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ARTICLE INFO ABSTRACT

Article history, Most existing semi-supervised learning (SSL) algorithimsus on vectorial
data given in Euclidean space or representations by mearadidfkernel ma-
trices. A lot of real life data, especially in bioinformagidomain, are non—

Semi-Supervised Learning metric given in the form of (dis-)similarities. Those data aot widely ad-
Proximity Data dressed in the SSL domain. In this paper we extend a protdigped classifier
Dissimilarity Data for dissimilarity data to semi-supervised tasks emplogiogformal prediction

Conformal Prediction

Generalized Learning Vector Quantization providing point-wise confidence measures about the cleasdn. By means

of the confidence values a so-called 'secure region’ of weitabdata can be
identified and further used to improve the trained model haselabeled data
while adapting the model complexity to 'cover’ a so-calletsecure region’ of
labeled data. This way an intuitive semi-supervised nul#tss classification
scheme results which can (i) directly deal with arbitrargnayetric dissimilar-
ity matrices, (ii) which dfers intuitive classification by means of sparse pro-
totypical class representatives, and (iii) which adaptsleh@aomplexity sup-
ported by a confidence measure. In the experiments we sheftidttiveness
on simulated dissimilarity data and compare it with stdtéhe-art methods on
benchmarks from SSL domain and real-life non-vectorish dats.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction beled training data, but to also incorporate structuralstatis-
tical information in additionally available unlabeled daA va-

Big data is getting more and more challenging regarding storriety of SSL methods has been published (Chapelle/et alg;200
age and analysis requirements. Due to the sheer amount |ghu and Goldberg, 2009). Most of them focus on vectorial data
data, only few of these data are completely labeled, and legiven in Euclidean space or representations by means of posi
beling of all data is indeed very costly and time consumingtive semi-definite (psd) kernel matrices.

Accordingly many data sets, in life sciences for example, ar A lot of real world data, like biological sequences, are non-

only partially labeled. Techniques of data mining, visoali . . ) ) :
. . . vectorial, often non-Euclidean and given in the form of pair
tion, and machine learning are necessary to help people-to an

alyze those data. Especially semi-supervised leaming}(SS wise proximities, which are based on pairwise comparisons
y : P y b .of objects providing some score-value of the (dis-)sintyjar

techniques are widely used for this setting. The idea of semi . -
i L of the objects. Those data are also referred tpmagimity
supervised learning is to learn the model not only from the la ; : X
or relational data An underlying vector space is not nec-

essarily available and there is no guarantee of metric eondi
c " . tions. Examples of those proximity or (dis-)similarity mea
**Corresponding author s . .
o-mail xzhuGtechfak . uni-bielefeld.de (Xibin Zhu) sures are edit distance based measures for st_rln_gs or images
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Waterman, FASTA, or blast algorithm (Gusfield, 1997). strategy inl(Song et al., 2011) and employing sparse Newton-

Methods based on similarity data with partial label informa Optimization(Gieseke et al., 2012). Another recently fafted
tion, where the similarities are defined on a metric spaceisas Multi-class boosting technique in_(Tanha €t al.. 2014)ointr
cussed in (Pekalska and DUin, 2005), canfbeatively handled duces a cost function based on empirical error of labelea dat
by semi-supervised extensions of kernel methods or other rénd similarity between labeled and unlabeled data. However
cently proposed, féective strategies (Subramanya and Bilmes,t0 solve the cost function as a convex problem the employed
2011;[Tanha et all, 2014). However, in case of non-metri€imilarity metric has to be a valid kernel, i.e. positive $em
(dis-)similarity data without an explicit underlying vectrep- ~ definite. Moreover, probabilistic models for semi-supsed
resentation and without requesting a metric space only fedgarning based on nearest neighbor classifiers have been pro
methods have been proposed so far in the literature of SSRosed recently (Ghosh, 2012) which allow multi-class lesyn
(Rajadell et al.| 2011; Trosset el dl., 2008), and kerneh-tec Some of these approaches are transductive llike (Ghosh) 2012
niques can be applied using some costly, potentially degene and out of sample extensions are not naturally availablg-lim

ing, transformations on the proximity data orlly (Pekalskalle ~ ing the applicability of the approaches for novel data incpra
2004). tice. A more theoretical analysis of SSL concepts was récent
First, we take a glance at SSL methods. One way to categ(g-iven in (Singh et al., 2008), discussing theoretical prope

rize SSL methods is to divide the field into generative quels.of semi-supervised learning and cases where SSL signifcant

low-density separation methods, and graph-based teodamiqu!mprqves the model compared to standard supervised legrnin
typically used for a classification objective. A recentautuc- ignoring unlabeled data.

tion to SSL is given inl(Zhu and Goldbétg, 2009). In genera- In contrast with the black box property of SVM and
tive models, the most basic technique is giversbif-training ~ its semi-supervised variants,  prototype-based meth-
A classifier is first trained on the labeled instances andds th 0ds enjoy a wide popularity in various application do-
applied to unlabeled instances. Usually, some subset sétho mains _ (Grbovic and Vucetic, |_2013;l_Ortizefal., _2013;
newly labeled instances are then used together with thé origOrtiz-Bayliss etal., [ 2012; | Bacciu and Sterita,|2009;
nal labeled data, to retrain the model. The major advantages Lee and Cho, 2006) due to their intuitive and simple be-
self-training are its simplicity and the fact that it is a ywpeer ~ havior: they represent their decision in terms of typical
method. It can 'wrap’ the learner without changing its innerrepresentatives (referred to as prototypes) in the inpatesp
workings. In this paper we adopt this approach. and classification is based on the distance of data to these

In (Suzuki et al., 2007) a more advanced approach was pr(;)_rototypfas. Prptotypes can be directly inspectgd by domain
posed. It employs expectation maximization (EM) to estenat eXperts in the f'el.d n the same way as data points. Popular
parameters also on unsupervised data within a semi-sseervi SUPErvised techniques include standard learning vectan-qu
learning problem. In graph-based methods, the nodes opdmgrat'zat'on (LVQ) and extensions to more powerful settingshsuc

represent labeled and unlabeled data, while some weigats Vo variants based on cost functions such as generalized LVQ
assigned to its edges, which represent the similaritiesvof t (GL\{Q) or_robust soft LVQ (RSLV,Q) (Sato and Yamada,
1995; | Seo and Obermayer, 2003), just to name a few. A

nodes. Now one may assume that similar points share cori | lish h i .
mon labels, which can be propagated according to some heuricently published prototype-based method extends thigyabi

tics as shown in[ (Zhu and Goldbkfg, 2009). In this way |a_of GLVQ such that it can Qirectly d_eal with dissimilarity dgt
bels are propagated from labeled data through the unlabeléyammeret all. 2013), which we will use for semi-supervised
data region. [DOferent variations of this principle have been problems.
proposed, recently also for prototype based learning nistho  In this paper we adopt the self-training approach with the
(Cruz-Barbosa and Vellida, 2010; Amis and Carpenter, 2010prototype-based classifier proposed lin_(Hammerlet al., 2013
and on large scale problems (Mantrach et al., 2011). for semi-supervised tasks employing the conformal préatict

In low-density separation methods, probably the most popt€chnique [(Vovk etal., 2005; Shafer and Vovk, 2008), which
ular semi-supervised learer is transductive Support Vec- provides a confidence measure of the _classmcation. Usiag th
tor Machine(TSVM) or variants thereof as the recently pro- confidence values a so-callsécure regiorof unlabeled data
posed S4VMI(Li and Zhol, 20111). The semi-supervised SvMEan be identified during self-training and used in the reing.
(S3VM) aims at approaching one optimal low-density Separa]'hls can potentiaiily enhance the pe.rfo-rmanc.e of the trginin
tor employing unlabeled data, where8afe S3VM (S4VM) gnd atthe same time conformal prgdiction estimates a $edcal
tries to exploit multiple candidate low-density separater  InSecure regiorf labeled data helping to adapt the model com-
multaneously to reduce the risk of identifying a poor sepaP/eXity:
rator with unlabeled data. Besides, multi-kernel appreach  This paper is organized as follows. First we give a short re-
have been recently analyzed for S3VM to incorporate adview of the prototype-based technique for dissimilarigrtgng
ditional meta-knowledge in the semi-supervised optinidat which we will use in the sequel in sectibh 2. Subsequently, in
(Tian et al.| 20112). While most of these methods are defined fosectior B, we briefly introduce the concept of conformal red
two-class problems, employing e.g. one-vs-rest wrappars f tion. Thereafter we show how to combine both techniques in
the multi-class case, native multi-class semi-supenvisath-  the self-training approach for semi-supervised learnimgeic-
ing are analyzed less intensively. A multi-class S3VM appfo  tion[4. Then we show thefiectiveness of our technique on
was proposed in_(Xu and Schuurmeéns, 2005), using a boostirgimulated data, compare it to state-of-the-art methodsSin S



benchmarks, and show results for biomedical dissimilatitia
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For dissimilarity data classification, the key assumptmtoi

in sectior[ 5. Finally we summarize our results and discuss paestrict prototype positions to linear combinations ofdatints

tential extensions.

2. Prototype-based relational learning

The basic idea of LVQ is to model data distribution(s) by
positioning prototypes in the data space as accurately ss-po
ble. Assume data are given as vectorse RY, i = 1,...,N
with labell; € L = {1,...,L}. LVQ is characterized byn
prototypesw; € RY in the same space with priorly defined la-
belsc(w;) € L. Besides classic heuristically motivated meth-

ods, one of the well-known cost function based learning vec

tor quantization techniques is Generalized LVQ (GLVQ) from
(Sato and Yamada, 1995).

Training of GLVQ aims at finding the positions of the proto-
types while also taking the generalization ability into @aeat,
using the cost function

d(xi, w*(xi)) — d(x;, w™(x;))
d(xi, w*(xi)) + d(xi, w~(xi))

N
Ecvg= ) @ ( (1)
i-1

wherew*(x;) is the closest prototype with the same labekas
andw~(x;) is the closest prototype with aftirent label thaw;.
d(-,-) is the squared Euclidean distanek.is a monotonically
increasing function, e.gb(x) = (1+exp(=x))~*. GLVQ tries to
minimize the cost functior {1) by means of a stochastic gradi
ent descent, leading to Hebbian learning rules of protatyipe
the closest prototype with the same label is attracteg while
the one with diferent label is pushed away froxp Classifi-
cation takes place by a so-called “winner takes all” priteip
X = ¢(wj) whered(x, wj) is minimum, i.e. a new data point is
labeled by the closest prototype.

GLVQ models have excellent generalization ability
(Hammer et al.,| 2005; Biehl etlal., 2006), however,

severely depend on the underlying metric, which is usually

chosen as Euclidean metric.

warping for time series, or alignment for symbolic strings
(Gusfield, 1997), etc., it can not be applied. Recent rekear
has extended GLVQ to directly deal with dissimilarity data
(Hammer et al!, 2013), which we will discuss in the following
Letv; € V be a set of objects, defined in some data spac

with [V] = N. We assume, there exists a dissimilarity mea-

sure such thab € RN*N is a dissimilarity matrix measuring
the pairwise dissimilaritie®;; = d(vi,v;) between all pairs
(vi,vj) € V x V. Any reasonable (possibly non-metric) dis-
tance measure is §icient. Additionally, we assume zero di-
agonald(v;, vi) = 0 for all i and symmetryd(vi, v;) = d(vj, vi)
for all {i, j}. Thereby,\y is represented implicitly by a vector
of known dissimilarities with respect to al} € V. A training
set is given where data poinj is labeled byl; € L. As de-
tailed in {Pekalska and Duih, 2005), dissimilarity data e&n

ways be embedded in pseudo-euclidean space in such a w

thatd(vi, v;) is induced by a symmetric (but possibly not posi-
tive semi-definite) bilinear form.

they

Thus, if data are inherently
non-Euclidean, for example given in a form of a dedicated
non-Euclidean dissimilarity measures such as dynamic time

of the form

Wj = Z?’jivi with Z)’ji =1 (2
i i
in the pseudo-Euclidean space. Then dissimilarities betwe

data points and prototypes can be computed implicitly by
means of

®3)

wherey; = (yjs, . .., yjn) refers to the vector of cdicients de-
scribing prototypev;.

Thus, the cost function of GLVQ@1) can be transferred to
the relational setting. The corresponding cost functiofRef
lational Generalized Learning Vector QuantizatigRGLVQ)
becomes:

4
where the closest correct and wrong prototypes are refésred
w* andw~, respectively, corresponding to the ddentsy*
andy~, respectively. A simple stochastic gradient descent leads
to adaptation rules for the cfiientsy™ andy~ in RGLVQ:
componenk of these vectors is adapted as

a([Dy*li - 3 - (»")'Dy")

1
d(vi,wj) = [D-y]]i = 5 %Dy

S ([D7+]i -3-()'Dy" =Dy li+3-(y)Dy
RN = £\ [Dy*) - 1 - ()Dy* +[Dy i - 5 - ()Dy~

Ay — @' (u(vi)) - (Vi) - v
k
a(1Dy1i- - (DY
wi -ty 7 00Y)
Yk
with
N d(vi,w) —d(vi,w?)
HV) = W) T A o)
o 2-d(vi,w")
)= QW) + dvi w2
I 2-d(vi,w")
V)= QW) + dvi w2
“The partial derivative yieldg%%m = k=2 dicyji. Af-

ter every adaptation step, normalization takes place tragtee

ivii = 1. In this way, a learning algorithm which adapts pro-
totypes in a supervised manner is given for general disaiityil
data, whereby prototypes are implicitly embedded in pseudo
Euclidean space.

The prototypes are initialized as random vectors corregpon
ing to random valueg;; which sum to one. Itis possible to take
class information into account by setting |l to zero which do
not correspond to the class of the prototype. Out-of-sample
tension of the classification to new data is possible bas¢deon
following observation: For a novel data powtcharacterized
by its pairwise dissimilaritie®(v) to the data used for training,
Epye dissimilarity ofv to a prototypey; is

1
d(v.wj) = D(v)' - ¥ — > -7, Dy, (5)



i.e. the data point is assigned to the label of the closesbpro Algorithm 1 Conformal Prediction (CP)

type. More details about the generalization ability ca &ls 1: function cp(D, V-1, €)
found in (Hammer et al., 2013). 2. foralll eLdo
« 3: Zn+1 = (VNs, 1)
4: fori=1,..., N+ 1do
e 5: D = {z,..., Zn41 )\ (Zi}
2.1. Limitations 6 o = AD;,z) > non conformity ofz; againstD;
RGLVQ models work very fectively as shown in ; elnd for li=L...N+1alzal, )
Pny1 = N —

(Hammer et al., 2013), but they have two major limitations. 92 end for
They are crisp classifiers, where the classification fungti@-  10:  retumn T = {I: p},, > ¢}
dicts only the class label but without any additional infation ~ 11: end function
about the confidence of the prediction. Especially in theedii-
ence some kind of reliability measure, similar to statatjo- . - :
e : . 3.1. Computation of prediction region

or g-values would be beneficial. Only few attempts exist to give o )
reliability estimates for these methods (see e.g. (Caadglal., To compute the conformal prediction regidri, a non-
1999] de Stefano etldl., 2000)). The second drawback istthat t Conformity measurés fixed A(D, 2). It is used to calculate a
complexity of the model in terms of the number of prototypesn©n-conformity valuer that estimates how an observatiofits
needs to be specified a priori. to given representative dafa={zs, ..., v}, we will give an ex-

In this contribution, we propose to use conformal predictio 2@MPl€ in sectio 3.111. In theory, any measure could be used,
to enhance classification results with a level of confideand, ~Providing a nontrivial result for suitable choices only.véin a

to automatically grow a model with suitable model complex-"on-conformity measuré, significance levet, examples,

ity. Reliability, sometimes also referred to as confidertmss -+ -+ 2N, Objectvn.1 and a possible labé]it is decided whether
been the subject of a theory callednformal predictioras in- | 1S contained im(z, ..., 2y, Vn.1) according to algorithril1.
troduced in |(Proedrou etial., 2002; Vovk et al., 2005). In the

next _se_ction we will briefly introduce the concept of confatm  However, this method would entail high computational costs
prediction. especially for large data set, because this procedure Hae to
done for all leave-one-out multi-sets for each of the tegtatb
with all possible labelsVy.1,1). To get rid of this problem,
some extensions of conformal prediction have been puldishe

Conformal prediction is a statistical method assessing ea i.e. Inductive Conformal PredictiolCP) (Papadopoulos etlal.,

classification decision by providing two measuresedibility ~2002; LVovk,| 20128) andCross Conformal Predicti€CP)
and confidence Thereby, this technique can be accompanied vk, 2012b).  Inductive conformal prediction d'V'Iqu the
by a formal stability analysis as provided in (Vovk et al.0sp training data into two subsetproper training setandcalibra-

For more details see (Shafer and Viavk, 2008) which is a recer“on set The model is trained on the proper training setand then
tutorial on the topic ) ' used to calculate the non-conformity values of the calibrat

We follow the general approach of conformal prediction asSet. For new data points, classification takes place onlgdas

reviewed in [(Vovk et dl.._2005; Shafer and VbVk, 2008). De-" the non-conformity of the calibration set. As pointed out
note the labeled trainihg dalﬁ - (i) € Z - VxL by (Vovk,20125) the size of the calibration set should be rea
- Is 1 - .

Furthermore lety.; be a new data point with unknown la- sonably large to cover the data statistic. Although ICP imco

bel Insa, 6. Zns1 1= (VnesIns1). FOF given training data putationally more fficient, since the training process only has
to be done once, it is predictively lesieient in comparison

€, the conformal predictiorcomputes an (% €)-prediction re- to the original confo_rr_nal prediction, in Whi(.:h th_e trainisgt
gioNT(z1,. .., 2, Vns1) € LL consisting of a number of possible serves as proper training set and also as calibration s@on
label assignments. The applied method ensures that if tiae dag“S problem anoth(_ar approqch, cross-con_formal pr.eah_ct.tas
z areexchangeab[ﬂathen een proposed,. vv_hlch con_wblnes cross-vah(_jathn with itideic
conformal prediction. During the cross-validation pracésy
P(Ins1 € T9(Za, . . ., Zn, Viaa)) < € (6) taking one fold as calibration set and the remaining folds as
proper training set) the data statistic of the whole trajreat is
holds asymptotically foN — oo for each distribution ofZ.. One  accumulatively considered, finally the non-conformity etk
says that the predictor msymptotically valid It is important  calibration is merged to classify new data, see (Vovk, 2012b
to mention, that the probability is unconditional, suchttiia for more details.
we repeat the process of drawing samplgs, and generating In this work we focus on semi-supervised problems, hence
I'* a number ofn times we will find with respect to statistical the size of the training set (i.e. labeled data) is usualtyarge
fluctuations that in less than n cases the real labk|,; is not  such that we can not use ICP or CCP for our purpose. We de-
under the predicted labels bf. cided to modify the original conformal prediction in dfeirent
way: we do not match the model exactly against each data set
D; but instead use the whole training data ( i@, excluding

Lexchangeabilitys a weaker condition than data being i.i.d. which is readily ZN+_1)- In this way Ieam_ing must be performed Or_]ly onc@n
applicable to the online set ting as well, for example (Vovkle[2005) This procedure is motivated by two facts: (1) since we intend

3. Conformal prediction




to use prototype-based method to train the model, the pasiti
of prototypes depend on the whole data distribution andrare i
general not widely fiected by a single data point, (2) the in-
formation loss will be small if the number of training data is
reasonably large, so that addindut leaving outzy 1 will not

affect the learning results. Before we go into more details Bbou | yer confide
the proposed method, we will first discuss a key point of con-

formal prediction, the non-conformity measure.

3.1.1. Non-Conformity Measure

As explained above, the non-conformity measi &, z)
should evaluate whether a test exangiliés representative data
D.

use any real valued functidnbut maybe with negative impact
on the prediction ficiency.

For givenz = (x,1) and a trained relational GLVQ model, we
choose as non-conformity measure

o = d*(x)
d()

(7)

with d*(x) being the distance betwegrand the closest proto-
type labeled, andd~(x) being the distance betweerand the
closest prototype labeledftérently tharl where distances are
computed according to Eq[](3). We expect that vakigare
small for dataz for which the prediction has high confidence,
but it is large if the label does not comply with data.

3.2. Confidence and credibility

The prediction regiol©(zy, . . ., zx, Vn+1) Stands in the cen-
ter of conformal prediction. For a given error raté contains
the possible labels df. But how can we use it for prediction?

Suppose we use a meaningful non-conformity meagyre
e.g. eq. [(I7). If the value is approaching 0, a conformal pre-
diction with almost no errors is required, which can only be
satisfied if the prediction region contains all possibleslab If

It is the part of the method that can incorporate detailec
knowledge about the data distribution. Nevertheless ome ca

® Klasze 1
¥ Klasse 2

- lower confidence
lower credibility
L ]

1.5

nce

lity

higher credibi
N
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higher credibility

higher confidence
lower credibility

-0.5
0.5

Fig. 1: An example about confidence and credibility

predictor outputs the labéwhich describes the prediction re-
gion for such choices, i.e.T* = {l}, and the classification is
accompanied by the two measures

1-¢€ =1- pl
— pllst

confidence cf; :

(8)
)

Confidencesays something about being sure that the second
best label and all worse ones are wro@gedibility says some-
thing about to be sure that the best label is right respdytiliat

the data pointis typical and not an outlier. An example isxgho

in Figure[1: the data consist of two well-separated clustene
data points around the centers (e.g. in the dashed circes) h
higher credibility and higher confidence than the data &arth
from the centers. The data points that are a bit farther from
the centers but not outliers (e.g. in the dashed ellipses ha
higher credibility but lower confidence (because they asrere

to the other cluster than the data around the centers). éturth
more there are two types of outliers: (i) the data points are f

i
€

credibility : cr; :

we raisee we allow errors to occur and as a benefit the conaway from the centers but nearer to the other cluster thar oth

formal prediction algorithm excludes unlikely labels frarar
prediction region, increasing its information content.dktail
thosel are discarded for which thg-value is less or equal
Hence only a fewg; are as non conformal &1 = (Vn+1, 1)
This is a strong indicator thal,; does not belong to the data
distributionZ and sol does not seem to be the right label. If
one further raises only thosd remain in the conformal region
that can produce a highi-value meaning that the correspond-
ing zn.41 IS rated as very typical ba.

data points in the same cluster, so they have lower cretibili
and lower confidence. (ii) the data points are far away froen th
centers and even farther away from the other cluster thasr oth
data points in the same cluster, so they have lower cretibili
and higher confidence.

The non-conformity measure has a direct impact on fhie e
ciency of the prediction region. A good, informative measur
will exclude wrong labels for small error rates and will i&je
typical data only for large error rates, meaning t@% eil is

So one can trade error rate against information content. Thigrge for typical datev;. That means, that a good measure can

most useful prediction is those containing exactly one llabe
Therefore, given an input; two error rates are of particular
interest,e] being the smallest and e, being the largest so
that|l“(D, vi)| = 1. g, is the p-value of the best and, is the

give useful information already for small error r&l;eand on
the other hand one would have to face up a high average error
rateei2 to exclude the right label from the prediction region.

We would like to point out that the concept of conformal pre-

p-value of the second best label. Thus, typically, a conférmadiction permits pointwise measures of confidence which ghan

2Anymeasurable function oAt x Z taking values in the extended real line
is a non conformity measure.

if the training data is adapted, also if the decision bouiedae-
main the same. This means, that similar as in classicattati
more densely populated training regions permit a bettefi-con
dence in a decision. Due to the definition of conformal predic
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Algorithm 2 Self training the largestp-value of this item (eq.[{9)) (line 25-26) (for more
1: Tiap:= labeled dataT e = Unlabeled data detail see sectidn 3.2).
2: repeat
3: Train modelf based o5, using supervised learning o
4: Apply f t0 Tyniab Data used for self-training
5: remove a subse& from Tynjapand add(x, f(X))|x € S} to Tjap

In oder to identify unlabeled items with high confidence pre-
dictions we define a measuce as the product of confidence

. - . . . . . and credibility values: For a given data poifte Tyniap,
tion, this is automatically achieved also in online scevsari y g POWE T uniab

cG :=cfi-cr (20)

4. Semi-supervised conformal relational GLV
P Q A high cc-value of a unlabeled item indicates that with high

RGLVQ opens a way to directly deal with dissimilarity data. Probability its predicted label (that with the highgsvalue) is
As mentioned in section 2.1 it has two major limitations: (i) the true underlying label. For self-training the unlabetieda
It is a crisp classifier without any additional informatiopoaut ~ With predicted labels of high probability can be taken irtte t
the confidence of the prediction and (ii) the number of proto-n€xt retraining. The region which consists of these untzdel
types has to be defined in advance. In the supervised case, thétems is referred to assecure regioh(denoted asSR). To
problems have been already addressed by (Schleif et a#) 201identify SR we take a fraction grc) of the topcc-values of
in which the concept of inductive conformal prediction igein  the unlabeled d
grated into a sparse prototype-based classifier for dikesiityi
learning problems resulting a sparse prototypical reptasien ~ Adaptation of model complexity
of data. In this work we focus on semi-supervised case and On the other hand we also collect a set of points of the “la-
by extending our previous work (Zhu et al., 2013) we proposdeled” data (i.e. original labeled items and the items wighh
a prototype-based conformal classifier with self-adaptatif ~ cc-values labeled by previous iterations) with low credtigili
model complexity based on the data with high confidence anénd confidence values, which builds a so-calledecure re-
high credibility values provided by conformal prediction. gion' (ZSR) of the training data,

First, we denotd 4, as labeled data arnf,nap as unlabeled
data. Generally, in semi-supervised learning unlabel¢al ale
used to improve the trained model based on labeled data in A low confidence value is given if the confidence vatufe
some way. Self-training (Zhu and Goldberg, 2009) is a very or the credibilitycr; below a user defined threshajdor &5,
simple approach, which takes iteratively a part of the vellab  respectively. Defined values fgi or ¢» can be derived from
data with predicted labels as new training data into thei®tr  the quantiles of confidenaedibilty values as observed in the
ing process to optimize the model, as shown in Algorifim 2.gata.

After the first training of modef on labeled data, the modél The 7SR will be represented by a new prototype as the me-
is then used to predict the labels of unlabeled data. A subset dian of 7SR. This step automatically adapts the complexity of
of the unlabeled data together with their predicted labelsa-  the model, i.e. the number of prototypes. In the next reimgin
lected and added to the labeled data, which builds a newrlargenhis new prototype will be also trained on the new trainintada
set of labeled data. The modglis retrained on the new un- During the self-training process the training 3g4, is itera-
labeled data, and the procedure is repeated. As pointedyout kively augmented by adding the secure region of the unlabele
(Zhu and Goldberg. 2009), the key assumption of self-tr@ni dataSR to itself while the unlabeled dafBynap is shrunk by

is that the predictions, at least the high confidence oned,tt®  discarding the secure region. The performance of the retrai
be correctS should consist of the unlabeled data with the mosting is evaluated based on the original labeled data only. The
confident predictions. method terminates if the improvement of the performancefs n

In this work we combine conformal prediction with self- significant (less than 1%) after a certain number of iteratio
training to find the most confident unlabeled data (see Algofwinayir) or the maximal number of iterations are reached
rithm[4). We first train the model on labeled dafa.) using  (max) or the insecure regionZ(SR) is too small or the unla-
RGLVQ, based on the model we proceed with the conformapeled seflynap is empty, i.e. all unlabeled data have been con-
prediction step (line 20-26): FdFia, and Tunian, We compute  sidered in the retraining. The proposed method is refened t

non-conformity valuesa) according to[(I7) (line 21-22). Based Secure Semi-Supervised Conformal RGI(83-C-RGLVQ).
on these non-conformity valuespavalue is estimated for each

possible label and each unlabeled point ffogpap (line 23-24).
For classification using the conformal classifier, the |aifed
unlabeled item will be finally predicted as the label with the

largestp-value. This refers to the label set provided by the con- e evaluate S3-C-RGLVQ on a large range of tasks. First,
formal predictor which contains only one label. More comple we demonstrate its performance for two artificial data sets:
schemes, by analyzing for example label sets with more than

one label would be possible as well, but are not further con-

sidered here. The confidence valad ) is given as one minus 3prc is customizable and in our experiments we et = 5% which is a

the second largegi-value (eq. [(B)) and the credibilityci) is  good compromise between learning performance iciency.

ISR ={vieTigp:cfi<ivern <bH). (12)

5. Experiments




Algorithm 3 secure semi-supervised conformal RGLVQ

1: init: W := randomly initialized Whey 1= 0, Whest:= W, ISR :=0; SR := 0 > W: randomly initialized prototype&ihes: NEW prototype
chosen from insecure regidhes: : best prototype identified by retraining process

2: Tiap ;= labeled data; Tunab:= unlabeled data
3: improve= 1% > threshold of improvement: default 1%
4: EvalSet= Ty > Evaluation set, i.e. labeled data
5. itr =0 > iteration counter
6: Cthpest= 0 > counter for best result
7: max, = 100 > maximal total iterations
8: WiNmayir = 10 > maximal iterations for a result as winner
9: aCGyest=0
10: repeat > self-training process
11 W = W Whew > see description around ef. {11)
12: Tiap := Tiap Y SR, Tuplab := Tuniab\SR o o
13: W :=train Tj5 by RGLVQ givenW > retraining with given prototypes
14: acc := evaluation ofwW on EvalS et
15: if acc— acGest> improve then
16: Whest= W, 8CGest= aCG Clpest= 0
17 else
18: Ctr\)est: Ctr\)est‘i- 1
19: end if
20: > conformal prediction step
21: A, = {ai, Vi € Tiap} > a-values ofT\, w.r.t. W: eq. [1)
22: AﬁLrumab = {a Vi € Tuniap VI € L} > a-values ofT 4 for all possible labels w.r.\W: eq. [7)
23: PTIab = {pi, Vi € Tian} > p-values ofT |y
24: Tumab = {p,,Vl € Tunian Y1 € L} > p-values ofTnap for all possible labels based @y, andAﬁ%unlab
25: CFTIab = {Cf Vi e Tiab}; CRTIab {cri, Yie Tab};
26: CFra = (€, Vi € Tunian}; CRr i= {Ci, Vi € Tynian); > confidencgeredibility of Tiqy/Tunan by means oPTIab/PT - €0 ®)[9)
27:  generated SR of Ty, based orCFy,, andCRy,, >eq. [11)
28: generateSR of Tynap based oiCFy,, andCRy,,.. > eg. [10) andorc = 5%

29: generatdhe,, from SR

30: itr =itr +1

31: until |ZSR| < 1% |Tunianl OF itr = Mady Or Cthpest = WiNmaxitr OF Tuniab = @
32: return Whesg

checkerboard data and banana-shaped data, with known vegion of labeled data can be identified. To 'cover’ the insecur
tor representation to show the ability of dealing with lyi  region a new prototype (marked by red cross) is added there-
labeled data, especially non i.i.d labeled data. Then we-coninto. Moreover, there are some unlabeled data misclassified
pare S3-C-RGLVQ with state-of-the-art semi-superviseSV  CP, which will be taken into the current retraining procddse
on SSL binary-class benchmarks. For vectorial data the digeason thereof is that due to the smaller number of protstype
similarity matricesD are obtained using the squared-Euclidearat the early stage which are not well distributed into thetimul
distance. Additionally, five real life non-vectorial muttiass  modal clusters, a reasonable number of points with relgtive
data sets from the bioinformatics domain are used to compatewer confidencgredibility values (i.e. lowecc-value) exists,
with original RGLVQ (trained only on labeled data). For alte which is a natural consequence, because by chance 50% got the
periments, prototypes are randomly initialized based beled  correct label. By a larger value of the parametaic’ some of
data and one prototype per class. these points can be considered in the next training. In #Ee c
those points can also be considered as outliers. Due todhe fa
Artificial data sets: The checkerboard data set consists ofihat the prototype-based method is very stable againsemstl
two classes with 1200 data points, in two dimensions an? 2 j e the positions of prototypes depend on the whole datei-dis
clusters. We randomly select about 3% as labeled data arglition and are not widelyfeected by a single point, the move-
the remaining data as unlabeled data. RGLVQ can learn thesgient of the prototypes is mainly dominated by the correctly
data only if the prototypes are initialized near the centérs c|assified points and the labeled data. As shown in Figurg 2(d
the multi-modal d|Str|bUt|OnS pI’OVIded affgient number of once the a|gor|thm Converges those p0|nts can be Corm{'y
prototypes. TheS3-C-RGLVQ on the other hand automati- signed to their closest prototypes. Fif._2(c) shows also the

cally adapts its model complexity according to the intraghlic  jntermediate result in the 10th iteration with more propey.
scheme, leading to arffective model with minimum initializa-

tion of one prototype per class only. As an example, Figlire 2 Another simulated data set consists of two banana-shaped
shows some intermediate results up to convergence. We radata clouds indicating two classes. Each banana consists of
domly initialized two prototypes only on labeled data. Figgu 300 two dimensional data points, see Figure 3. We randomly
[2(@) shows that after the initial training two prototypes Bx-  select non i.i.d. a small fraction (ca. 5%) of each banana as
cated in the center of the labeled data. Obviously, in thieca labeled data, the remaining as unlabeled data. The dissityil

one prototype per each class is ndfient to model the whole matrix D thereof is obtained by Euclidean distance again. With
data space. In Figufe 2{b) after the conformal predictian pr the same setting for checkerboard data we start with one-prot
cess, the secure region of unlabeled data and the insecure tgpe per class and train the initial model on the labeled data
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Fig. 3:[(a) The data consist of grgbtue labeled data and gray
unlabeled data. Two initial prototypes are trained on ladel
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sists of the unlabeled data marked by stars and the insesure r
gion 7SR contains labeled data rounded by red circles. The
new prototype taken fromSR is marked with a big red cross.
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During the self-training process additional prototypes ee-
ated[(c) the final result of S3-C-RGLVQ

Table 1: Classification accuracy (%std) of UCI Benchmarks
for two classes problems for SSL

Fig. 2:[(a) The data consists of gre¢klue labeled data and gray 4,0-class UCI data

unlabeled data. Two prototypes are trained on labeled data a Gizpetes
marked with squared. _(b) After the initial training, by mean german
of CP the secure regioffR can be found which consists of the haberman
unlabeled data marked by stars, as well as the insecurenregiooting
TSR which contains labeled data marked by red circles. Thevdbc
new prototype taken fromiSR is marked with a big red cross. austrailian

During the self-training process additional prototy@ee

Semi-RLVQ Semi-S\PRA{rbf)
70.1% 2.32 70.3+ 2.1
71.6%1.14 71.0+£1.1
73.30+ 5.02 68.3+ 2.8
89.20+ 0.89 92.6+ 1.6
92.34+ 1.19 93.6+ 1.7
83.22+ 1.51 81.8+1.9
breast-cancer 96.20+ 0.51 955+ 1.0

step—wise createf. (d) the final result until convergence

shown in Fig.[3(d). The number of prototypes increased step-
wise during the retraining process by adding new prototype i
the insecure region, while by means of secure region the un-
labeled data are iteratively considered. Thereby at thetlead
data manifold can be well studied.

UCI two-class data sets:Furthermore, we evaluate the pro-
posed method on flerent widely used benchmarks for semi-
supervised learning from the UCI reposiﬁrcynd compare it
with the best semi-supervised SVM with RBF-kernel taken
from (Liand Zholi 2018 To keep the same experimental set-
ting, we randomly select 100 examples of the data to be used as
labeled examples, and use the remaining data as unlabé#ed da
The experiments are repeated for 12 times and the averdge tes
set accuracy (on the unlabeled data) and standard devaton
reported in Tablé]l. Except voting data, the proposed method
provides comparable results for all remaining data sets.

Real life multi-class data sets:Moreover, we also evaluate
the methods on five real life relational data sets from th&bio
formatics domain, where no direct vector embedding existis a
the data are given as (dis-)similarities.

4httpy/archive.ics.uci.edml/datasets.html

5In this paper the authors made a comprehensive compariswadrediter-
ent semi-supervised SVMs, e.g. TSVM, S3VM, S4SVM, etc. Witkar and
rbf kernels. For our experiments we pick the best result 6keonel among

- The SwissProtdata set consists of, 391 samples of
protein sequences in 10 classes taken as a subset from
the popular SwissProt database of protein sequences
(Boeckmann B, 2003) (release 37). These sequences are
compared using the Smith-Waterman algorithm (Gusfield,
1997) .

- The Copenhagen Chromosomedata constitute a bench-
mark from cytogenetics. 4,200 human chromosomes from
21 classes are represented by grey-valued images. These
are transferred to strings measuring the thickness of their
silhouettes. These strings can be directly compared us-
ing the edit distance based on th&eliences of the num-
bers and insertigdeletion costs 4.5 (Neuhaus and Bunke,
2006).

- TheSonataglata set contains complex symbolic data sim-
ilar to IMokbel et al. |(2009). It is comprised of pairwise
dissimilarities between 1,068 sonatas from the classical
period (by Beethoven, Mozart and Haydn) and the baroque
era (by Scarlatti and Bach). The musical pieces were
given in the MIDI file format, taken from the online MIDI
collectionKunst der Fud@ Their mutual dissimilarities
were measured with the normalized compression distance
(NCD), see [(Cilibrasi and Vitany!, 2005). The musical
pieces are classified according to their composer.

them as reference for each data.

Snttp://www.kunstderfuge.com
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- The Zongker digit dissimilarity data (2000 samples in 10 Table 2: Classification accuracy (%std ) for real life data.
classes) from_(Duin, 2012) is based on deformable tem-

plate matching. The dissimilarity measure was computedData S3-C-RGLVQ RGLVQ
between 2000 handwritten NIST digits in 10 classes, withswissprot 81.06+ 5.53 79.37+ 4.78
200 entries each, as a result of an iterative optimization ofhromosome 78.88 3.28 78.78£ 3.70
the non-linear deformation of the grid (Jain and Zongker Sonatas 77.98+ 3.94 71.99+2.92
1997). zpngker 87.93+ 0.84 86.48+ 1.50
vibrio 98.76+ 0.47 97.40+ 0.84

- The Vibrio data set consists of 1,100 samples of vibrio bac-
teria populations characterized by mass spectra. The full

data set consists of 49 classes of yibrio—sub—species. T"t?ata, which represents the decisions in the form of proto-
mass spectra are preprocessed with a standard workfloges based on the conformal prediction concept and rela-
using the BioTyper software (Maier et al., 2006). The Vib- tiona| prototype-based classifier. It naturally inherite tmer-
rio similarity matrix S has a maximum score of 3. The cor-its from both techniques. Due to a prototypical representa-
responding dissimilarity matrix is obtained@s= 3 - S. tion, unlike many alternative black-box techniques, fifecs

the possibility of a direct inspection of the classifier by hu

q -trhevjr?i dﬁ ta Sceutf ?r:)r:;?::]ui ;yZ'C;Ler;(smeiﬁ O;;?:éig:di?nmans. Further, unlike kernel-based alternatives such ke
ata ch oc P y ' . . GLVQ (Qin and Suganthan, 2004) or relevance vector machine
age analysis, mass spectrometry, and symbolic domaindl. In

dedicated ing st d dissimilari alTipping, 2001), this technique does not require that data a
cases, dedicated preprocessing steps and dissimi ardgun = embeddable into Euclidean space, rather, a general symmet-
for structures are used. The dissimilarity measures arerinh

. : . _ric dissimilarity matrix is sificient. For those alternative tech-

ently npn-Euchdean and cannot be embedded isometriaally 'niques to deal with dissimilarity data, extra preprocegsteps

a Euclidean vector space. ) ) have to be added as described by (Pekalska and Duin, 2005).
We use the same experimental setting as for the UCI dat"ibue to the properties of conformal prediction, instead @ pr

i.e._ we randomly select 100 gxamples as labeled dat‘fi'_the r9|'ding only a predicted label, it also permits to identifyeth
maining as unlabeled data (with 10 repeats), prototypemiare safety of the prediction by means of point-wise measures for

tialized _based on labeled data and one prototype per class. Feonfidence and credibility. Thereby the 'secure’ unlabelath
comparison, we report the results of RGLVQ trained only on

. can be exploited and used to optimize the trained modelgat th
Iabe_led _data to tagkle another prqblem for SSL, i.e. _themiege same time the 'insecure’ training data can be identified &ad a
eration issue as discussed by (Singh et al., 2008; Li and'théordingly the complexity of the model is adapted

2011;/ Zhu and Goldberg, 2009). In order to keep the compar-
isons fair the number of prototypes for each class for RGLVQ \ve demonstrated the quality of the technique offedént

is set to the number of prototypes for each class of the finaks| gata sets. As a results, a powerful semi-superviseg-lear
S3-C-RGLVQ model. The mean classification accuracies arfhg algorithm can be derived, which in most cases achieves

reported in Tablg]2. comparable results to semi-supervised SVM and with direct
In all cases but one, a better classification accuracy Cafhterpretability of the classification in term of the protpes.
be obtained using conformal prediction compared to originajt works especially well for non i.i.d labeled data. Duo to
RGLVQ only based on labeled data without consideration othe multi-class capability of prototype-based method,ait c
additional information about unlabeled data. The chromwso gjrectly deal with multi-class data sets. Furthermore,des
is a perfectly balanced data set, it leads to the fact thanttiel ~ not degenerate the learning performance by incorporating a
model based only on the labeled data is almost perfectlydchi ~ditional information of unlabeled data which is still a cru-
by RGLVQ, so that the potential to improve the model by con-cia| jssue in the semi-supervised learnihg (Singh et 20820
sidering unlabeled information in this case is very limited Liand Zhou! 2011; Zhu and Goldbérg, 2009).
In all cases, the incorporation of information about unlatie
data into the classifier leads to an increased, at least ,equal One central problem of this technique as introduced above
classification accuracy of the resulting model, since th#i-ad has not yet been considered in this letter: we used a global
tionally available information can better be taken intoaott  valueprc to identify the secure region of the training data in ev-
to optimize the class boundaries. Thus, S3-C-RGLVQ constiery iteration. It may cause some uncertainty issues at ftierea
tutes a very promising method to infer a high quality semi-stages of retraining as we have seen in the checkerboardfdata
supervised prototype-based classifier for general difmiityi  the number of prototypes is notffigiently high and the proto-
data sets whichfters point-wise measures for confidence andtypes are not dticiently distributed in the data space. In spite
credibility about the classification. of the fact that this potential issue can be partially soligd
the nature of prototype-based method, i.e. its stabilityiragy
outliers, it should be more seriously studied, e.g. using-a |
6. Conclusions cal valueprc for each iteration to more precisely identify the
high confidence items. Future work will also address the rhode
In this contribution, we have developed afii@ent semi-  sparsity for large scale problem and linear approximatah{
supervised classification technique for general dissiitjla niques as introduced in(Zhu et al., 2012).
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