, 6]. Within this domain,
Matsuo et al. focused on force feedback [7] while a combination of different sensors like CyberGlove, Vicon or
magnetic markers and tactile sensors has been used by [8], [4] and [9]. In [10] a bimanual approach is described.

Despite the variety of sensors and approaches used in action segmentation and identification, one modality, namely
the audio signal, has been mostly ignored in this domain. However, in the area of speech recognition it is well known,
that the audio signal not only transmits the mere verbal content, but also conveys temporal structure of interactions
and actions [11].

Our past work has been concerned with unsupervised segmentation and classification of raw motion data and its
linear projection into a low-dimensional space [12]. The experiments within this preliminary study have showed that
the absence of structural analysis of object manipulation sequences restricts the scenario to a small set of distinct
and unambiguous manipulations. To tackle more complex and ambiguous action sequences, we employ a Bayesian
segmentation method to analyze the sequential structure.

In our scenario, during a considerable number of simple high-level object manipulations (e.g. grasping, shifting,
shaking, stirring or rolling) application of force is naturally accompanied by a sound. We exploit this fact by performing
∗Bielefeld University, Cor-Lab, abarch@cor-lab.uni-bielefeld.de
†Bielefeld University, Neuroinformatics, rhaschke@techfak.uni-bielefeld.de
‡Bielefeld University, Ambient Intelligence, ugrossek@techfak.uni-bielefeld.de
§Bielefeld University, Applied Informatics
¶Honda Research Institute Europe
‖Bielefeld University, Neuroinformatics
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Figure 1: Experimental setup: a subject wearing contact and joint angle sensors performs manipulation operations
with a (instrumented) plastic bottle provided with a contact microphone.

segmentations based on the analysis of the audio signal structure and of contact forces recorded on the fingertips. The
resulting segmentation solely depends on the temporal structure of the data and is invariant to absolute data values,
way of grasping or the manipulation object. Our method does not employ any specific knowledge about the parts of
the action sequence. Furthermore, it does not require a large set of domain-specific heuristics describing each action
primitive as is commonly the case in similar approaches [8, 4, 13].

We evaluate our method in an everyday scenario in which a human subject performs several object manipulation
operations with a large non-rigid plastic bottle with a handle. In this evaluation, we assess the performance of the
segmentation method w.r.t. the accuracy of the generated segment borders and the overall structure of the produced
segmentation. Additionally we briefly outline the results of applying an unsupervised learning procedure, which has
been used in similar tasks ([14, 15]), to cluster the identified action segments. The developed method is applicable to
interactive scenarios such as imitation learning, cooperation and assistance.

The rest of this paper is organized as follows: Sec. 2 explains the acquisition of action sequences within the scenario.
Sec. 3 introduces the two steps of the proposed method: preprocessing (Sec. 3.1) and segmentation (Sec. 3.2). In
Sec. 4, we discuss our evaluation method and experimental results of the segmentation procedure, and report on an
application of the proposed method as a preprocessing stage of an action recognition module (Sec. 5). Sec. 6 concludes
the paper with a brief discussion and outlook.

2 Scenario and Experimental Setup
In our scenario, a human subject performs sequences of simple uni- and bi-manual object manipulations with a
gravel-filled plastic bottle1, as can be seen in Fig. 1.

We use the following sensors to record multimodal time series of the performed action sequences (corresponding
modality names used in formulas appear in parenthesis):

• one contact microphone attached to the bottle (a). The contact microphone focuses on in-object generated
sound, ignoring most environmental noise.

• 2 × 24 joint-angles calculated from the measurements of two Immersion CyberGlove devices (j: both hands,
jl: left hand, jr: right hand). The Immersion CyberGlove II devices output sensors values describing the
configurations of finger- and palm-joints.

• 2 × 5 FSR pressure sensors attached to the fingertips of each CyberGlove (t: both hands, tl: left hand, tr:
right hand) record the contact forces.

This collection of sensors yields a 29-dimensional (24 + 5) representation for each hand in addition to a scalar
audio signal. The subject was told to perform a sequence of basic manipulation actions in fixed order as listed in
the following enumeration. To obtain ground truth for later evaluation, the beginning or end of an action within
a sequence was signalled to the subject as explained in Sec. 4. To achieve a rich variance of timing between trials,

1The use of gravel instead of liquid is due the necessity of a distinct audio signal and also safety concerns.
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Figure 2: Initial segmentation and "subordinate" sub-segmentation for one multimodal time series. The first row
shows the result of applying Fearnhead’s method with joint threshold models of the tactile data of both hands (see
Sec. 3.2.1 for details). The segmentation is overlaid with the tactile signals of both hands. The second row shows the
refinement of the segmentation in the first row that is computed by applying Fearnhead’s method to the audio signal
within each "contact" segment (see Sec. 3.2.2 for details). In the second row the segmentation is overlaid with the
audio signal.

the desired duration of most elements was sampled from a Gaussian distribution with standard deviation of 0.5s as
specified in parentheses:

1. pick up the bottle with both hands (2 s + η1 )

2. shake the bottle with both hands (.7 s + η2 )

3. put down the bottle (1 s)

4. pause (1 s)

5. unscrew the cap with both hands (1.2 s + η3 )

6. pause (1 s)

7. pick up the bottle with right hand (2 s + η4 )

8. pour with right hand (1 s + η5 + 1 s + η5 )

9. put down the bottle (1 s)

10. fasten the cap with both hands (1.2 s + η6 )

The random variables ηi ∼ N (0, .5 s) denote the randomized timing of subsequences. The overall length of the time
series accumulates to approximately 30 seconds.

3 Method
The recorded time series of multiple sensor modalities capture complex and high-dimensional descriptions of action
sequences. The focus of this paper is on segmentation and selection of relevant data. Furthermore, we briefly
outline a subsequent clustering step to demonstrate that the proposed method can serve as a preprocessing stage
for an unsupervised learning procedure to recognize action primitives. In the following paragraphs we describe the
segmentation process based on the tactile and audio modalities.

3.1 Preprocessing
In a preprocessing step, the original audio-signal is normalized to a given variance range with respect to the amplitudes
of individual samples. The signal is also subsampled and recording artifacts are removed by discarding samples whose
amplitude exceeds a specified threshold. We use the resulting processed audio signal in the segmentation step described
in Sec. 3.2. This preprocessing is necessary for successful segmentation due to the characteristics of Auto-Regressive
models used in the segmentation process.
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3.2 Segmentation
In our two-stage segmentation approach, we use tactile information to obtain a preliminary rough split of the sequence
into subsequences of “object interaction” and “no object interaction”. This analysis of hand-object contacts uses force
data from both hands. Subsequences that have been recognized as “object interaction” are analyzed in detail w.r.t.
qualitative changes of the audio signal in order to refine the rough segmentation.

In both stages, the segmentation is performed by applying Fearnhead’s method [16] for unsupervised detection
of multiple change-points in time series. The input to Fearnhead’s algorithm is a time series y1:T 2 and a set of
models M for homogeneous subsequences. The output is a set of integer change-points 1 < τ1 < · · · < τN < T at
which qualitative changes in the data y1:T occur. A set of such change-points is dual to segmentation of the form
(ysi:ti)1≤i≤N+1, s1 = 1, ti = τi = si+1, tN+1 = T which partitions the data into N + 1 subsequences. Within the
probabilistic framework of Fearnhead’s algorithm, the optimal segmentation is obtained by maximizing the Bayesian
posterior3 P (y1:T | τ1:N )P (τ1:N ) which consists of a likelihood term and a prior distribution over segmentations
P (τ1:N ). In a common choice of this prior, the probability P (τ1:N ) is composed of probabilities of individual segment
lengths which are computed according to the geometric distribution P (l) = λ(1 − λ)l−1. Consequently, the prior is
characterized by a single parameter λ that is reciprocal to the expected segment length under a geometric distribution,
i. e. λ ∝ 1/u where u is the expected length of subsequences. Once λ has been chosen, neither the number of change-
points N nor any information regarding their positions have to be specified in advance. Due to the difference in the
input content of the time series, both segmentation steps of our procedure specify their own method for λ calculation.
We use the notation λα in the first stage and λsub in the second, subordinate segmentation stage. These values will
be discussed in the respective subsections.

In addition to the prior distribution of segment lengths, the algorithm employs a finite set of modelsM to represent
different regimes in segments of the time series. Each model m ∈ M assigns marginal likelihoods P (ys:t | m) to
segments ys:t, 1 ≤ s < t ≤ T , of the time series. Prior probabilities P (m) are associated with all models. In this
paper, we only consider sets of up to four models with uniform prior distributions.

In the following two subsections, we describe the application of Fearnhead’s algorithm to two different subsets of
the available modalities in combination with two suitable sets of modelsM andMsub. The two-stage application of
the segmentation procedure and the modality-specific local models constitute the main contributions of this paper.

3.2.1 Segmentation based on Tactile Modalities

The first step performs a rough joint analysis of the tactile signals of both hands. For the application of Fearnhead’s
method in this stage, we set the value of the prior parameter λα = 1/Tα for each trial α of length Tα. Although
this choice conceptually corresponds to a single expected segment, it turned out to be suitable for small numbers of
segments as well. This has been confirmed by the experimental evaluation. The analysis uses four pairs of threshold
models. Each model of a pair describes the tactile state, i.e. “object contact” vs. “no object contact”, for one hand.
We denote the “object contact”-models with capital-letter subscripts: mL and mR for the left and the right hand
respectively. The corresponding notation for the “no object contact”-models is ml and mr.

The marginal likelihood, that a model fits to a time series segment ys:t is of the form:

P (ys:t | ml) = po
n and P (ys:t | mL) = po

u−n

where po is the fixed probability that a sample does not fit the model (in this case ml), u = t − s is the segment
length, and n is the number of such samples within the time series segment, e.g. n =

∣∣{yk|tl > γ | s ≤ k < t}
∣∣. The

parameter γ specifies the threshold for recognizing contact.
Combining these individual models, M consists of the following four joint models: “no contact for both hands”

(mlr), “contact for left hand only” (mLr), “contact for right hand only” (mlR), and “contact for both hands” (mLR).
The marginal likelihoods of these joint models are computed as products of the individual likelihoods, e.g.:

P (ys:t | mlR) = P (ys:t | ml) · P (ys:t | mR)

Assignments of the four joint contact-state models to segments in a computed segmentation are illustrated in the
first row of Fig. 2. Contact assignments identify parts of the time series that are directly associated with object
interactions. Accidental movements of one or both hands between manipulations are separated from manipulation
operations in this step. Such movements occur for instance during an approach phase prior to grasping. The as-
signment of models to segments can be exploited to exclude joint and tactile modalities (jl, tl for left hand; jr, tr
for right hand) of “inactive” hands from subsequent processing steps (e.g. clustering, see Sec. 5). For example, the
assignment of ml,R to a segment ys:t leads to the corresponding data fragment ys:t|jl,tl being excluded. When the
model ml,r is assigned, the segment in question can be ignored entirely.

2We use the notation xa:b ≡ (xa, . . . , xb). We use x_|mod to indicate the restriction to modality mod.
3We suppress P (y1:T )−1, which is irrelevant for the maximization.
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In contrast to a pointwise application of threshold methods, Fearnhead’s method – even when used with threshold
models – is not sensitive to noise which could otherwise lead to severe oversegmentation with many extremely small
segments. On the downside, Fearnhead’s method requires the specification of a prior distribution on segment lengths,
i.e. the λ parameter.

3.2.2 Sub-segmentation of Object Contact Segments Based on Audio Signal

In this subordinate segmentation step, all segments produced and not discarded in the previous step are sub-segmented
using Fearnhead’s method. This time, the audio signal in the constructed sub-segments is assumed to be produced by
Auto-Regressive (AR) models of order 1, 2 or 3: Msub = {AR(1), AR(2), AR(3)} [16]. Thus the sub-segmentation is
formed by selecting segments that exhibit homogeneous oscillatory properties within the audio modality. In contrast
to the procedure outlined in the previous paragraph, the value of the segment length distribution parameter λsub is
fixed. In our evaluation (Sec. 4), a suitable value for λsub is estimated by means of a grid-search.

The sequential application of segmentation and selection steps yields a set of segments that are characterized
by constant contact topology in respect to overall hand activity as well as homogeneous characteristics of the audio
signal. The assignment of “object contact” threshold models from the first segmentation step is discarded in this final
segmentation result since it is not exploited in further steps.

4 Experimental Results

4.1 Data Pool
We recorded 50 trials of the action sequence described in Sec. 2 with a single subject in one session. In principle,
the structure of all these trials should be identical except the timing. However, it turned out to be rather difficult
for the subject to perform such a high number of trials without structural variations. As a result, some trials exhibit
structural differences like missing or additional tactile contacts or repeated actions. However, we made no attempt to
correct these irregularities.

In the domain of unsupervised recognition of human actions, there is no established methodology for quantitative
evaluation. To avoid time-consuming hand-labelling of our data, we generate and use randomized action time schedules
for all trials in the following way: for a particular trial, audio cues are emitted according to the corresponding schedule
to mark the start or end times of actions. We rely on the subject to react to these cues and align their executed
actions as closely to them as possible. The audio cues (similar to dial tones) are provided via head phones to prevent
their presence in the recorded audio modality.

Each cue consists of a sequence of four beep sounds4 : the first three are preparatory and allow the subject to
anticipate the fourth signal which notifies the associated event (beginning or end of action execution) to the subject.
The timing of cues is derived from the structure described in Sec. 2 by randomizing the duration of individual actions.
We record timestamps of generated cues, as an indication of the timing of scheduled actions. In our evaluation, we use
these recorded cue timestamps as ground-truth. This enables us to assess the correctness of timing and the number of
generated segments. Note that this ground-truth is an approximation due to differences between cues and the actual
timing of action execution. We write cαi,j , j ∈ {1, 2, 3, 4} to denote the point in time at which the j-th signal of the
i-th cue is emitted in trial α 5.

4.2 Segmentation Quality
In this section, we analyze the results of applying the two-stage segmentation described in Sec. 3.2 to the data discussed
above. We assess the obtained segmentations w.r.t. the following three aspects: the number of calculated segments,
the number of undetected segment borders and the timing accuracy of the generated segmentation. We perform this
assessment of our procedure for a large set of combinations of the adjustable parameters. These are: the contact
threshold value γ, the segment length distribution parameter λsub and the range parameter for the normalization
of the audio signal ρ. In our experiments, we have used all possible combinations of λsub ∈ 10{−4,−5,−6,−7,−8},
ρ ∈ {6, 8, 10, 12} and γ ∈ {15, 20, 30, 40, 50, 60, 70, 80}. The goal of these experiments is to assess the respective
influences of the parameters and to find a parameter combination that yields segmentations most close to the ground-
truth in all three abovementioned aspects.

To obtain quantitative results, the cue-based ground truth data is exploited as follows: First, for each main cue
signal cαi,4 within each trial α, the temporally closest generated change-point is searched within a temporal window
around the start time of the cue signal. Depending on whether timing or oversegmentation is assessed, we use a

4The preparatory cue signals are .1 s long, the pause between signals is .2 s long and the main signal lasts .2 s.
5When the trial is clear from context or not important, we drop the superscript and write cue times as just ci,j .
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Oversegmentation Assessment

Figure 3: Temporal relations between cues, actions and generated segments. The execution of an action by the
subject is expected to start ( light green bar ) at the beginning of the cue signal ci,4, but the actual beginning of

the execution usually deviates ( dark green bar ). In our evaluation, we try to find automatically generated segments

( dark yellow bar ) that correspond to these actions in different areas ( light gray boxes ) around the cues (See Sec 4.2
for details).
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Figure 4: Left: Average distances between cues and corresponding estimated segment borders. Distances (y-axis)
are in seconds and sorted by increasing average error for different combinations of the parameters λsub, ρ and γ (x-
axis). Right: Sorted average number of estimated segment borders for actions (y-axis) w.r.t. parameter combinations
(x-axis). In both figures, averages are over all trials and all actions for each parameter combination.

smaller or larger window (See Fig. 3 for an illustration of the procedure). If such a change-point can be identified,
the temporal distance to the cue signal serves as an indicator of the accuracy of the segmentation. Otherwise the
manipulation performed in response to the cue signal is considered as not having been detected.

Fig. 4 (left) shows the timing deviation of the estimated segments from the ground-truth. In order to determine
the timing error for a given parameter combination, we first average over all trials resulting in twelve values, one for
each cue. We calculate the displayed values of mean and variance by additionally aggregating all twelve cues. The
window size around each cue used in the evaluation was set to [ci,3, (ci,4+ci+1,1)/2] (see Fig. 3). The resulting average
time-intervals between the cues and the closest estimated segment border are sorted in the order of ascending error.
From Fig. 4 (left) it can be easily seen, that segment borders generated by the proposed method are extremely robust
w.r.t. all parameters. The average error lies in the range 0.25 to 0.29 seconds. We observe lower error values in
conjunction with higher values of λsub and lower values of γ. The higher error values co-occur with smaller values of
λsub and larger values of the γ parameter. We note that the remaining minimal error of approx. 0.25 seconds might
originate from the subject’s need to adapt the hands before executing the scheduled movement. The parameters that
yielded the best results in this experiment were λsub = 10−5 and γ = 15.

The goal of the following experiment is to evaluate the number of segments generated for each cue. Fig. 4 (right)
illustrates the dependency of the average number of estimated segment borders on the parameters. Average and
variance values are calculated analogously to Fig. 4 (left). However, the environment used to estimate the number of
candidates for one cue is set to be [ci,3, (ci,4 + ci+1,3)/2]. Thus the whole sequence is covered by the calculation (see
Fig. 3). This experiment shows a strong dependency between the amount of oversegmentation and the parameter
λsub. Smaller values of λsub, yield fewer candidates within a cue environment. We observed the best results for
λsub = 10−8. This parameter has a clear and a considerable influence on the structure of the resulting segmentation.
Despite the increase in deviation of timing from the ground-truth of about 0.01 seconds, we choose the parameter set
λsub = 10−8, ρ = 12, γ = 40 for further calculations.

Fig. 5 (left) shows the cue-specific average number of generated segments for the abovementioned parameter set.
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Figure 5: Left: Average number of segment borders (y-axis) for each action (x-axis) for the parameter combination
λsub = 10−8, ρ = 12, γ = 40. Right: Relative frequencies of undetected segment borders (y-axis) for each action
(x-axis) for the aforementioned combination of parameters. Note that some actions consist of multiple sub-actions
for which no ground-truth information is available (See Sec. 4.2 for details).

In this figure one can clearly differentiate between two groups of events: double events and single events. The first
group contains for example pick up and lift and put down. The start of these actions is marked by a cue, but the
duration is so short that no end-cue can be issued correctly to signal the end of the action to the subject. Thus the
average number of generated change-points close to two is almost optimal. The second group contains single events
like start shaking, end shaking, start unscrewing or end unscrewing. In this group, the beginning or the end of the
action is marked by the cue. Thus the average number of generated change-points, approximately one, is close to
optimal as well. The average and the variance values are computed over all trials. Fig. 5 (right) shows the cue-specific
average relative frequency of undetected segments. The high likelihood of detection failures for the screwing event is
possibly due to the incorrect execution timing of the subject.

5 Application Example for Unsupervised Learning with OMMs
We consider the segmentation method we presented and evaluated in the previous sections as a building block for
more sophisticated unsupervised methods. To support this claim, we briefly outline an unsupervised procedure for
identification and representation of action primitives based on the proposed method.

To perform identification and representation of action primitives, segments which contain semantically similar
actions have to be grouped and models of these groups have to be formed. We address both tasks by embedding the
concept of Hidden Markov Models (HMM), which yields good results in representation and modeling of sequential
data, in a clustering approach. In the procedure sketched here, we use Ordered Means Models [17], an efficient variant
of HMMs with flexible left-to-right topology and Gaussian emission densities.

From the perspective of unsupervised clustering and representation, the output of the proposed segmentation
method is a set of multimodal data sequences {yβ}1≤β≤B that are unlabeled w.r.t. the trials and actions from which
they originate. The application of OMMs to partition such a dataset into k groups in an unsupervised manner, can be
considered a special case of the well-known k-means clustering. OMMs λ1, . . . , λk are used as the associated prototypes
of k clusters. A suitable distance function then is the negative log-likelihood that a sequence yβ is generated by an
OMM λj : d(yβ , λj) = − logP (yβ | λj). Given this, a k-OMMs clustering algorithm partitions data sequences into k
groups by minimizing the objective function

E = −
B∑
β=1

k∑
j=1

wβ,j logP (y
β | λj).

subject to wβ,j ∈ {0, 1} and ∀β :
∑k
j=1 wβ,j = 1.

Prior to performing k-OMMs clustering, two preprocessing steps are applied to the output of the segmentation
step. Firstly, the time-domain audio signal is replaced by a coarse characterization in the frequency domain. We
apply a sliding-window version of the Discrete Fourier Transform to the audio signal and extract ten coefficients of the
lowest frequencies from each result. The time series of these coefficients replaces the audio-signal. This transformation
is motivated by the fact that the oscillatory nature of the time-domain audio signal is not compatible with the OMM
emission models, which assume piecewise constant data with fixed-variance Gaussian noise. Secondly, we assign
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Figure 6: Assignment of labels (designated by random colors) to segments according to the best matching model in a
small subset of trials. In each row, the segmentation, label assignments, audio signal (top half ) and tactile information
(bottom half ) is shown. Corresponding segments in adjacent trials do not line up because of the randomized timing.

constant values to modalities associated with an “inactive” hand for the duration of the inactivity. This step is
intended to prevent the representation of patterns that are not related to object manipulation in learned OMMs.

Fig. 6 qualitatively shows the result of applying the sketched clustering and learning procedure in the following
way: in a training step, twelve OMMs are formed based on segmentations obtained with the presented segmentation
method. Then, in a test step, segmented action sequences are classified to the best-matching OMM model. Identically
colored segments are considered semantically equivalent.

6 Conclusions and Outlook
In this paper, we presented a novel method for unsupervised segmentation of object manipulation operations in
the context of a bimanual interaction scenario. We carried out experiments with a human subject and applied
the proposed method to the collected data. The experimental evaluation has showed satisfactory results for both:
the segmentation timing and the structural accuracy. These results and an application in an OMM-clustering has
showed that the method is able to select primitive object manipulation operations. Future research will be concerned
with learning higher level representations of sequences of object manipulation operations. Within this context, the
problem of semantically equivalent clusters will be addressed as well. It is also desirable to reduce the number of
tunable parameters.
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Online learning in the loop: fast explorative
learning of inverse models in high dimensions

Matthias Rolf and Jochen J. Steil
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I. INTRODUCTION

Learning to generate appropriate actions to achieve some behavioral goal is one of the fundamental problems in
cognitive robotics. In most scenarios actions and goals are specified in different spaces. Suppose a robot must reach
some goal state x∗∈X⊂Rn, it can not “set” this state directly but has to generate an action q∈Q⊂Rm that will
lead to the observation of x∗. The causal relation between actions and their results is typically specified by a forward
function f(q)=x. If f is not known analytically, the robot has to learn an inverse model g(x∗)= q̂ that suggests
appropriate actions such that the goal is achieved f(g(x∗))=x∗ [1]. An illustrative example are inverse kinematics
problems, in which a robot has to chose joint angles q that move the effector (e.g. the robot’s hand) towards
some position x∗. Learning inverse models can be done by exploring supervisory data (x, q) and obtaining g by
regression. Although supervised data can be generated, this problem differs substantially from standard regression
schemes including explorative ones like active learning. In general it is not possible to probe a correct solution
q∗ for a given target x∗ directly from the environment. Exploration is only accessible in the reverse direction by
applying an action q and observing the outcome x. Designing an exploration method that finds solutions for a
set of targets X∗ is far from trivial since Q is typically high-dimensional and the forward function non-linear.
Numerous approaches have been introduced to obtain inverse models by exhaustive exploration in Q, but which
is not applicable in high-dimensional domains. Although active learning can alleviate the problem, it still assumes
that the entire space can be sampled within the lifetime of an agent, at least to know which regions are irrelevant.
Is it possible to explore inverse models efficiently, without attempting a full exploration of the action space?

II. ONLINE GOAL BABBLING

We have previously drawn inspiration from infant developmental studies to tackle this problem. While infant
sensorimotor exploration is traditionally modeled as random, it was shown it [2] that infants perform goal-directed
explorative movements long before they master some sensorimotor skill. We have modeled this kind of “goal
babbling” in [3], [4] and showed that it allows to bootstrap inverse models in very high-dimensional and non-linear
domains. The basic exploration method is to use the current inverse estimate g to suggest an action for exploration
and add some exploratory noise E:

qt = g(x∗t , θt) + Et(x
∗
t ). (1)
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Fig. 1. (a) The performance error decreases rapidly over the number of movements. A ten times higher learning rate results in a speed up
of approx. 20. (b) shows the number of movements until the initial error is decreased by 90%.
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(a) After 10 movements. (b) After 100 movements. (c) After 1000 movements. (d) After 10000 movements.

Fig. 2. Example of the bootstrapping dynamics for the inverse kinematics of a 20 degrees of freedom arm. Online goal babbling rapidly
finds solutions for all target positions (gray grid). The process finds postures (overlayed in blue) that reflect a very smooth and convenient
kinematic solution.

For each action, the outcome xt is observed and the parameters θ of the inverse model are updated with a supervised
learning step. This process is iteratively repeated over time until the inverse estimate yields accurate results. At each
point in time the inverse model projects the target positions x∗ into the potentially high-dimensional action space,
which implies that only a low-dimensional manifold is explored at a time. Hence, the method completely avoids a
full exploration of Q. The method is therefore highly efficient and was shown to scale up to m=50 dimensions.

Recent work [5] shows that the learning speed can be further increased dramatically when online learning is
applied after each exploration step along continuous target paths x∗t . Online learning during goal-directed exploration
unfolds a positive feedback loop in which the learning rate acts as a “gain”. Because the exploration is informed by
previous samples, the next example will be more informative if a big learning step was applied. This self-information
reinforces until an accurate inverse model is found. Experiments using local-linear maps [6] as regression method
are shown in Fig. 1 and 2. Fig. 1 shows the learning progress for the inverse kinematics of a five-dimensional robot
arm for different learning rates. Increasing the learning rate by a factor 10 increases the overall learning speed
by a factor of approx. 20. For high learning rates the error is reduced with enormous speed and reaches a low
level already after a few hundred movement paths have been explored. Fig. 2 illustrates the same setup, but with
a 20-dimensional problem. Even in this high-dimensional domain an approximate solution is found already after
executing 100 movement paths, whereas an exhaustive exploration of 20 dimensions is by far not feasible in the
lifetime of any agent. Systematic investigation of the scalability [5] reveals that the exploratory cost (in terms of
samples or movements required) is almost constant when the dimensionality is scaled up to m=50.

III. DISCUSSION

Our experiments show that the combination of online-learning and an informed, goal-directed exploration process
allows to find inverse models in high-dimensional domains in an enormously efficient manner. The learning-rate
dependent speedup of the process can not be explained with the traditional view of online-gradients as a stochastic
approximation of batch-learning. Rather, it shows how learning scenarios can substantially benefit from online-
learning if it is applied in the loop with exploration, where it outperforms batch-learning [3] by orders of magnitudes.
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1 Introduction

The brain represents the body in various, interactive, multimodal frames of
reference. We investigate how a neural, visual-filter-based arm representation
can be linked to a neural, population-encoded angular arm representation. The
resulting associative representation should be able to provide bidirectional pre-
dictions between the modalities. That is, visual information of an arm should
allow the prediction of corresponding joint angles and proprioceptive joint angle
perceptions should allow the prediction of corresponding visual information. We
present preliminary results limited to one arm limb in 2D space – extensions to
multiple limbs and joints are discussed and currently under development.

2 The Architecture

The architecture consists of three parts. First there is a simple representation of
joint angles using a neural population code. Second, the visual representation is
implemented as a collection of visual filters. Finally, vision and proprioception
are associated via Hebbian learning (see Figure 1 for an overview).

Currently the angular space of each joint is represented by an one-dimensional
population code – each neuron being centered at one particular angle. If the
corresponding joint is moved, a Gaussian shaped activation curvature arises in
the population code with the peak at the neuron closest to the current angle.

The visual input is a grayscaled, 2D image of the virtual arm with the first
joint (e.g. the “shoulder”) in the center of the image. This input is propagated
through the framework introduced by [4], which consists of four layers. The
first layer, called S1, applies a collection of Gabor filters with 16 scales and 4
orientations to the grayscaled input image. To enhance performance, we use a
CUDA (NVIDIA) implementation of this filter bank, which was developed in
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Figure 1: Overview of the proposed architecture.

our lab [3]. The second layer, called C1, calculates local maxima over position
and scale. It reduces the initial 16 × 4 images to 8 × 4 images. To reduce the
amount of considered data further, we choose one of the scale bands with all
orientations for further processing. We applied one of two additional processing
steps to the chosen scale band. Either we calculated a flicker or a motion map
given the scalebands of the current and the previous trial. A description of these
maps can be found in [2]. Finally, the flicker or motion map is used as input for
Hebbian learning.

The integration of the joint space and the visual representation is realized
via simple Hebbian learning according to the following learning rule:

∆wijk = wangle
i wvision

jk ε, (1)

where ∆wijk refers to the change of a weight in the Hebbian map, wangle
i refers to

the activation of the ith node in the population code representing the activation
of the angular space, wvision

jk refers to the activation in the two dimensional

visual representation (j indicates the image width and k the height), and finally
ε is a weight parameter determining the speed of the adaption.

The current weight and the changed value are added together. Finally, all
weights of the map are normalized according to the following equation:

wijk(t+ 1)← wijk(t+ 1)
w∑

j=0

h∑
k=0

wijk(t+ 1)

(2)
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The resulting Hebbian maps resemble the correlation between changed joint-
angles and according changes in the visual representation. Given these map-
pings, bidirectional predictions from one modality to the other are possible.

3 First Results

Our evaluation focuses on two measures. First, we investigate the difference
between the observed and the predicted activations in joint space. Second, we
compare the distance between the peaks of both distributions. This distance is
a qualitative measure in neural units, which denotes the distance between the
most active nodes rather than an angular value.
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Figure 2: Exemplar learning progress: Peak distances converge to zero distance
while the mean absolute differences continue to decline.

Figure 2 gives an example of typical results with the current architecture.
For the displayed results the flicker map was used as input for the Hebbian
learning. Please note that the results report averages and standard deviations
of 5 independent runs. The concordance between the observed and the predicted
activation of the joint space improves over time. Due to the applied learning
algorithm and the random movements of the simulated arm, the time necessary
to achieve a stable solution varies.

4 Outlook

The current architecture is limited to associating one limb in a two dimensional
input space. Additionally, the current representation of joint angles via pop-
ulation codes is rather simple and might be replaced by a more sophisticated
approach, like dynamic fields [1]. To extend the current architecture to handling
multiple joints, at least three challenges have to be tackled:

1. The different joints have to be detected from the Gabor filtered input
images.
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2. A focus mechanism is necessary to obtain respective joint-centered repre-
sentations.

3. The co-representations of the respective joints and limbs have to be cor-
rectly assigned and maintained over time.

We believe that the first task may be solved by means of the motion map
proposed by [2]. Preliminary tests revealed that the highest activations corre-
spond to joint positions. A simple clustering algorithm could be used to obtain
the coordinates of the joints in the Gabor filtered image.

To deduce the joint-respective visual information selectively, a focus mech-
anism will be additionally necessary that does not only extract head-centered
representation of the respective limbs and joints, but that also suppresses visual
information belonging to other segments of the arm. Such a process could be
realized via multiplicative focus models of spatial attention, such as the one in-
troduced by [5]. We believe that this approach would be particularly interesting
as it also introduces a working memory model.

The last challenge refers to the binding problem of maintaining a consis-
tent model of individual joints, associating their respective angular and visual
representations modularly over time. At the moment, the architecture lacks
a sensorimotor model to filter the modular arm state information flow. Addi-
tional distance information from a three dimensional arm representation may
additionally help to assign the individual arm limbs and joints to the corre-
sponding visual information. Work is in progress to consider and integrate the
respective sources of information and modularly bind them over time.

While this is cleary work in progress, we believe that the proposed architec-
ture is able to provide a bidirectional link between vision and proprioception.
The representation can be used for anticipatory processing from one modality to
the other. With the described extensions, we are certain that the architecture
will be able to account for effects of spatial, arm-specific attentional processes
as well as for working memory effects of an arm-specific body model. Moreover,
the multi-modal representation with its continuous interactions is expected (a)
to handle noisy and partially missing sensory information effectively as well as
(b) to enable highy flexible behavioral control, which will be able to resolve
redundancies and incorporate task-specific priorities on the fly.
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[1] W. Erlhagen and G. Schöner. Dynamic field theory of movement prepara-
tion. Psychological Review, 109(3):545–572, 2002.

[2] L. Itti, N. Dhavale, and F. Pighin. Realistic avatar eye and head animation
using a neurobiological model of visual attention. In Proceedings of SPIE
48th Annual International Symposium on Optical Science and Technology,
volume 5200, pages 64–78, 2003.

[3] K. L. Reif and M. V. Butz. Cuda implementation of V1 based on Gabor

Filters. Technical report, University of Würzburg, Cognitive Bodyspaces:
Learning and Behavior, 2010.

56 Machine Learning Reports



[4] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust
object recognition with cortex-like mechanisms. IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 29(3):411–
426, 2007.

[5] J. Taylor, M. Hartley, and N. Taylor. Attention as sigma-pi controlled ach-
based feedback. IJCNN05, pages 256–261, 2005.

New Challenges in Neural Computation - 2011 57



Object-Class Segmentation using Deep
Convolutional Neural Networks

Hannes Schulz and Sven Behnke
University of Bonn, Computer Science VI,

Autonomous Intelligent Systems Group
Friedrich-Ebert-Allee 144, 53113 Bonn, Germany

{schulz,behnke}@ais.uni-bonn.de

Abstract
After successes at image classification, segmentation is the next step
towards image understanding for neural networks. We propose a convo-
lutional network architecture that outperforms current methods on the
challenging INRIA-Graz02 dataset with regards to accuracy and speed.

1 Introduction
Neural networks have long history of usage for image classification, e. g. on
MNIST [1], NORB [2], and Caltech [3]. For these datasets, neural networks rank
among the top competitors [4]. Despite the success, we should note that these
image classification tasks are quite artificial. Typically, it is assumed that the
object of interest is centered and at a fixed scale, i. e. that the segmentation
problem has been solved. Natural scenes rarely contain a single object or object
class. Such images need to be analyzed on various scales and positions for objects
of different categories. Object detection and object-class segmentation are thus
the logical step towards general image understanding. In this work, we propose
variations of the convolutional network for object-class segmentation. We show
that with HOG and color input, intermediate outputs and epsilon-insensitive loss
error function, we can achieve state-of-the-art accuracy on the INRIA Graz-02
(IG02, [5]) dataset. Due to the efficient reuse of information during convolution
as well as a fast GPU implementation, we achieve a framerate of about 10 fps
during recall.

2 Related Work
In the deep learning community, research on real images has largely focused on ob-
ject detection (as opposed to segmentation). For example, using extensive dataset
augmentation, pretraining of a sparse encoder, bootstrapping, Kavukcuoglu,
Sermanet, Boureau, Gregor, Mathieu, and Cun [6] perform comparably well on
the INRIA pedestrian dataset. Licence plates and faces are blurred in Google
Street View using a convolutional neural network as part of a larger pipeline.
Both techniques are applied in a sliding window, that is, the probability of a pixel
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Figure 1: Precision/Recall on the IG02 dataset.

being member of a class is determined independently for every pixel and scale.
We propose to use a convolutional architecture with multi-scale input, resulting
in efficient reuse of data structures. Jain, Bollmann, Richardson, Berger, Helm-
staedter, Briggman, Denk, Bowden, Mendenhall, and Abraham [7] proposed
convolutional architectures and cost functions to detect boundaries prior to
segmentation. We acknowledge that this can improve segmentation results at the
borders, but we believe that this should be a second step after finding object or
object-class hypothesis. Most current approaches start with an oversegmentation
of the image, e. g. Fulkerson et al. [8] classify superpixels based on histograms
of features in their neighborhood. Superpixels are often expensive to compute
and potentially introduce errors that are hard to correct later. Finally, Aldavert,
De Mantaras, Ramisa, and Toledo [9] use a handtuned integral linear classifier
cascade to achieve close to very good performance. However, we achieve better
accuracy at a higher framerate.

3 Methods
Preprocessing We use eight square feature maps as input. Three maps are
the whitened color channels, five maps represent histogram of oriented gradients
(HOG180) features. The whitening kernel is derived from 5× 5 random patches
of the training set. HOG features are calculated at twice the map resolution and
then subsampled. We perform these operations at three scales, with resolution
decreasing by a factor of two. The teacher, i. e. an image where each pixel is
marked with the class it belongs to, is split into one map per class where pixels
are 1 when they are in the class and are 0 otherwise. Finally, the teacher is
smoothed and downsampled for each scale.

Network Architecture For each scale s, we have input maps msi, two con-
volutions resulting in maps ms1, ms2 and one (intermediate) output layer os.
The activities of os are determined by ms1 and fed to ms2 with additional
convolutions. Between scales, we use maximum pooling to gain some spatial
invariance. At each output layer, we measure the pixelwise class error using the
epsilon-insensitive loss function E(x, x̂) = max (0, |x− x̂| − ε)2

, where we fix
ε = 0.2. This loss function does not punish small deviations from the target value
and essentially acts as a regularizer which plays well with the final thresholding.
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Figure 2: Sample test set object-class segmentations. Left: original image, center:
ground truth segmentation, right: our segmentation. The colors red, green, blue
represent cars, bikes and persons, respectively. White represents values at or
below the EEP thresholds. Large objects, such as on lower right, still have
potential for improvement.

The error is backpropagated through the network in the usual way, see
e. g. [10]. Errors of intermediate output are scaled by a factor of 0.1. With six
hidden layers, the network can be regarded as a “deep” network.

Training We update the weights with the accumulated errors after each epoch
using the RPROP [11] algorithm with standard settings, which avoids the need to
cross-validate a learning rate. All operations except preprocessing are performed
on GPU using the CUV library [12].

4 Results
We test our architecture on the challenging INRIA Graz-02 dataset [5]. The
dataset contains images of bikes, cars and persons covering an extremely wide
range of pose, scale and lighting. We use the training/testing splits suggested
on the dataset website, resulting in (after horizontal mirroring) 958 training
and 479 testing images. The images are scaled to 172 × 172 and squared by
horizontal or vertical centering and mirroring into non-occupied space. We use
32 maps on all layers, and filters of size 7× 7. Error is measured as in [8] using
precision-recall at equal-error rate (PR-EER), at input resolution. After 2000
weight updates, we find that in two categories we outperform state-of-the-art (see
Fig. 1). We did not observe overtraining, which we attribute to the regularizing
effect of the epsilon-insensitive loss. Some selected segmentations are depicted
in Fig. 2. While our method generally performs well on small to medium scales,
there is still room for improvement in the precise estimation of currently blurred
boundaries. We further observe difficulties in images with e. g. large persons
(lower right). Without pre-processing, we are able to process 28 fps, assuming
current GPU HOG implementations for preprocessing, we estimate an estimated
10 fps for the trained network.
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5 Conclusion
In this paper, we showed that convolutional networks can achieve state-of-the-art
performance in object-class segmentation with regards to accuracy as well as
speed. We plan to improve our results further using conditional random fields
(CRFs) for post-processing.
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1 Introduction

Invariant face recognition refers to estimating the identity of a person ir-
respective of situation. Human perception is excellent at both finding the
identity of a known person and estimating the situation of both known and
unknown persons on the basis of a facial image. (“This is John in his twenties
in the disco” or “This girl is sunbathing on the beach and seems to enjoy
it”). Certainly, the human visual system is good at the separation of personal
identity and situation. This is possible by using the vast visual experience
acquired with many persons in many situations.

From a machine learning point of view, the requirement to recognize iden-
tity independent of situation is a case of generalization. However, invariance
under even a simple visual transformation such as translation in the image
plane is not a generalization performed naturally by known learning mech-
anisms. Therefore, methods to control the generalization on the basis of
examples are required. Paradoxically, this is also a requirement for setting
up autonomous learning systems, which can autonomously select learning
examples in order to take already learned concepts to a higher degree of
abstraction.

Visual invariance can, to a limited degree, be learned from real-world
data based on the assumption that temporally continuous sequences leave
the object identity unchanged [2, 6, 1, 13]. Slow feature analysis has recently
been successfully applied to 3D rotation by [3].

1
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π = [7, 3, 9, . . .] γ = [7, 9, 3, . . .]
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...
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Figure 1: Situation-independent recognition is mediated by a model database
of some persons in all situations. Probe and gallery images are coded into
rank lists π and γ by their similarities to the models. These rank lists are
comparable, while the graph similarities are not (feature indices have been
dropped for clarity, and the numbers in the rank lists are just examples).

Nevertheless, all successful recognition systems have the required invari-
ances built in by hand. This includes elastic graph matching [8] and elastic
bunch graph matching (EBGM) [14], where the graph dynamics explicitly
have to probe all possible variations in order to compare an input image
with the stored models. Neural architectures that perform this matching
include [15, 9, 16, 7], with the more recent ones being massively parallel and
able to explain invariant recognition with processing times comparable to
that of the human visual system. These methods work fine for the recogni-
tion of identity under changes in translation, scale, and small deformations,
including small changes in three-dimensional pose.

We here briefly review a system that can learn invariances in a moderately
supervised way from a set of examples of individual faces in several situations.
Person identification generalizes to other individuals that are known only in
one situation [10, 11]. We then show ongoing work on details of a neural

2
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Figure 2: Left: A neural circuit sensitive to the order of firing neurons, the
preferred order is stored in the weights wj (after [12]). Right: The same
circuit is repeated for each gallery image (more precisely for each feature in
each gallery image). The probe image is represented as a rank list π according
to similarities with model images in the same situation. The similarities of
the gallery to the model images in neutral situation are coded in the weights
wm,g.

network based on spike timing, which can achieve invariant recognition in a
very short time given parallel neuronal architecture.

2 Rank list recognition

The problem of learning the transformations between different situations can
be solved by representing individuals in different situations by the rank list
of their similarities to the model images in the same situation. Every probe
image also creates a similarity rank list with the model images in its situation.
See figure 1 for an illustration and [11] for full details.

3 Neural network for rank list comparison

[12] have proposed a neural network that can evaluate rank codes. A set of
feature detectors responds to an input pattern such that the most similar
detector fires first. The order in which the spikes arrive can then be decoded
by a circuit depicted in the left half of figure 2.

3
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In this paper we describe a spiking network implementation of the recogni-
tion procedure. The architecture is shown in figure 2 with the simplification
that only one rank-list evaluating circuit per face is shown. We assume a
neuronal module that calculates the similarity of stored model images to the
actual probe image. Each feature of each gallery subject has one representing
neuron. The similarity influences the time a neuron corresponding to this
subject sends a spike. The higher the similarity the earlier the spike.

Following [12] rank lists are evaluated by a combination of an excitatory
and inhibitory cell. In the excitatory cell weighted spikes are accumulated, in
the inhibitory one unweighted spikes build up inhibition. In order to become
active only for one desired order of arriving spikes the weights must be as
follows (see [12, 11])

wm,g =
1

NM

λγg(m) . (1)

The activity Ag then becomes

Ag =

NM∑
m=1

λπ(m)wm,g , (2)

=
1

NM

NM∑
m=1

λπ(m)+γg(m) , (3)

which is a useful similarity function for the rank lists π and γg (see [11].
We have implemented the network in a continuous-time fashion, meaning

that the precise spiking times are implemented as floats. This allows to
study the robustness of the network under the influence of disturbances like
imprecision in spike timing, synaptic delays, multiple spikes, etc...

After some global reset, each feature detector fires a spike at time:

ti = 1− S(JMi , J
G
i )π(m) + γg(m (4)

Note that the similarities have values in [0, 1] and these times as well. To
map these values to biologically realistic timings requires a time unit of about
20ms.

4 Experiments and results

Like in [11], we have tested the system on the pose and illumination variations
of the CAS-PEAL database [5, 4]. The landmarks are found by elastic bunch
graph matching, starting from very few images, that were labeled by hand.

4
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Figure 3: Results of experiments on the spike-based network.

24 subjects have been set aside for manual labeling. From these, the basic
bunch graphs have been built (12 for pose, 8 for illumination). The remaining
1015 subjects have been partitioned into model sets and testing sets. In the
standard partition for the pose case, the first 500 subjects were used for
model and the following 515 for testing. In the illumination case the first 100
subjects were used for model and the following 91 for testing.

4.1 Random noise

First we have added random offsets equally distributed in [−d, d] to the spike
timings of (4) and measured the recognition rate. The results are shown in
figure 3a.

ti = 1− S(JMi , J
G
i ) + χ(d) (5)

5
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Random spike timing errors are tolerated if the noise interval is around 0.05
time units.

4.2 Early stopping

Identity decisions can be made faster if the gallery neurons do not wait for all
spikes to come in. As can be seen in figure 3b the first 20 spikes are enough
to reach the full recognition performance, and already stopping after the first
spike yields acceptable recognition rates. Note that the recognition rates for
the methods tested in [4] on the same database are 71% for pose and 51%
for illumination.

4.3 Dependence on size of model gallery

Model learning is only useful if the number of individuals in the model can
be be much smaller than the number of people in the gallery. We have tested
different model sizes with a fixed gallery size of 500 individuals for pose and
91 for illumination. The results are shown in figure 3d.

4.4 Multiple spikes

The assumption that an activated feature detector would fire only a single
spike at a precise time is not in accordance with neurophysiology. The general
view is that activation causes a spike train, with activity being coded in the
f requency of spikes. In a second simulation the active neurons created a
volley of spikes, which lasted for T = 3 time units.

ti(n) = n · (1− S(JMi , J
G
i )) , n ∈

{
1, 2, . . .

T

1− S(JMi , J
G
i )

}
(6)

Subsequent spikes might interfere with the evaluation of the rank lists, be-
cause they cannot be distinguished from first spikes.

5 Discussion

In this paper, we have presented some experiments showing the robustness of
the network performance under errors in spike timing, shortness of models,
and the presence of spike trains instead of single spikes. In ongoing work,
we are varying the details of the spiking network in order to find promising
parameter regimes for applying the network to larger problems.

6

New Challenges in Neural Computation - 2011 67

hammer
Rectangle



Acknowledgements

We gratefully acknowledge funding from the German Research Foundation
(WU 314/2-2 and WU 314/5-2). Portions of the research in this paper use
the CAS-PEAL face database collected under the sponsorship of the Chinese
National Hi-Tech Program and IS VISION Tech. Co. Ltd. [5, 4].

References

[1] Marian Stewart Bartlett and Terrence J. Sejnowski. Learning viewpoint-
invariant face representations from visual experience in an attractor net-
work. Network – Computation in Neural Systems, 9(3):399–417, 1998.
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