
Learning vector quantization for (dis-)similarities

Barbara Hammer, Daniela Hofmann, Frank-Michael Schleif, Xibin Zhu

CITEC center of excellence, Bielefeld University, Germany

March 5, 2013

Abstract

Prototype-based methods often display very intuitive classification
and learning rules. However, popular prototype based classifiers such
as learning vector quantization (LVQ) are restricted to vectorial data
only. In this contribution, we discuss techniques how to extend LVQ
algorithms to more general data characterized by pairwise similarities
or dissimilarities only. We propose a general framework how the meth-
ods can be combined based on the background of a pseudo-Euclidean
embedding of the data. This covers the existing approaches kernel
generalized relevance LVQ and relational generalized relevance LVQ,
and it opens the way towards two novel approach, kernel robust soft
LVQ and relational robust soft LVQ. Interestingly, also unsupervised
prototype based techniques which are based on a cost function can
be put into this framework including kernel and relational neural gas
and kernel and relational self-organizing maps (based on Heskes’ cost
function). We demonstrate the performance of the LVQ techniques for
similarity or dissimilarity data in several benchmarks, reaching state
of the art results.

1 Introduction

Since electronic data sets increase rapidly with respect to size and com-
plexity, humans have to rely on automated methods to access relevant in-
formation from such data. Apart from classical statistical tools, machine
learning has become a major technique in the context of data processing
since it offers a wide variety of inference methods. Today, a major part of
applications is concerned with the inference of a function or classification
prescription based on a given set of examples, accompanied by data mining
tasks in unsupervised machine learning scenarios and more general settings

1

as tackled e.g. in the frame of autonomous learning. In this contribution,
we focus on classification problems.

There exist many different classification techniques in the context of
machine learning ranging from symbolic methods such as decision trees to
statistical methods such as Bayes classifiers. Because of its often excellent
classification and generalization performance, the support vector machine
(SVM) constitutes one of the current flagships in this context, having its
roots in learning theoretical principles as introduced by Vapnik and col-
leagues [4]. Due to its inherent regularization of the result, it is particularly
suited if high dimensional data are dealt with. Further, the interface to the
data is given by a kernel matrix such that, rather than relying on vectorial
representations, the availability of the Gram matrix is sufficient to apply
this technique.

With machine learning techniques becoming more and more popular in
diverse application domains and the tasks becoming more and more complex,
there is an increasing need for models which can easily be interpreted by
practitioners: for complex tasks, often, practitioners do not only apply a
machine learning technique but also inspect and interpret the result such
that a specification of the tackled problem or an improvement of the model
becomes possible [40]. In this setting, a severe drawback of many state-of-
the-art machine learning tools such as the SVM occurs: they act as black-
boxes. In consequence, practitioners cannot easily inspect the results and it
is hardly possible to change the functionality or assumptions of the model
based on the result of the classifier.

Prototype-based methods enjoy a wide popularity in various application
domains due to their very intuitive and simple behavior: they represent their
decisions in terms of typical representatives contained in the input space
and a classification is based on the distance of data as compared to these
prototypes [19]. Thus, models can be directly inspected by experts since
prototypes can be treated in the same way as data. Popular techniques in
this context include standard learning vector quantization (LVQ) schemes
and extensions to more powerful settings such as variants based on cost
functions or metric learners such as robust soft LVQ (RSLVQ) or generalized
LVQ (GLVQ), for example [32, 37, 38, 36]. These approaches are based on
the notion of margin optimization similar to SVM in case of GLVQ [37], or
based on a likelihood ratio maximization in case of RSLVQ, respectively [38].
For GLVQ and RSLVQ, a behavior which closely resembles standard LVQ2.1
results in limit cases. The limit case of RSLVQ does not necessarily achieve
optimum behavior already in simple model situations similar to LVQ2.1,
as has been investigated in the context of the theory of online learning

2

[2]. Nevertheless, it displays excellent generalization ability in the standard
intermediate case, see e.g. [36] for an extensive comparison of the techniques.

With data sets becoming more and more complex, input data are often
no longer given as simple Euclidean vectors, rather structured data or ded-
icated formats can be observed such as sequences, graphs, tree structures,
time series data, functional data, relational data etc. as occurs in bioinfor-
matics, linguistics, or diverse heterogeneous databases. Several techniques
extend statistical machine learning tools towards non-vectorial data: kernel
methods such as SVM using structure kernels, recursive and graph networks,
functional methods, relational approaches, and similar [9, 33, 11, 31, 14].

Recently, popular prototype-based algorithms have also been extended
to deal with more general data. Several techniques rely on a characterization
of the data by means of a matrix of pairwise similarities or dissimilarities
only rather than explicit feature vectors. In this setting, median clustering
as provided by median self-organizing maps, median neural gas, or affinity
propagation characterizes clusters in terms of typical exemplars [10, 20, 8].
More general smooth adaptation is offered by relational extensions such
as relational neural gas or relational learning vector quantization [13]. A
further possibility is offered by kernelization such as proposed for neural gas,
self-organizing maps, or different variants of learning vector quantization
[29, 41, 30]. By formalizing the interface to the data as a general similarity or
dissimilarity matrix, complex structures can be easily dealt with: structure
kernels for graphs, trees, alignment distances, string distances, etc. open the
way towards these general data structures [27, 11].

In this contribution, we consider the question how to extend cost func-
tion based LVQ variants such as RSLVQ (11) or GLVQ (2) to similarity
or dissimilarity data, respectively. We propose a general way based on an
implicit pseudo-Euclidean embedding of the data, and we discuss in how far
instantiations of this framework differ from each other. Using this frame-
work, we cover existing techniques such as kernel GLVQ [30] and relational
GLVQ [15], and investigate novel possibilities such as kernel and relational
RSLVQ. These techniques offer valid classifiers and training methods for an
arbitrary symmetric similarity or dissimilarity. Some mathematical proper-
ties, however, such as an interpretation via a likelihood ratio or interpre-
tation of learning as exact gradient, are only guaranteed in the Euclidean
case for some of the possible choices, as we will discuss in this article. In
this context, we investigate the effect of corrections of the matrix to make
data Euclidean. The effectivity of the novel techniques is demonstrated in
a couple of benchmarks.

Now, we first introduce standard LVQ for Euclidean vectors, in partic-

3

ular the two cost-function based variants GLVQ and RSLVQ. Afterwards,
we review facts about similarity and dissimilarity data and their pseudo-
Euclidean embedding. Based on this embedding, kernel and relational vari-
ants of LVQ can be introduced for similarities or dissimilarities, respectively.
Training can take place essentially in two ways, mimicking the correspond-
ing Euclidean counterparts or via direct gradients, respectively, whereby the
same local optima of the cost function are present in the Euclidean case, but
a numerical scaling of the gradients is observed. We exemplarily derive new
models, kernel RSLVQ and relational RSLVQ in this framework. Experi-
ments are based on the setting as proposed in [6], investigating the effect
of different preprocessing steps and learning techniques in comparison to
the results of SVM and a k-nearest neighbor classifier. We conclude with a
discussion.

2 Learning vector quantization

Learning vector quantization (LVQ) constitutes a very popular class of intu-
itive prototype based learning algorithms with successful applications rang-
ing from telecommunications to robotics [19]. Basic algorithms as proposed
by Kohonen include LVQ1 which is directly based on Hebbian learning,
and improvements such as LVQ2.1, LVQ3, or OLVQ which aim at a higher
convergence speed or better approximation of the Bayesian borders. These
types of LVQ schemes have in common that their learning rule is essentially
heuristically motivated and a valid cost function does not exist [3]. One
of the first attempts to derive LVQ from a cost function can be found in
[32] with an exact computation of the validity at class boundaries in [36].
Later, a very elegant LVQ scheme which is based on a probabilistic model
and which can be seen as a more robust probabilistic extension of LVQ2.1
has been proposed in [38]. We shortly review these two proposals.

2.1 Generalized learning vector quantization

Assume data ξi ∈ R
n with i = 1, . . . , N are labeled yi where labels stem from

a finite number of different classes. A GLVQ network is characterized by
m prototypes wj ∈ R

n with priorly fixed labels c(wj). Classification takes
place by a winner takes all scheme:

ξ 7→ c(wj) where d(ξ, wj) is minimum (1)

with squared Euclidean distance d(ξ, wj) = ‖ξ − wj‖
2, breaking ties arbi-

trarily.

4

For training, it is usually assumed that the number and classes of pro-
totypes are fixed. In practice, these are often determined using cross-
validation, or a further wrapper technique is added to obtain model flex-
ibility. Training aims at finding positions of the prototypes such that the
classification accuracy of the training set is optimized. GLVQ also takes the
generalization ability into account, using the costs

∑

i

d(ξi, w
+)− d(ξi, w

−)

d(ξi, w+) + d(ξi, w−)
(2)

where w+ constitutes the closest prototype with the same label as ξi and w−

constitutes the closest prototype with a different label than ξi. The nomi-
nator is negative iff ξi is classified correctly, thus GLVQ tries to maximize
the number of correct classifications. In addition, it aims at an optimiza-
tion of the hypothesis margin d(ξi, w

−) − d(ξi, w
+) which determines the

generalization ability of the method [37].
Training takes place by a simple stochastic gradient descent, i.e. given a

data point ξi, adaptation takes place via

∆w+ ∼ −
2 · d(ξi, w

−)

(d(ξi, w+) + d(ξi, w−))2
·
∂d(ξi, w

+)

∂w+
(3)

∆w− ∼
2 · d(ξi, w

+)

(d(ξi, w+) + d(ξi, w−))2
·
∂d(ξi, w

−)

∂w−
(4)

From an abstract point of view, we can characterize GLVQ as a classifier,
which classification rule is based on a number of quantities

D(ξ, w) := (d(ξi, wj))i=1,...,N,j=1,...,m (5)

Training aims at an optimization of a cost function of the form

f(D(ξ, w)) (6)

by means of the gradients

∂f(D(ξ, w))

∂wj
=

m
∑

i=1

∂f(D(ξ, w))

∂d(ξi, wj)
·
∂d(ξi, wj)

∂wj
(7)

with respect to the prototypes wj or the corresponding stochastic gradients
for one point ξi.

5

2.2 Robust soft learning vector quantization

Robust soft LVQ (RSLVQ) models data by a mixture of Gaussians and
derives learning rules as a maximization of the log likelihood ratio of the
given data. In the limit of small bandwidth σ, a learning rule which is
similar to LVQ2.1 but which performs adaptation in case of misclassification
only, is obtained [38].

Here, we restrict to the standard model which assumes equal prior and
bandwidth of the modes. Mixture component j defines the probability

p(ξ|j) = (2πσ2)−n/2 · exp(−d(ξ, wj)/σ
2) (8)

This induces the probability of an unlabeled data point

p(ξ|W) =
1

m
·
∑

j

p(ξ|j) (9)

with parameters W of the model. The probability of a labeled data point is

p(ξ, y|W) =
1

m
·

∑

j : c(wj)=y

p(ξ|j) . (10)

Learning aims at an optimization of the log likelihood ratio

L =
∑

i

log
p(ξi, yi|W)

p(ξi|W)
. (11)

A stochastic gradient ascent yields the following update rules, given data
point ξi with label yi:

∆wj ∼

{

−(Py(j|ξi)− P (j|ξi)) · ∂d(ξi, wj)/∂wj if c(wj) = yi
P (j|ξi) · ∂d(ξi, wj)/∂wj if c(wj) 6= yk

(12)

with the probabilities

Py(j|ξi) =
exp(−d(ξi, wj)/σ

2)
∑

j:c(wj)=yi
exp(−d(ξi, wj)/σ2)

(13)

and

P (j|ξi) =
exp(−d(ξi, wj)/σ

2)
∑

j exp(−d(ξi, wj)/σ2))
(14)

With small bandwidth, a learning rule similar to LVQ2.1, learning from
mistakes, results thereof.

6

Given a novel data point ξ, its class label can be determined by means
of the most likely label y corresponding to a maximum value p(y|ξ,W) ∼
p(ξ, y|W). For typical settings, this rule can usually be approximated by a
simple winner takes all rule as in GLVQ (1). It has been shown in [38], for
example, that RSLVQ often yields excellent results while preserving inter-
pretability of the model due to prototypical representatives of the classes in
terms of the parameters wj .

Note that the objective of RSLVQ and GLVQ training is in both cases
a function of the form f(D(ξ, w)). Similarly, the classification depends on
the vector D(ξ, w) only.

3 Extensions to dis-/similarity data

In modern applications, data are often no longer vectorial. Rather, complex
structures are dealt with for which a problem specific similarity or dissim-
ilarity measure has been designed. Examples include biological sequences,
mass spectra, or metabolic networks, where complex alignment techniques,
background information, or general information theoretical principles, for
example, drive the comparison of data points [28, 22, 18]. In these settings,
it is possible to compute pairwise similarities or dissimilarities of the data
rather than to arrive at an explicit vectorial representation.

The question occurs how LVQ algorithms can be extended to this setting.
Two different principles have been proposed in the literature: kernel GLVQ
assumes a valid Gram matrix and extends GLVQ by means of kernelization,
see [30]. In contrast, relational GLVQ assumes the more general setting
of possibly non-Euclidean dissimilarities, and extends GLVQ to this setting
by an alternative expression of distances based on the given dissimilarity
data [15]. We will argue that both instances can be unified as LVQ variants
referring to the pseudo-Euclidean embedding of similarity or dissimilarity
data, respectively.

3.1 Pseudo-Euclidean embedding

Assume data are characterized by pairwise similarities sij = s(ξi, ξj) or
dissimilarities dij = d(ξi, ξj) only, referring to the corresponding matrices as
S and D, respectively. Here, we do not have any prior information about
the shape of ξi, in particular, it is not necessarily represented in vectorial
form. We assume symmetry, i.e. S = St and D = Dt as well as zero diagonal
in D, i.e. dii = 0. The first question is how these two representations D and
S are related.

7

How to turn similarities into dissimilarities and vice versa?

There exist classical methods to turn similarities to dissimilarities and vice
versa, see e.g.[27]: given a similarity, a dissimilarity is obtained by the trans-
formation

Φ : S → D, dij = sii − 2sij + sjj (15)

while the converse is obtained by double centering

Ψ : D → S, sij = −
1

2



dij −
1

N

∑

i

dij −
1

N

∑

j

dij +
1

N2

∑

i,j

dij



 (16)

While it holds that the composition of these two transforms Ψ ◦ Φ = I, I
being the identity, the converse, Φ◦Ψ yields the identity iff data are centered,
since offsets of data which are characterized by dissimilarities are arbitrary
and hence not reconstructable from D. That means, if S is generated from
vectors via some quadratic form, the vectors should be centered in the origin.
So essentially, for techniques which rely on dissimilarities of data, we can
treat similarities or dissimilarities as identical via these transformations.
The same holds for similarity based approaches only if data are centered.

How to represent data in vectorial form?

The key observation is that every finite data set which is characterized by
pairwise similarities or dissimilarities can be embedded in a so-called pseudo-
Euclidean vector space. Essentially, this is a finite dimensional real-vector
space of dimensionality N , characterized by the signature (p, q,N − p− q),
which captures the degree up to which elements are Euclidean. Distances
along the first p dimensions are Euclidean whereas the next q dimensions
serve as correction factors to account for the non-Euclidean elements of the
dissimilarity d. In the following, we follow the excellent presentation of
pseudo-Euclidean spaces as derived in [27].

Assume a similarity matrix S or corresponding dissimilarity matrix D is
given. Since S is symmetric, a decomposition

S = QΛQt = Q|Λ|1/2Ipq|Λ|
1/2Qt (17)

with diagonal matrix Λ and orthonormal columns in the matrix Q can be
found. Ipq denotes the diagonal matrix with the first p elements 1, the next
q elements −1, and N − p− q elements 0. By means of this representation,
the number of positive and negative eigenvalues of S is made explicit as p

8

and q, respectively. We set ξi =
√

|Λii|qi, qi being column i of Q. Further,
we define the quadratic form

〈u, v〉pq = u1v1 + . . .+ upvp − up+1vp+1 − . . .− up+qvp+q (18)

Then we find
sij = 〈ξi, ξj〉p,q (19)

For a given dissimilarity matrix, we can consider the matrix Ψ(D) ob-
tained by double centering (16). This similarity matrix can be treated in
the same way as S leading to vectors ξi such that

dij = ‖ξi − ξj‖
2
p,q (20)

where the symmetric bilinear form is associated to the quadratic form (18)

‖u−v‖2pq = |u1−v1|
2+. . .+|up−vp|

2−|up+1−vp+1|
2−. . .−|up+q−vp+q|

2 (21)

Thus, in both cases, vectors in a vector space can be found which induce
the similarity or dissimilarity, respectively. The quadratic form in this vector
space, however, is not positive definite. Rather, the first p components
can be considered as standard Euclidean contribution whereas the next q
components serve as a correction. This vector space is referred to as pseudo-
Euclidean space with its characteristic signature (p, q,N − p− q).

Note that dissimilarities defined via ‖u− v‖2pq or similarities defined via
〈u, v〉pq can become negative, albeit, often, the negative part is not large in
practical applications. Similarities or dissimilarities stem from a Euclidean
vector space iff q = 0 holds.

3.2 LVQ for (dis-)similarities

The pseudo-Euclidean embedding allows us to transfer LVQ based classi-
fiers to similarity or dissimilarity data. Essentially, we embed data and
prototypes in pseudo-Euclidean space and we instantiate the squared ‘dis-
tance’ d(ξi, wj) used in LVQ algorithms by the pseudo-Euclidean dissimilar-
ity ‖ξi−wj‖

2
pq. Albeit this is no longer a ‘distance’ strictly speaking, we will

address this quantity as such in the following.

Distance computation in LVQ for (dis-)similarities

In principle, this procedure already provides a valid classifier. However, a
couple of questions arise in this context which will yield to relational or
kernel LVQ schemes as used in practical applications, respectively:

9

(1) An explicit embedding has cubic complexity, can we avoid this? It
is reasonable to restrict the position of prototypes to the convex hull of the
data. Thus, we assume

wj =
∑

l

αjlξl (22)

where αjl > 0 with
∑

l αjl = 1. Then, we can compute for a given data
point ξi:

‖ξi − wj‖
2
pq = sii − 2

∑

l

αjlsil +
∑

ll′

αjlαjl′sll′ (23)

Hence we can compute distances of all data points and prototypes based on
pairwise data similarities only in quadratic time. Further, we do not need to
represent prototypes wj explicitly, rather, the coefficients αjl are sufficient.
Similarly, we find

‖ξi − wj‖
2
pq =

∑

l

αjldil − 1/2 ·
∑

ll′

αjlαjl′dll′ (24)

provided
∑

l αjl = 1. Hence, as an alternative, we can compute distances
via all pairwise dissimilarities of data in quadratic time.

This way, it is possible to compute an LVQ classifier based on pairwise
dissimilarities or similarities only, representing prototypes only implicitly
in terms of the coefficients αjl. Often, the latter, using dissimilarities, is
referred to as relational approach, see e.g. [15], while the former, using
similarities, corresponds to kernelization of the classifier [30].

(2) How to provide out-of-sample extensions for a novel data point ξ?
We assume that novel data points are represented in terms of their similarity
or dissimilarity to the training points s(ξi, ξ) or d(ξi, ξ), respectively. Then,
similarly, we obtain the distance

‖ξ − wj‖
2
pq = s(ξ, ξ)− 2

∑

l

αjls(ξ, ξl) +
∑

ll′

αjlαjl′sll′ (25)

which is based on known similarities and the coefficients only. Since the first
term is a constant, we can simply drop it to compute the closest prototype
for ξ. As an alternative, we find

‖ξ − wj‖
2
pq =

∑

l

αjld(ξ, ξl)− 1/2 ·
∑

ll′

αjlαjl′dll′ (26)

based on known dissimilarities and the coefficients of the prototypes.
(3) In how far does the result of the classification depend on the chosen

embedding of prototypes? We have just derived formulas which compute

10

distances in terms of the similarities/dissimilarities only. Hence the result
of the classification is entirely independent of the chosen embedding, any
other embedding which yields the same similarities/dissimilarities will give
the same result. Further, we can even ensure that the training process is
independent of the concrete embedding, provided that learning rules are
expressed in a similar way in terms of similarities or dissimilarities only.
Thus, we now turn to possible training algorithms for these classifiers.

Training LVQ for (dis-)similarities

The principled way how to train such LVQ classifiers is essentially indepen-
dent of the precise form of the cost function. For similarity or dissimilarity
data, there exist two different possibilities to arrive at valid training rules,
concrete instances of which can be found in [30, 15]. Here, we give a more
fundamental view on these two possibilities and their differences.

(1) Optimization of the cost function by computing a stochastic gradient
with respect to αjl: The cost function of both, GLVQ (2) and RSLVQ (11)
has the form f(D(ξ, w)) with D(ξ, w) = (d(ξi, wj))i=1,...,N,j=1,...,m which
becomes

f





(

sii − 2
∑

l

αjlsil +
∑

ll′

αjlαjl′sll′

)

i=1,...,N,j=1,...,m



 (27)

for similarities or

f





(

∑

l

αjldil − 1/2 ·
∑

ll′

αjlαjl′dll′

)

i=1,...,N,j=1,...,m



 (28)

for dissimilarities. We can smoothly vary wj in pseudo-Euclidean space
by adapting the coefficients αjl. The latter can be adapted by a standard
gradient technique. A gradient method with respect to αjl is driven by the
term

∂f

∂αjl
=
∑

i

∂f((D(ξ, w))

∂d(ξi, wj)
· (−2sil + 2

∑

l′

αjlsll′) (29)

if similarities are considered or by the term

∂f

∂αjl
=
∑

i

∂f(D(ξ, w))

∂d(ξi, wj)
· (dil −

∑

l′

αjldll′) (30)

for dissimilarities, providing adaptation rules for both cost functions by
means of a gradient descent or ascent. We can, of course, use only one

11

term corresponding to ξi in case of a stochastic gradient technique. In these
rules, only pairwise similarities or dissimilarities of data are required.

As an example, the corresponding adaptation rule of RSLVQ (12) for
dissimilarities, which we will refer to as relational RSLVQ in the following,
yields the update rule, given a data point ξi:

∆αjl ∼

{

−(Py(j|ξi)− P (j|ξi)) · (dil −
∑

l′ αjldll′) if c(wj) = yi
P (j|ξi) · (dil −

∑

l′ αjldll′) if c(wj) 6= yk
(31)

where the probabilities are computed as before based on the dissimilarities
d(ξi, wj) which are expressed via dij .

Note that the parameters αjl are not yet normalized. This can be
achieved in different ways, e.g. by explicit normalization after every adapta-
tion step, or by the inclusion of corresponding barrier functions in the cost
function, which yields additional regularizing terms of the adaptation. We
will use an explicit normalization in the following, i.e. after every adaptation
step, we divide the vector of coefficients by its component-wise sum.

(2) Optimization of the cost function by stochastic gradient techniques
with respect to wj: The gradient of the cost function with respect to wj

yields
∑

i

∂f((D(ξ, w))

∂d(ξi, wj)
·
∂d(ξi, wj)

∂wj
(32)

The dissimilarity d is defined in pseudo-Euclidean space as d(ξi, wj) = (ξ −
wj)

t · Ipq · (ξ − wj) where Ipq is the diagonal matrix with p entries 1 and q
entries −1 as before. Thus, we obtain ∂d(ξi, wj)/∂wj = −2 · Ipq(ξi − wj).
Thus, we obtain the update in a stochastic gradient method, provided one
data point ξi is chosen:

∆wj ∼ −
∂f((d(ξi, wj))i,j)

∂d(ξi, wj)
· Ipq

(

ξi −
∑

l

αjlξl

)

(33)

The idea of the learning rule as proposed in kernel GLVQ [30] is to
decompose this update into the contributions of the coefficients αjl. This is
possible iff the update rule decomposes into a sum of the form

∑

l ∆αjlξl.
In this case, an update of the coefficients which is proportional to the terms
∆αjl of this decomposition exactly mimics the effect of a stochastic gradient
for the prototype wj .

This decomposition, however, is usually not possible: While most com-
ponents of (33) obey this form since they do not refer to components of the
vector ξi, the ingredient Ipq refers to a vectorial operation which depends

12

on the pseudo-Euclidean embedding. Thus, it is in general not possible to
turn this adaptation rule into a rule which can be done implicitly without
explicit reference to the pseudo-Euclidean embedding.

In one very relevant special case, however, it is possible: assume data are
Euclidean, i.e. q = 0. In this case, we can assume without loss of generality
that p equals the dimensionality of the vectors ξi, since components beyond
p do not contribute to the distance measure in the embedding. Thus, (33)
becomes

∆wj ∼
∂f((d(ξi, wj))i,j)

∂d(ξi, wj)
·

(

∑

l

(αjl − δil)ξl

)

(34)

with Kronecker symbol δil. Hence we obtain the update

∆αjl ∼







∂f((d(ξi,wj))i,j)
∂d(ξi,wj)

· αjl if l 6= i

∂f((d(ξi,wj))i,j)
∂d(ξi,wj)

· (αjl − 1) if l = i
(35)

As an example, the update rule of RSLVQ (12) becomes

∆αjl ∼















−(Py(j|ξi)− P (j|ξi))αjl if l 6= i, c(wj) = yi
(Py(j|ξi)− P (j|ξi))(1 − αjl) if l = i, c(wj) = yi
P (j|ξi)αjl if l 6= i, c(wj) 6= yi
−P (j|ξi)(1 − αjl) if l = i, c(wj) 6= yi

(36)

We refer to this update rule as kernel RSLVQ, assumed similarities are used
to compute the probabilities.

Note that this update constitutes a gradient technique only for Euclidean
data. One can nevertheless apply it also for non-Euclidean settings, where
the update step often at least improves the model since the positive parts
of the pseudo-Euclidean space are usually dominant. Note that, again, nor-
malization of the coefficients has to take place via direct normalization or
barrier functions, for example.

(3) How are these update rules related? The most obvious difference
of these two ways to update the coefficients consists in the fact that up-
dates with respect to the coefficients follow a gradient technique whereas
updates with respect to the weights, if done implicitly without explicit ref-
erence to the embedding, constitute a valid gradient method only if data are
Euclidean.

But also in the Euclidean case where both updates follow a gradient
technique, differences of the two update rules are observed. Prototypes
depend linearly on the coefficients. Hence every local optimum of the cost

13

function with respect to the weights corresponds to a local optimum with
respect to the coefficients and vice versa. As a consequence, the solutions
which can be found by these two update rules coincide as regards the entire
set of possible solutions provided the gradient techniques are designed in
such a way that local optima are reached.

However, the single update steps of the two techniques are not identical,
since taking the gradient does not commute with linear operations. Thus,
it is possible that different local optima are reached in a single run even if
the methods are started from the same initial condition.

Do mathematical guarantees such as the generalization ability

transfer to the pseudo-Euclidean space?

We have already observed that one of the adaptation rules as proposed in
the literature constitutes a valid gradient technique iff data are Euclidean.
There are more severe reasons why it constitutes a desired property of the
data to be Euclidean if referring to the theoretical motivation of the method
in case of RSLVQ.

RSLVQ is derived as a likelihood ratio optimization technique. Since
distances in pseudo-Euclidean space can become negative, a Gaussian dis-
tribution based on these distances does no longer constitute a valid prob-
ability distribution. Thus, Euclidean data are required to preserve the
mathematical motivation of RSLVQ schemes as a likelihood optimization
for (dis-)similarities.

GLVQ, in contrast, relies on the idea to optimize the hypothesis mar-
gin. Generalization bounds which depend on this hypothesis margin can be
found which are based on the so-called Rademacher complexity of the func-
tion class induced by prototype based methods. Essentially, wide parts of
the argumentation as given in [37] can be directly transferred to the pseudo-
Euclidean setting (the situation might be more difficult if the rank of the
space is not limited and Krein spaces come into the play.) The article [37]
considers the more general setting where, in addition to adaptive prototypes,
the quadratic form can be learned. Here, we consider the more simple func-
tion associated to GLVQ networks. Thereby, we restrict to the classification
problems incorporating two classes 0 and 1 only, similar to [37].

In our case, the classification is based on the real-valued function

ξ 7→

(

min
wi : c(wi)=0

‖wi − ξ‖2pq − min
wi : c(wi)=1

‖wi − ξ‖2pq

)

(37)

the sign of which determines the output class, and the size of which de-

14

termines the hypothesis margin. This function class is equivalent to the
form

ξ 7→

(

min
wi : c(wi)=0

(

‖wi‖
2
pq − 2〈wi, ξ〉pq

)

− min
wi : c(wi)=1

(

‖wi‖
2
pq − 2〈wi, ξ〉pq

)

)

(38)
It is necessary to estimate the so-called Rademacher complexity of this func-
tion class relying on techniques as introduced e.g. in [1]. Since we do not
refer to specifics of the definition of the Rademacher complexity, rather we
refer to well-known structural results only, we do not introduce a precise
definition at this place. Essentially, the complexity measures the amount of
surprise in LVQ networks by taking the worst case correlation to random
vectors.

As in [37] a structural decomposition can take place: this function can
be decomposed into the linear combination of a composition of a Lipschitz-
continuous function (min) and the function ‖wi‖

2
pq − 2〈wi, ξ〉pq. We can

realize the bias ‖wi‖
2
pq as additional weight if we enlarge every input vector

by a constant component 1. Further, the sign of the components of wi

can be arbitrary, thus the signs in this bilinear form are not relevant and
can be simulated by appropriate weights. Thus, we need to consider a
linear function in the standard Euclidean vector space. As shown in [1] its
Rademacher complexity can be bounded by a term which depends on the
maximum Euclidean length of ξ and wi and the square root of the number
of samples for the evaluation of Rademacher complexity. The Euclidean
lengths ξ and wi can be limited in terms of the a priorly given similarities
or dissimilarities: the vectorial representation of ξ corresponds to a column
of Q|Λ|1/2 with unitary Q and diagonal matrix of eigenvalues Λ. Thus, the
Euclidean length of this vector is limited in terms of the largest eigenvalue
of the similarity matrix S (or Ψ(D)). Since wi is described as a convex
combination, the same holds for wi.

As a consequence, the argumentation of [37] can be transferred imme-
diately to the given setting, i.e. large margin generalization bounds hold
for GLVQ networks also in the pseudo-Euclidean setting. Since only the
form of the classifier is relevant for this argumentation, but not the training
technique itself, the same argumentation also holds for a classifier obtained
using the RSLVQ cost function (11) in pseudo-Euclidean space, and it holds
for both training schemes as introduced above.

15

How to enforce that data are Euclidean?

Albeit large margin generalization bounds transfer to the pseudo-Euclidean
setting, it might be beneficial for the training prescription to transform data
to obtain a purely Euclidean similarity or dissimilarity. How can data be
transferred in such a way? There exist two prominent approaches, see e.g.
[6, 27]:

1. clip: set all negative eigenvalues of the matrix Λ associated to the
similarities to 0, i.e. use only the positive dimensions of the pseudo-
Euclidean embedding. The corresponding matrix is referred to as Λclip.
This preprocessing corresponds to the linear transformation QΛclipQ

t

of the data. The assumption underlying this transformation is that
negative eigenvalues are caused by noise in the data, and the given
matrix should be substituted by the nearest positive semidefinite one.

2. flip: take |Λ| instead of the matrix Λ, i.e. use the standard Euclidean
norm in pseudo-Euclidean space. This corresponds to the linear trans-
form Q|Λ|Qt of the similarity matrix. The motivation behind this pro-
cedure is the assumption that the negative directions contain relevant
information. Hence the simple Euclidean norm is used instead of the
pseudo-Euclidean one.

Since both corrections correspond to linear transformations, their out-of-
sample extension is immediate. It has already been tested in the context of
support vector machines (SVM) in [6] in how fare these preprocessing steps
yield reasonable results, in some cases greatly enhancing the performance.

In summary, when extending LVQ schemes to general similarities or
dissimilarities, we have the choices as described in Tab. 1. These yield to
eight different possible combinations. In addition, we can further preprocess
data into Euclidean form using e.g. clip or flip. Additional preprocessing
steps have been summarized in [6], for example.

As explained above, the different design decision to arrive at LVQ for
(dis-)similarities differ in the following sense:

• The cost functions of RSLVQ (11) and GLVQ (2) obey different prin-
ciples, relevant differences being observable already in the Euclidean
setting [36]. The motivation of RSLVQ as likelihood transfers to the
Euclidean setting only, while large margin bounds of GLVQ can be
transferred to the pseudo-Euclidean case.

16

cost function data representation training technique

GLVQ similarity gradient w.r.t. αjl

RSLVQ dissimilarity gradient w.r.t. wj

Table 1: Different possible choices when applying LVQ schemes for (dis-)
similarity data

• When turning dissimilarities into dissimilarities and backwards, the
identity is reached. When starting at similarities, however, data are
centered using this transformation.

• Training can take place as gradient w.r.t the parameters αjl or the
prototypes wj. The latter constitutes a valid gradient only if data
are Euclidean, while the former follows a gradient also in the pseudo-
Euclidean setting. In the Euclidean setting, the same set of local
optima is valid for both methods, but the numerical update steps can
be different resulting in different local optima in single runs.

We would like to point out that this argumentation is not restricted to
LVQ schemes, rather it transfers to all prototype-based techniques provided
that the model is based on distances of the form D(ξ, w) and training takes
place by an optimization of costs of the form f(D(ξ, w)). This holds also
for the unsupervised prototype based clustering schemes neural gas and self-
organizing maps (in the form as proposed by Heskes) [23, 16] and, indeed, an
extension to kernel or relational approaches is possible [29, 41, 26], whereby
the latter are often realized in form of batch updates which are particu-
larly efficient for unsupervised scenarios due to closed form solutions of the
respective optima [13, 5].

How to interpret prototypes for relational or kernel LVQ schemes?

One of the benefits of LVQ techniques consists in the fact that solutions are
represented by a small number of representative prototypes which constitute
members of the input space. In consequence, prototypes can be inspected
in the same way as data in the vectorial setting. Since the dimensionality
of points ξ is typically high, this inspection is often problem dependent:
images, for example, lend itself to a direct visualization, oscillations can
be addressed via sonification, spectra can be inspected as a graph which
displays frequency versus intensity. Moreover, a low-dimensional projection
of the data and prototypes by means of a nonlinear dimensionality reduction

17

technique offers the possibility to inspect the overall shape of the data set
and classifier independent of the application domain.

Prototypes in relational or kernel settings correspond to positions in
pseudo-Euclidean space which are representative for the classes if measured
according to the given similarity/dissimilarity measure. Thus, prototype in-
spection faces two problems: (i) the pseudo-Euclidean embedding is usually
only implicit, (ii) it is not clear whether dimensions in this embedding carry
any semantic information. Thus, albeit prototypes are represented as linear
combinations of data also in the pseudo-Euclidean setting, it is not clear
whether these linear combinations correspond to a semantic meaning.

One approach which is taken in this context is to approximate a proto-
type by one or several exemplars, i.e. members of the data set, which are
close by [17]. Thereby, the approximation can be improved if sparsity con-
straints for the prototypes are integrated while training. This way, every
prototype is represented by a small number of exemplars which can be in-
spected like data. Another possibility is to visualize data and prototypes
using some nonlinear dimensionality reduction technique. This enables an
investigation of the overall shape of the classifier just as in the standard
vectorial setting. Naturally, both techniques, a representation of prototypes
by few exemplars as well as a projection to low dimensions incorporate er-
rors depending on the dimensionality of the pseudo-Euclidean space and its
deviation from the Euclidean norm.

4 Experiments

We test the various LVQ variants including two novel techniques which arise
from these different combinations: relational RSLVQ trained using dissimi-
larities and gradients w.r.t. αjl and kernel RSLVQ trained based on similari-
ties and gradients w.r.t. wj. In the literature, the corresponding settings for
GLVQ can be found [30, 15]. We compare the methods to the support vector
machine (SVM) and a k-nearest neighbor classifier (k-NN) on a variety of
benchmarks as introduced in [6].

The data sets represent a variety of similarity matrices which are, in
general, non-Euclidean. It is standard to symmetrize the matrices by taking
the average of the matrix and its transposed. Further, the substitution of a
given similarity by its normalized variant constitutes a standard preprocess-
ing step, arriving at diagonal entries 1. Even in symmetrized and normalized
form, the matrices do not necessarily provide a valid kernel. Hence, we also
test the preprocessing steps clip and flip in comparison to a direct applica-

18

tion of the methods for the original data. We also report the signatures of
the data whereby a cutoff at 0.0001 is made to account for numerical errors
of the eigenvalue solver. We also report the number of used prototypes,
which is chosen as a small multiple of the number of classes. Typically,
overfitting does hardly occur in LVQ settings such that the sensitivity of the
result on the number of prototypes is low, provided a sufficient flexibility is
present.

• Amazon47 : This data set consists of 204 books written by four dif-
ferent authors. The similarity is determined as the percentage of cus-
tomers who purchase book j after looking at book i. This matrix
is fairly sparse and mildly non-Euclidean with signature (192, 1, 11).
Class labeling of a book is given by the author. The number of proto-
types which is chosen in all LVQ settings is 94.

• Aural Sonar : This data set consists of 100 wide band solar signals
corresponding to two classes, observations of interest versus clutter.
Similarities are determined based on human perception, averaging over
5 random probands for each signal pair. The signature is (61, 38, 1).
Class labeling is given by the two classes: target of interest versus
clutter. The number of prototypes chosen in LVQ scenarios is 10.

• Face Rec: 945 images of faces of 139 different persons are recorded.
Images are compared using the cosine-distance of integral invariant
signatures based on surface curves of the 3D faces. The signature is
given by (45, 0, 900). The labeling corresponds to the 139 different
persons. The number of prototypes is 139.

• Patrol : 241 samples representing persons in seven different patrol units
are contained in this data set. Similarities are based on responses of
persons in the units about other members of their groups. The sig-
nature is (54, 66, 121). Class labeling corresponds to the seven patrol
units. The number of prototypes is 24.

• Protein: 213 proteins are compared based on evolutionary distances
comprising four different classes according to different globin families.
The signature is (169, 38, 6). Labeling is given by four classes corre-
sponding to globin families. The number of prototypes is 20.

• Voting : Voting contains 435 samples with categorical data compared
by means of the value difference metric. Class labeling into two classes

19

is present. The signature is (16, 1, 418). The number of prototypes is
20.

• Sonatas: The sonatas data set contains complex symbolic data simi-
lar to [24]. It contains dissimilarities between 1,068 sonatas from the
classical period (Beethoven, Mozart and Haydn) and the baroque era
(Scarlatti and Bach). The data are in the MIDI file format, taken from
the online MIDI collection Kunst der Fuge1. Their mutual dissimilar-
ities are measured with the normalized compression distance (NCD),
see [7], which is applied to a a specific preprocessing, which integrates
invariances for music information retrieval, see [24]. The musical pieces
are classified according to their composer. The signature of the data
is (1063, 4, 1). The number of prototypes for LVQ schemes is 5.

• Chromosomes: The Copenhagen chromosomes data set has been in-
troduced in [21] as a benchmark for cytogenetics. 4,200 human chro-
mosomes from 22 classes (the autosomal chromosomes) are given by
grey-valued images. The images can be represented as strings measur-
ing the thickness of the silhouettes of the chromosomes. These strings
are compared using edit distance with insertion/deletion costs 4.5 [25].
The signature is (1951, 2206, 43). The number of prototypes for LVQ
schemes is 21.

Note that the data sets Voting, FaceRec, Sonatas, and Amazon 47 are almost
Euclidean, while all others have a substantial part of negative eigenvalues.

For some of these data sets, results for the SVM and a k-NN classifier
have been reported in [6]. Thereby, data are preprocessed using clip or flip
to guarantee positive definiteness for SVM, if necessary. The latter is used
with the RBF kernel and optimized meta-parameters in [6]. For multi-class
classification, the one versus one scheme has been used.

In comparison, we train kernel and relational RSLVQ networks using the
real data or its clip or flip, respectively.

Results of a 20-fold cross-validation with the same partitioning as pro-
posed in [6] are reported. Prototypes are initialized by means of normal-
ized random coefficients αjl where the prior class label c(wl) determines the
non-zero elements. Meta-parameters are optimized on the data sets using
cross-validation. Further, while training, we guarantee that prototypes are
contained in the convex hull of the data by setting negative coefficients to
zero after every adaptation step and adding a normalization of the vector
αi to 1 after every adaptation step.

1www.kunstderfuge.com

20

k-NN SVM KGLVQ RGLVQ KRSLVQ RRSLVQ

Amayon47 28.54 (0.83) 21.46 (5.74) 22.80 (5.38) 18.17 (5.39) 15.37 (0.36) 22.44 (5.16)
clip 28.78 (0.74) 21.22 (5.49) 21.95 (5.65) 23.78 (7.20) 15.37 (0.41) 25.98 (7.48)
flip 28.90 (0.68) 22.07 (6.25) 23.17 (6.10) 20.85 (4.58) 16.34 (0.42) 22.80 (4.96)

Aural Sonar 14.75 (0.49) 12.25 (7.16) 13.00 (7.70) 13.50 (5.87) 11.50 (0.37) 13.00 (7.50)
clip 17.00 (0.51) 12.00 (5.94) 14.50 (8.30) 13.00 (6.96) 11.25 (0.39) 13.25 (7.12)
flip 17.00 (0.93) 12.25 (6.97) 12.30 (5.50) 13.00 (6.96) 11.75 (0.35) 13.50 (7.63)

Face Rec 7.46 (0.04) 3.73 (1.32) 3.35 (1.29) 3.47 (1.33) 3.78 (0.02) 7.50 (1.49)
clip 7.35 (0.04) 3.84 (1.16) 3.70 (1.35) 3.81 (1.67) 3.84 (0.02) 7.08 (1.62)
flip 7.78 (0.04) 3.89 (1.19) 3.63 (1.16) 3.78 (1.48) 3.60 (0.02) 7.67 (2.21)

Patrol 22.71 (0.33) 15.52 (4.02) 11.67 (4.60) 18.02 (4.65) 17.50 (0.25) 17.71 (4.24)
clip 9.90 (0.16) 13.85 (4.39) 8.96 (3.90) 17.29 (3.45) 17.40 (0.29) 21.77 (7.10)
flip 10.31 (0.16) 12.92 (5.09) 9.74 (4.90) 18.23 (5.10) 19.48 (0.34) 20.94 (4.51)

Protein 51.28 (0.77) 30.93 (6.79) 27.79 (7.60) 28.72 (5.24) 26.98 (0.37) 5.58 (3.49)
clip 25.00 (0.74) 12.56 (5.46) 1.63 (2.10) 12.79 (5.36) 4.88 (0.17) 11.51 (5.03)
flip 7.79 (0.18) 1.98 (2.85) 12.33 (6.10) 3.49 (3.42) 1.40 (0.05) 4.42 (3.77)

Voting 5.00 (0.01) 5.06 (1.84) 6.55 (1.90) 9.14 (2.10) 5.46 (0.04) 11.26 (2.23)
clip 4.83 (0.02) 5.00 (1.84) 6.55 (1.90) 9.37 (2.02) 5.34 (0.04) 11.32 (2.31)
flip 4.66 (0.02) 4.89 (1.78) 6.49 (1.90) 9.14 (2.22) 5.34 (0.03) 11.26 (2.43)

Sonatas 11.52 (0.20) 13.11 (2.82) 39.35 (3.17) 16.11 (3.77) 16.01 (0.11) 21.54 (4.38)
clip 10.49 (0.19) 10.86 (3.74) 37.04 (4.54) 16.20 (3.73) 15.82 (0.17) 23.23 (4.41)
flip 10.58 (0.25) 11.06 (3.68) 37.04 (6.41) 16.29 (3.63) 15.07 (0.12) 21.91 (4.41)

Chromosom 3.93 (0.01) 2.93 (1.07) 5.48 (0.34) 8.31 (1.84) 7.14 (0.02) 38.51 (3.61)
clip 3.81 (0.01) 2.81 (1.14) 4.76 (0.00) 8.50 (1.71) 6.86 (0.02) 36.67 (3.63)
flip 3.79 (0.01) 2.45 (0.98) 4.29 (0.00) 8.38 (1.76) 7.52 (0.01) 34.76 (3.20)

Table 2: Misclassification error of different dissimilarity classifiers for benchmark data as reported in [6]. Standard
deviations are given in parenthesis.

21

The results obtained on these data sets are reported in Tab. 2. For k-NN,
the best result for k ∈ {1, 3, 5} is reported.

Due to its almost Euclidean nature, preprocessing by clip and flip has
hardly an effect for Amazon47, FaceRec, Sonatas, and Voting. For the data
sets Patrol and Protein, flip and clip change the similarity severely, as can
be spotted by the change of the k-NN error. Albeit all other data sets also
display a considerable non-Euclideanity as can be seen by the spectrum,
flip or clip do have a minor effect on these data only, resulting up to 3%
change of the classification accuracy. Note that it depends very much on the
data set and the used technique, which preprocessing yields best results. In
general, SVM can show instabilities for non pdf data because some numeric
schemes used for parameter optimization in SVM built on pdf similarity
matrices. Unless data are Euclidean, where preprocessing using clip or flip
has no effect, it is not clear a priori which technique is best, and it can
happen that the best preprocessing also depends on the different learning
algorithms (as can be seen for the Patrol data).

Interestingly, for all data sets, one or several of the kernel or relational
LVQ techniques display a quality which is at least competitive to (if not bet-
ter than) k-NN and SVM on the data set or an appropriate preprocessing.
There are a few interesting outliers when comparing the different LVQ tech-
niques: relational RSLVQ yields to a classification error for Chromosomes
which is an order of magnitude higher than for the remaining techniques.
This is possibly due to a sensitive choice of the bandwidth σ in this large
data set. Similarly, kernel GLVQ yields more than 50% resp. close to 40%
error for the FaceRec data or Sonatas, respectively, corresponding possibly
to a local optimum in this case with large basin of attraction. Overall, both,
relational GLVQ and kernel RSLVQ yield constantly good classification ac-
curacy.

Computational complexity

Note that the computational complexity of LVQ for similarities or dissimilar-
ities increases as compared to vectorial LVQ schemes: the space complexity
for prototype storage becomes O(N), N being the number of data points,
assuming a fixed number of prototypes m. The time complexity is domi-
nated by a matrix multiplication in every adaptation step to compute the
dissimilarity which is of order O(N2). For SVM, depending on the imple-
mentation, space and time complexity are similar, the number of support
vectors being usually a fraction of the training set, and training having worst
case complexity O(N3) unless speed-ups e.g. via SMO or core techniques are

22

used.
For the largest data set which we investigated (Chromosomes with 4.200

points), training one LVQ network for similarities or dissimilarities took
approximately 15 minutes using a Matlab implementation on a powerful
desktop computer (two six-core Xeon-processors, clocked at 3.5GHz). With
current desktop computers, usually the storage of the distance matrix con-
stitutes the main bottleneck concerning space (with approximately 30.000
data points just fitting into current standard memory of 8 GB) - albeit the
final classifier requires linear space only, the matrix required to represent
the training data is quadratic. Such data sets would require about a day
training time.

Thus, one the limit lies at about 30.000 data points when training the
proposes LVQ techniques with current desktop computers. Similar to ap-
proximation techniques for kernel methods, however, one can use approxi-
mation techniques such as the Nyström method to decrease the complexity
to a linear size training set and training time, sparse approximation on the
α-vectors to limit memory consumption and simplify the interpretation of
the final prototypes, or by active learning strategies using the margin cri-
terion to speed-up the learning for the online algorithms [12, 34, 35]. This
can extend the size of feasible data sets by one to two orders of magnitude.

5 Discussion

We have discussed different possibilities to extend LVQ classifiers to simi-
larity or dissimilarity data, thereby specifying different ways how to choose
the cost function, how to include the data representation, how to train the
mapping, and its mutual differences. This general treatment covers several
existing approaches in the literature and suggests a couple of new combi-
nations. By relying on pseudo-Euclidean embeddings, we have developed a
general approach how to smoothly adapt prototypes in this setting, result-
ing in a well defined method for most of the techniques. Interestingly, while
generalization bounds can be transferred to the pseudo-Euclidean setting,
a probabilistic interpretation is lost in general. Similarly, gradients with
respect to prototypes result in valid gradient techniques only in Euclidean
settings, gradients with respect to coefficients can always be determined.
We have evaluated the technique in a variety of benchmarks, showing sur-
prisingly good classification results in several settings, albeit the underlying
theory does not necessarily support this specific design choice as the one
with most theoretical guarantees. A more specific investigation in how far

23

non-Euclidean data are present in such situations leading e.g. to possibly
negative dissimilarities as regards prototypes will be the subject of future
work.

Acknowledgement

This work has been supported by the DFG under grants number HA2719/6-
1 and HA2719/7-1 and by the CITEC center of excellence. Further, this
research and development project is funded by the German Federal Min-
istry of Education and Research (BMBF) within the Leading-Edge Cluster
Competition and managed by the Project Management Agency Karlsruhe
(PTKA). The authors are responsible for the contents of this publication.

References

[1] P. L. Bartlett, S. Mendelson. Rademacher and Gaussian Complexities:
Risk Bounds and Structural Results. Journal of Machine Learning
Research, 3:463–4982, 2002.

[2] M. Biehl, A. Ghosh, and B. Hammer. Dynamics and generalization abil-
ity of LVQ algorithms. Journal of Machine Learning Research, 8:323–
360, 2007.

[3] M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors. Simi-
larity Based Clustering. Springer Lecture Notes Artificial Intelligence
Vol. 5400/2009. Springer, 2009.

[4] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[5] R. Boulet, B. Jouve, F. Rossi, and N. Villa. Batch kernel SOM and
related Laplacian methods for social network analysis. Neurocomputing
71(7-9):1257–1273. 2008.

[6] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Caz-
zanti. Similarity-based classification: Concepts and algorithms. JMLR,
10:747–776, June 2009.

[7] R. Cilibrasi and M. B. Vitanyi. Clustering by compression. IEEE
Transactions on Information Theory 51(4):1523–1545, 2005.

[8] M. Cottrell, B. Hammer, A. Hasenfuss, and T. Villmann. Batch and
median neural gas. Neural Networks, 19:762–771, 2006.

24

[9] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive
processing of data structures. IEEE TNN, 9(5):768–786, 1998.

[10] B. J. Frey and D. Dueck. Clustering by passing messages between data
points. Science, 315:972–976, 2007.

[11] T. Gärtner. Kernels for Structured Data. PhD thesis, Univ. Bonn,
2005.

[12] A. Gisbrecht, B. Mokbel, F.-M. Schleif, X. Zhu, and B. Hammer. Linear
Time Relational Prototype Based Learning. Int. J. Neural Syst, 22(5),
2012.

[13] B. Hammer and A. Hasenfuss. Topographic mapping of large dissimi-
larity datasets. Neural Computation, 22(9):2229–2284, 2010.

[14] B. Hammer, A. Micheli, and A. Sperduti. Universal approximation
capability of cascade correlation for structures. Neural Computation,
17:1109–1159, 2005.

[15] B. Hammer, B. Mokbel, F.-M. Schleif, and X. Zhu. Prototype based
classification of dissimilarity data. IDA, 2011.

[16] T. Heskes. Energy Functions for Self-Organizing Maps. In Oja, Erkki;
and Kaski, Samuel (Eds.), Kohonen Maps, Elsevier, 1999.

[17] D. Hofmann and B. Hammer. Sparse approximations for kernel learning
vector quantization. ESANN, 2013.

[18] P. J. Ingram, M. P. H. Stumpf, and J. Stark. Network motifs: structure
does not determine function. BMC Genomics 7, 108, 2006.

[19] T. Kohonen. Self-Oganizing Maps. Springer, 3rd edition, 2000.

[20] T. Kohonen and P. Somervuo. How to make large self-organizing maps
for nonvectorial data. Neural Networks 15(8-9): 945–952. 2002.

[21] C. Lundsteen, J. Phillip, and E. Granum. Quantitative analysis of 6985
digitized trypsin g-banded human metaphase chromosomes. Clinical
Genetics 18(5):355–370, 1980.

[22] T. Maier, S. Klebel, U. Renner, and M. Kostrzewa. Fast and reliable
maldi-tof ms–based microorganism identification. Nature Methods, 3,
2006.

25

[23] T. Martinetz, S. Berkovich, and K. Schulten. ”Neural-gas” Network
for Vector Quantization and its Application to Time-Series Prediction.
IEEE-Transactions on Neural Networks 4(4):558–569, 1993.

[24] B. Mokbel, A. Hasenfuss, and B. Hammer Graph-Based Representation
of Symbolic Musical Data. GbRPR 42–51, 2009.

[25] M. Neuhaus and H. Bunke. Edit distance based kernel functions for
structural pattern classification. Pattern Recognition 39(10):1852–1863,
2006.

[26] M. Olteanu, N. Villa-Vialaneix, and M. Cottrell. On-line relational
SOM for dissimilarity data. CoRR abs/1212.6316 (2012).

[27] E. Pekalska and R. P. Duin. The Dissimilarity Representation for Pat-
tern Recognition. Foundations and Applications. World Scientific, 2005.

[28] O. Penner, P. Grassberger, and M. Paczuski. Sequence Alignment,
Mutual Information, and Dissimilarity Measures for Constructing Phy-
logenies. PLOS ONE 6(1), 2011.

[29] A. K. Qin and P. N. Suganthan. Kernel neural gas algorithms with
application to cluster analysis. In Proc. of the 17th International Con-
ference on Pattern Recognition, (ICPR ’04), 617–620, 2004.

[30] A. K. Qin and P. N. Suganthan. A novel kernel prototype-based learning
algorithm. In Proc. of the 17th International Conference on Pattern
Recognition (ICPR ’04), 2004.

[31] F. Rossi and N. Villa-Vialaneix. Consistency of functional learning
methods based on derivatives. Pat. Rec. Letters, 32(8):1197–1209, 2011.

[32] A. Sato and K. Yamada. Generalized Learning Vector Quantization.
In NIPS 1995.

[33] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini. Computational capabilities of graph neural networks. IEEE TNN,
20(1):81–102, 2009.

[34] F.-M. Schleif, B. Hammer, and T. Villmann. Margin-based active learn-
ing for LVQ networks. Neurocomputing 70(7-9): 1215–1224, 2007.

[35] F.-M. Schleif, T. Villmann, B. Hammer, and P. Schneider. Efficient
Kernelized Prototype Based Classification. Int. J. Neural Syst. 21(6):
443–457, 2011.

26

[36] P. Schneider, M. Biehl, and B. Hammer. Distance learning in discrim-
inative vector quantization. Neural Computation, 21:2942–2969, 2009.

[37] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in
learning vector quantization. Neural Computation, 21:3532–3561, 2009.

[38] S. Seo and K. Obermayer. Soft learning vector quantization. Neural
Comput., 15:1589–1604, 2003.

[39] L. van der Maaten and G. Hinton. Visualizing high-dimensional data
using t-SNE. JMLR, 9:2579–2605, 2008.

[40] A. Vellido, J.D. Martin-Guerroro, and P. Lisboa. Making machine
learning models interpretable. In ESANN’12. 2012.

[41] Hujun Yin: On the equivalence between kernel self-organising maps
and self-organising mixture density networks. Neural Networks 19(6-7):
780-784 (2006).

27

