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Most existing semi-supervised learning (SSL) algorithms focus on vectorial
data given in Euclidean space or representations by means ofvalid kernel ma-
trices. A lot of real life data, especially in bioinformatics domain, are non–
metric given in the form of (dis-)similarities. Those data are not widely ad-
dressed in the SSL domain. In this paper we extend a prototype-based classifier
for dissimilarity data to semi-supervised tasks employingconformal prediction
providing point-wise confidence measures about the classification. By means
of the confidence values a so-called ’secure region’ of unlabeled data can be
identified and further used to improve the trained model based on labeled data
while adapting the model complexity to ’cover’ a so-called ’insecure region’ of
labeled data. This way an intuitive semi-supervised multi-class classification
scheme results which can (i) directly deal with arbitrary symmetric dissimilar-
ity matrices, (ii) which offers intuitive classification by means of sparse pro-
totypical class representatives, and (iii) which adapts model complexity sup-
ported by a confidence measure. In the experiments we show itseffectiveness
on simulated dissimilarity data and compare it with state-of-the-art methods on
benchmarks from SSL domain and real-life non-vectorial data sets.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Big data is getting more and more challenging regarding stor-
age and analysis requirements. Due to the sheer amount of
data, only few of these data are completely labeled, and la-
beling of all data is indeed very costly and time consuming.
Accordingly many data sets, in life sciences for example, are
only partially labeled. Techniques of data mining, visualiza-
tion, and machine learning are necessary to help people to an-
alyze those data. Especially semi-supervised learning (SSL)
techniques are widely used for this setting. The idea of semi-
supervised learning is to learn the model not only from the la-
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beled training data, but to also incorporate structural andstatis-
tical information in additionally available unlabeled data. A va-
riety of SSL methods has been published (Chapelle et al., 2006;
Zhu and Goldberg, 2009). Most of them focus on vectorial data
given in Euclidean space or representations by means of posi-
tive semi-definite (psd) kernel matrices.

A lot of real world data, like biological sequences, are non-
vectorial, often non-Euclidean and given in the form of pair-
wise proximities, which are based on pairwise comparisons
of objects providing some score-value of the (dis-)similarity
of the objects. Those data are also referred to asproximity
or relational data. An underlying vector space is not nec-
essarily available and there is no guarantee of metric condi-
tions. Examples of those proximity or (dis-)similarity mea-
sures are edit distance based measures for strings or images
(Haasdonk and Bahlmann, 2004) or popular similarity mea-
sures in bioinformatics such as scores obtained by the Smith-
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Waterman, FASTA, or blast algorithm (Gusfield, 1997).

Methods based on similarity data with partial label informa-
tion, where the similarities are defined on a metric space, asdis-
cussed in (Pekalska and Duin, 2005), can be effectively handled
by semi-supervised extensions of kernel methods or other re-
cently proposed, effective strategies (Subramanya and Bilmes,
2011; Tanha et al., 2014). However, in case of non-metric
(dis-)similarity data without an explicit underlying vector rep-
resentation and without requesting a metric space only few
methods have been proposed so far in the literature of SSL
(Rajadell et al., 2011; Trosset et al., 2008), and kernel tech-
niques can be applied using some costly, potentially degenerat-
ing, transformations on the proximity data only (Pekalska et al.,
2004).

First, we take a glance at SSL methods. One way to catego-
rize SSL methods is to divide the field into generative models,
low-density separation methods, and graph-based techniques
typically used for a classification objective. A recent introduc-
tion to SSL is given in (Zhu and Goldberg, 2009). In genera-
tive models, the most basic technique is given byself-training.
A classifier is first trained on the labeled instances and is then
applied to unlabeled instances. Usually, some subset of those
newly labeled instances are then used together with the origi-
nal labeled data, to retrain the model. The major advantagesof
self-training are its simplicity and the fact that it is a wrapper
method. It can ’wrap’ the learner without changing its inner
workings. In this paper we adopt this approach.

In (Suzuki et al., 2007) a more advanced approach was pro-
posed. It employs expectation maximization (EM) to estimate
parameters also on unsupervised data within a semi-supervised
learning problem. In graph-based methods, the nodes of a graph
represent labeled and unlabeled data, while some weights are
assigned to its edges, which represent the similarities of two
nodes. Now one may assume that similar points share com-
mon labels, which can be propagated according to some heuris-
tics as shown in (Zhu and Goldberg, 2009). In this way la-
bels are propagated from labeled data through the unlabeled
data region. Different variations of this principle have been
proposed, recently also for prototype based learning methods
(Cruz-Barbosa and Vellido, 2010; Amis and Carpenter, 2010)
and on large scale problems (Mantrach et al., 2011).

In low-density separation methods, probably the most pop-
ular semi-supervised learner is thetransductive Support Vec-
tor Machine(TSVM) or variants thereof as the recently pro-
posed S4VM (Li and Zhou, 2011). The semi-supervised SVM
(S3VM) aims at approaching one optimal low-density separa-
tor employing unlabeled data, whereasSafeS3VM (S4VM)
tries to exploit multiple candidate low-density separators si-
multaneously to reduce the risk of identifying a poor sepa-
rator with unlabeled data. Besides, multi-kernel approaches
have been recently analyzed for S3VM to incorporate ad-
ditional meta-knowledge in the semi-supervised optimization
(Tian et al., 2012). While most of these methods are defined for
two-class problems, employing e.g. one-vs-rest wrappers for
the multi-class case, native multi-class semi-supervisedlearn-
ing are analyzed less intensively. A multi-class S3VM approach
was proposed in (Xu and Schuurmans, 2005), using a boosting

strategy in (Song et al., 2011) and employing sparse Newton-
optimization (Gieseke et al., 2012). Another recently published
multi-class boosting technique in (Tanha et al., 2014) intro-
duces a cost function based on empirical error of labeled data
and similarity between labeled and unlabeled data. However,
to solve the cost function as a convex problem the employed
similarity metric has to be a valid kernel, i.e. positive semi-
definite. Moreover, probabilistic models for semi-supervised
learning based on nearest neighbor classifiers have been pro-
posed recently (Ghosh, 2012) which allow multi-class learning.
Some of these approaches are transductive like (Ghosh, 2012)
and out of sample extensions are not naturally available limit-
ing the applicability of the approaches for novel data in prac-
tice. A more theoretical analysis of SSL concepts was recently
given in (Singh et al., 2008), discussing theoretical properties
of semi-supervised learning and cases where SSL significantly
improves the model compared to standard supervised learning,
ignoring unlabeled data.

In contrast with the black box property of SVM and
its semi-supervised variants, prototype-based meth-
ods enjoy a wide popularity in various application do-
mains (Grbovic and Vucetic, 2013; Ortiz et al., 2013;
Ortiz-Bayliss et al., 2012; Bacciu and Starita, 2009;
Lee and Cho, 2006) due to their intuitive and simple be-
havior: they represent their decision in terms of typical
representatives (referred to as prototypes) in the input space
and classification is based on the distance of data to these
prototypes. Prototypes can be directly inspected by domain
experts in the field in the same way as data points. Popular
supervised techniques include standard learning vector quan-
tization (LVQ) and extensions to more powerful settings such
as variants based on cost functions such as generalized LVQ
(GLVQ) or robust soft LVQ (RSLVQ) (Sato and Yamada,
1995; Seo and Obermayer, 2003), just to name a few. A
recently published prototype-based method extends the ability
of GLVQ such that it can directly deal with dissimilarity data
(Hammer et al., 2013), which we will use for semi-supervised
problems.

In this paper we adopt the self-training approach with the
prototype-based classifier proposed in (Hammer et al., 2013)
for semi-supervised tasks employing the conformal prediction
technique (Vovk et al., 2005; Shafer and Vovk, 2008), which
provides a confidence measure of the classification. Using the
confidence values a so-calledsecure regionof unlabeled data
can be identified during self-training and used in the retraining.
This can potentially enhance the performance of the training,
and at the same time conformal prediction estimates a so-called
insecure regionof labeled data helping to adapt the model com-
plexity.

This paper is organized as follows. First we give a short re-
view of the prototype-based technique for dissimilarity learning
which we will use in the sequel in section 2. Subsequently, in
section 3, we briefly introduce the concept of conformal predic-
tion. Thereafter we show how to combine both techniques in
the self-training approach for semi-supervised learning in sec-
tion 4. Then we show the effectiveness of our technique on
simulated data, compare it to state-of-the-art methods on SSL
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benchmarks, and show results for biomedical dissimilaritydata
in section 5. Finally we summarize our results and discuss po-
tential extensions.

2. Prototype-based relational learning

The basic idea of LVQ is to model data distribution(s) by
positioning prototypes in the data space as accurately as possi-
ble. Assume data are given as vectors:xi ∈ R

d, i = 1, . . . ,N
with label l i ∈ L = {1, . . . , L}. LVQ is characterized bym
prototypesw j ∈ R

d in the same space with priorly defined la-
belsc(w j) ∈ L. Besides classic heuristically motivated meth-
ods, one of the well-known cost function based learning vec-
tor quantization techniques is Generalized LVQ (GLVQ) from
(Sato and Yamada, 1995).

Training of GLVQ aims at finding the positions of the proto-
types while also taking the generalization ability into account,
using the cost function

EGLVQ =

N
∑

i=1

Φ

(

d(xi,w+(xi)) − d(xi,w−(xi))
d(xi,w+(xi)) + d(xi,w−(xi))

)

(1)

wherew+(xi) is the closest prototype with the same label asxi

andw−(xi) is the closest prototype with a different label thanxi .
d(·, ·) is the squared Euclidean distance.Φ is a monotonically
increasing function, e.g.Φ(x) = (1+exp(−x))−1. GLVQ tries to
minimize the cost function (1) by means of a stochastic gradi-
ent descent, leading to Hebbian learning rules of prototypes, i.e.
the closest prototype with the same label is attracted toxi while
the one with different label is pushed away fromxi . Classifi-
cation takes place by a so-called “winner takes all” principle:
x 7→ c(w j) whered(x,w j) is minimum, i.e. a new data point is
labeled by the closest prototype.

GLVQ models have excellent generalization ability
(Hammer et al., 2005; Biehl et al., 2006), however, they
severely depend on the underlying metric, which is usually
chosen as Euclidean metric. Thus, if data are inherently
non-Euclidean, for example given in a form of a dedicated
non-Euclidean dissimilarity measures such as dynamic time
warping for time series, or alignment for symbolic strings
(Gusfield, 1997), etc., it can not be applied. Recent research
has extended GLVQ to directly deal with dissimilarity data
(Hammer et al., 2013), which we will discuss in the following.

Let v j ∈ V be a set of objects, defined in some data space,
with |V| = N. We assume, there exists a dissimilarity mea-
sure such thatD ∈ R

N×N is a dissimilarity matrix measuring
the pairwise dissimilaritiesDi j = d(vi , v j) between all pairs
(vi , v j) ∈ V × V. Any reasonable (possibly non-metric) dis-
tance measure is sufficient. Additionally, we assume zero di-
agonald(vi , vi) = 0 for all i and symmetryd(vi, v j) = d(v j, vi)
for all {i, j}. Thereby,vk is represented implicitly by a vector
of known dissimilarities with respect to allv j ∈ V. A training
set is given where data pointv j is labeled byl j ∈ L. As de-
tailed in (Pekalska and Duin, 2005), dissimilarity data canal-
ways be embedded in pseudo-euclidean space in such a way
thatd(vi, v j) is induced by a symmetric (but possibly not posi-
tive semi-definite) bilinear form.

For dissimilarity data classification, the key assumption is to
restrict prototype positions to linear combinations of data points
of the form

w j =
∑

i

γ ji vi with
∑

i

γ ji = 1 (2)

in the pseudo-Euclidean space. Then dissimilarities between
data points and prototypes can be computed implicitly by
means of

d(vi,w j) = [D · γ j ] i −
1
2
· γt

jDγ j (3)

whereγ j = (γ j1, . . . , γ jn) refers to the vector of coefficients de-
scribing prototypew j .

Thus, the cost function of GLVQ (1) can be transferred to
the relational setting. The corresponding cost function ofRe-
lational Generalized Learning Vector Quantization(RGLVQ)
becomes:

ERGLVQ =
∑

i

Φ













[Dγ+] i −
1
2 · (γ

+)tDγ+ − [Dγ−] i +
1
2 · (γ

−)tDγ−

[Dγ+] i −
1
2 · (γ

+)tDγ+ + [Dγ−] i −
1
2 · (γ

−)tDγ−













,

(4)
where the closest correct and wrong prototypes are referredto,
w+ andw−, respectively, corresponding to the coefficientsγ+

andγ−, respectively. A simple stochastic gradient descent leads
to adaptation rules for the coefficientsγ+ andγ− in RGLVQ:
componentk of these vectors is adapted as

∆γ+k ∼ −Φ′(µ(vi)) · µ
+(vi) ·

∂
(

[Dγ+] i −
1
2 · (γ

+)tDγ+
)

∂γ+k

∆γ−k ∼ Φ′(µ(vi)) · µ−(vi) ·
∂
(

[Dγ−] i −
1
2 · (γ

−)tDγ−
)

∂γ−k

with

µ(vi) =
d(vi ,w+) − d(vi,w−)
d(vi ,w+) + d(vi,w−)

µ+(vi) =
2 · d(vi ,w−)

(d(vi,w+) + d(vi,w−))2

µ−(vi) =
2 · d(vi ,w+)

(d(vi,w+) + d(vi,w−))2

The partial derivative yields
∂
(

[Dγ j ] i−
1
2 ·γ

t
j Dγ j

)

∂γ jk
= dik−

∑

l dlkγ jl . Af-
ter every adaptation step, normalization takes place to guarantee
∑

i γ ji = 1. In this way, a learning algorithm which adapts pro-
totypes in a supervised manner is given for general dissimilarity
data, whereby prototypes are implicitly embedded in pseudo-
Euclidean space.

The prototypes are initialized as random vectors correspond-
ing to random valuesγi j which sum to one. It is possible to take
class information into account by setting allγi j to zero which do
not correspond to the class of the prototype. Out-of-sampleex-
tension of the classification to new data is possible based onthe
following observation: For a novel data pointv characterized
by its pairwise dissimilaritiesD(v) to the data used for training,
the dissimilarity ofv to a prototypeγ j is

d(v,w j) = D(v)t · γ j −
1
2
· γt

jDγ j , (5)
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i.e. the data point is assigned to the label of the closest proto-
type. More details about the generalization ability can also be
found in (Hammer et al., 2013).

2.1. Limitations

RGLVQ models work very effectively as shown in
(Hammer et al., 2013), but they have two major limitations.
They are crisp classifiers, where the classification function pre-
dicts only the class label but without any additional information
about the confidence of the prediction. Especially in the life sci-
ence some kind of reliability measure, similar to statistical p-
or q-values would be beneficial. Only few attempts exist to give
reliability estimates for these methods (see e.g. (Cordella et al.,
1999; de Stefano et al., 2000)). The second drawback is that the
complexity of the model in terms of the number of prototypes
needs to be specified a priori.

In this contribution, we propose to use conformal prediction
to enhance classification results with a level of confidence,and
to automatically grow a model with suitable model complex-
ity. Reliability, sometimes also referred to as confidence,has
been the subject of a theory calledconformal predictionas in-
troduced in (Proedrou et al., 2002; Vovk et al., 2005). In the
next section we will briefly introduce the concept of conformal
prediction.

3. Conformal prediction

Conformal prediction is a statistical method assessing each
classification decision by providing two measures:credibility
andconfidence. Thereby, this technique can be accompanied
by a formal stability analysis as provided in (Vovk et al., 2005).
For more details see (Shafer and Vovk, 2008) which is a recent
tutorial on the topic.

We follow the general approach of conformal prediction as
reviewed in (Vovk et al., 2005; Shafer and Vovk, 2008). De-
note the labeled training datazi = (vi , l i) ∈ Z = V × L.
Furthermore letvN+1 be a new data point with unknown la-
bel lN+1, i.e. zN+1 := (vN+1, lN+1). For given training data
(zi)i=1,...,N, an observed data pointvN+1, and a chosen error rate
ǫ, theconformal predictioncomputes an (1− ǫ)-prediction re-
gionΓǫ(z1, . . . , zl , vN+1) ⊆ L consisting of a number of possible
label assignments. The applied method ensures that if the data
zi areexchangeable1 then

P(lN+1 < Γ
ǫ(z1, . . . , zN, vN+1)) ≤ ǫ (6)

holds asymptotically forN → ∞ for each distribution ofZ. One
says that the predictor isasymptotically valid. It is important
to mention, that the probability is unconditional, such that if
we repeat the process of drawing samplesvN+1 and generating
Γǫ a number ofn times we will find with respect to statistical
fluctuations that in less thanǫ · n cases the real labellN+1 is not
under the predicted labels ofΓǫ .

1exchangeabilityis a weaker condition than data being i.i.d. which is readily
applicable to the online set ting as well, for example (Vovk et al., 2005)

Algorithm 1 Conformal Prediction (CP)
1: function cp(D, vN+1, ǫ)
2: for all l ∈ L do
3: zN+1 := (vN+1, l)
4: for i = 1, . . . ,N + 1 do
5: Di := {z1, . . . , zN+1}\{zi }

6: αl
i := A(Di , zi ) ⊲ non conformity ofzi againstDi

7: end for

8: pl
N+1 :=

|{i=1,...,N+1 | αl
i≥α

l
N+1}|

N+1
9: end for

10: return Γǫ := {l : pl
N+1 > ǫ}

11: end function

3.1. Computation of prediction region

To compute the conformal prediction regionΓǫ , a non-
conformity measureis fixed A(D, z). It is used to calculate a
non-conformity valueα that estimates how an observationz fits
to given representative dataD={z1, . . . , zN}, we will give an ex-
ample in section 3.1.1. In theory, any measure could be used,
providing a nontrivial result for suitable choices only. Given a
non-conformity measureA, significance levelǫ, examplesz1,
. . . , zN, objectvN+1 and a possible labell, it is decided whether
l is contained inΓǫ(z1, . . . , zN, vN+1) according to algorithm 1.

However, this method would entail high computational costs,
especially for large data set, because this procedure has tobe
done for all leave-one-out multi-sets for each of the test objects
with all possible labels (vN+1, l). To get rid of this problem,
some extensions of conformal prediction have been published,
i.e. Inductive Conformal Prediction(ICP) (Papadopoulos et al.,
2002; Vovk, 2012a) andCross Conformal Prediction(CCP)
(Vovk, 2012b). Inductive conformal prediction divides the
training data into two subsets:proper training setandcalibra-
tion set. The model is trained on the proper training set and then
used to calculate the non-conformity values of the calibration
set. For new data points, classification takes place only based
on the non-conformity of the calibration set. As pointed out
by (Vovk, 2012a) the size of the calibration set should be rea-
sonably large to cover the data statistic. Although ICP is com-
putationally more efficient, since the training process only has
to be done once, it is predictively less efficient in comparison
to the original conformal prediction, in which the trainingset
serves as proper training set and also as calibration set. Toavoid
this problem another approach, cross-conformal prediction has
been proposed, which combines cross-validation with inductive
conformal prediction. During the cross-validation process (by
taking one fold as calibration set and the remaining folds as
proper training set) the data statistic of the whole training set is
accumulatively considered, finally the non-conformity of each
calibration is merged to classify new data, see (Vovk, 2012b)
for more details.

In this work we focus on semi-supervised problems, hence
the size of the training set (i.e. labeled data) is usually not large
such that we can not use ICP or CCP for our purpose. We de-
cided to modify the original conformal prediction in a different
way: we do not match the model exactly against each data set
Di but instead use the whole training data ( i.e.D, excluding
zN+1). In this way learning must be performed only once onD.
This procedure is motivated by two facts: (1) since we intend
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to use prototype-based method to train the model, the positions
of prototypes depend on the whole data distribution and are in
general not widely affected by a single data point, (2) the in-
formation loss will be small if the number of training data is
reasonably large, so that addingzi but leaving outzN+1 will not
affect the learning results. Before we go into more details about
the proposed method, we will first discuss a key point of con-
formal prediction, the non-conformity measure.

3.1.1. Non-Conformity Measure
As explained above, the non-conformity measureA(D, z)

should evaluate whether a test examplez fits representative data
D. It is the part of the method that can incorporate detailed
knowledge about the data distribution. Nevertheless one can
use any real valued function2, but maybe with negative impact
on the prediction efficiency.

For givenz = (x, l) and a trained relational GLVQ model, we
choose as non-conformity measure

αl
x :=

d+(x)
d−(x)

(7)

with d+(x) being the distance betweenx and the closest proto-
type labeledl, andd−(x) being the distance betweenx and the
closest prototype labeled differently thanl where distances are
computed according to Eq. (3). We expect that valuesαl

x are
small for dataz for which the prediction has high confidence,
but it is large if the label does not comply with data.

3.2. Confidence and credibility

The prediction regionΓǫ (z1, . . . , zN, vN+1) stands in the cen-
ter of conformal prediction. For a given error rateǫ it contains
the possible labels ofL. But how can we use it for prediction?

Suppose we use a meaningful non-conformity measureA,
e.g. eq. (7). If the valueǫ is approaching 0, a conformal pre-
diction with almost no errors is required, which can only be
satisfied if the prediction region contains all possible labels. If
we raiseǫ we allow errors to occur and as a benefit the con-
formal prediction algorithm excludes unlikely labels fromour
prediction region, increasing its information content. Indetail
thosel are discarded for which thepl-value is less or equalǫ.
Hence only a fewzi are as non conformal aszN+1 = (vN+1, l).
This is a strong indicator thatzN+1 does not belong to the data
distributionZ and sol does not seem to be the right label. If
one further raisesǫ only thosel remain in the conformal region
that can produce a highpl-value meaning that the correspond-
ing zN+1 is rated as very typical byA.

So one can trade error rate against information content. The
most useful prediction is those containing exactly one label.
Therefore, given an inputvi two error rates are of particular
interest,ǫ i1 being the smallestǫ and ǫ i2 being the largestǫ so
that |Γǫ(D, vi)| = 1. ǫ i2 is the p-value of the best andǫ i1 is the
p-value of the second best label. Thus, typically, a conformal

2Anymeasurable function onZ(∗) ×Z taking values in the extended real line
is a non conformity measure.

Fig. 1: An example about confidence and credibility

predictor outputs the labell which describes the prediction re-
gion for such choicesǫ, i.e. Γǫ = {l}, and the classification is
accompanied by the two measures

confidence :c fi := 1− ǫ i1 = 1− pl2nd (8)

credibility : cri := ǫ i2 = pl1st (9)

Confidencesays something about being sure that the second
best label and all worse ones are wrong.Credibility says some-
thing about to be sure that the best label is right respectively that
the data point is typical and not an outlier. An example is shown
in Figure 1: the data consist of two well-separated clusters. The
data points around the centers (e.g. in the dashed circles) have
higher credibility and higher confidence than the data farther
from the centers. The data points that are a bit farther from
the centers but not outliers (e.g. in the dashed ellipses) have
higher credibility but lower confidence (because they are nearer
to the other cluster than the data around the centers). Further-
more there are two types of outliers: (i) the data points are far
away from the centers but nearer to the other cluster than other
data points in the same cluster, so they have lower credibility
and lower confidence. (ii) the data points are far away from the
centers and even farther away from the other cluster than other
data points in the same cluster, so they have lower credibility
and higher confidence.

The non-conformity measure has a direct impact on the effi-
ciency of the prediction region. A good, informative measure
will exclude wrong labels for small error rates and will reject
typical data only for large error rates, meaning thatǫ i2 − ǫ

i
1 is

large for typical datavi. That means, that a good measure can
give useful information already for small error rateǫ i1 and on
the other hand one would have to face up a high average error
rateǫ i2 to exclude the right label from the prediction region.

We would like to point out that the concept of conformal pre-
diction permits pointwise measures of confidence which change
if the training data is adapted, also if the decision boundaries re-
main the same. This means, that similar as in classical statistics,
more densely populated training regions permit a better confi-
dence in a decision. Due to the definition of conformal predic-
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Algorithm 2 Self training
1: Tlab:= labeled data,Tunlab:= unlabeled data
2: repeat
3: Train modelf based onTlab using supervised learning
4: Apply f to Tunlab
5: remove a subsectS from Tunlab and add{(x, f (x))|x ∈ S} to Tlab

tion, this is automatically achieved also in online scenarios.

4. Semi-supervised conformal relational GLVQ

RGLVQ opens a way to directly deal with dissimilarity data.
As mentioned in section 2.1 it has two major limitations: (i)
It is a crisp classifier without any additional information about
the confidence of the prediction and (ii) the number of proto-
types has to be defined in advance. In the supervised case, these
problems have been already addressed by (Schleif et al., 2014)
in which the concept of inductive conformal prediction is inte-
grated into a sparse prototype-based classifier for dissimilarity
learning problems resulting a sparse prototypical representation
of data. In this work we focus on semi-supervised case and
by extending our previous work (Zhu et al., 2013) we propose
a prototype-based conformal classifier with self-adaptation of
model complexity based on the data with high confidence and
high credibility values provided by conformal prediction.

First, we denoteTlab as labeled data andTunlab as unlabeled
data. Generally, in semi-supervised learning unlabeled data are
used to improve the trained model based on labeled data in
some way. Self-training(Zhu and Goldberg, 2009) is a very
simple approach, which takes iteratively a part of the unlabeled
data with predicted labels as new training data into the retrain-
ing process to optimize the model, as shown in Algorithm 2.
After the first training of modelf on labeled data, the modelf
is then used to predict the labels of unlabeled data. A subsetS
of the unlabeled data together with their predicted labels are se-
lected and added to the labeled data, which builds a new larger
set of labeled data. The modelf is retrained on the new un-
labeled data, and the procedure is repeated. As pointed out by
(Zhu and Goldberg, 2009), the key assumption of self-training
is that the predictions, at least the high confidence ones, tend to
be correct.S should consist of the unlabeled data with the most
confident predictions.

In this work we combine conformal prediction with self-
training to find the most confident unlabeled data (see Algo-
rithm 4). We first train the model on labeled data (Tlab) using
RGLVQ, based on the model we proceed with the conformal
prediction step (line 20-26): ForTlab andTunlab, we compute
non-conformity values (α) according to (7) (line 21-22). Based
on these non-conformity values ap-value is estimated for each
possible label and each unlabeled point fromTunlab(line 23-24).
For classification using the conformal classifier, the labelof a
unlabeled item will be finally predicted as the label with the
largestp-value. This refers to the label set provided by the con-
formal predictor which contains only one label. More complex
schemes, by analyzing for example label sets with more than
one label would be possible as well, but are not further con-
sidered here. The confidence value (c fi) is given as one minus
the second largestp-value (eq. (8)) and the credibility (cri) is

the largestp-value of this item (eq. (9)) (line 25-26) (for more
detail see section 3.2).

Data used for self-training
In oder to identify unlabeled items with high confidence pre-

dictions we define a measurecc as the product of confidence
and credibility values: For a given data pointvi ∈ Tunlab,

cci := c fi · cri (10)

A high cc-value of a unlabeled item indicates that with high
probability its predicted label (that with the highestp-value) is
the true underlying label. For self-training the unlabeleddata
with predicted labels of high probability can be taken into the
next retraining. The region which consists of these unlabeled
items is referred to as ’secure region’ (denoted asSR). To
identify SR we take a fraction (prc) of the topcc-values of
the unlabeled data3.

Adaptation of model complexity
On the other hand we also collect a set of points of the “la-

beled” data (i.e. original labeled items and the items with high
cc-values labeled by previous iterations) with low credibility
and confidence values, which builds a so-called ’insecure re-
gion’ (ISR) of the training data,

ISR := {vi ∈ Tlab : c fi ≤ ζ1 ∨ cri ≤ ζ2} . (11)

A low confidence value is given if the confidence valuec fi
or the credibilitycri below a user defined thresholdζi or ζ2,
respectively. Defined values forζ1 or ζ2 can be derived from
the quantiles of confidence/credibilty values as observed in the
data.

TheISR will be represented by a new prototype as the me-
dian ofISR. This step automatically adapts the complexity of
the model, i.e. the number of prototypes. In the next retraining
this new prototype will be also trained on the new training data.

During the self-training process the training setTlab is itera-
tively augmented by adding the secure region of the unlabeled
dataSR to itself while the unlabeled dataTunlab is shrunk by
discarding the secure region. The performance of the retrain-
ing is evaluated based on the original labeled data only. The
method terminates if the improvement of the performance is not
significant (less than 1%) after a certain number of iterations
(winmax itr) or the maximal number of iterations are reached
(maxitr) or the insecure region (ISR) is too small or the unla-
beled setTunlab is empty, i.e. all unlabeled data have been con-
sidered in the retraining. The proposed method is referred to as
Secure Semi-Supervised Conformal RGLVQ(S3-C-RGLVQ).

5. Experiments

We evaluate S3-C-RGLVQ on a large range of tasks. First,
we demonstrate its performance for two artificial data sets:

3prc is customizable and in our experiments we setprc = 5% which is a
good compromise between learning performance and efficiency.
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Algorithm 3 secure semi-supervised conformal RGLVQ
1: init: W := randomly initialized,Wnew := ∅, Wbest :=W, ISR := ∅; SR := ∅ ⊲W: randomly initialized prototypes,Wnew: new prototype

chosen from insecure region,Wbest : best prototype identified by retraining process
2: Tlab := labeled data; Tunlab := unlabeled data
3: improve= 1% ⊲ threshold of improvement: default 1%
4: EvalS et:= Tlab ⊲ Evaluation set, i.e. labeled data
5: itr = 0 ⊲ iteration counter
6: ctnbest= 0 ⊲ counter for best result
7: maxitr = 100 ⊲ maximal total iterations
8: winmax itr = 10 ⊲ maximal iterations for a result as winner
9: accbest= 0

10: repeat ⊲ self-training process
11: W :=W

⋃

Wnew ⊲ see description around eq. (11)
12: Tlab := Tlab∪ SR, Tunlab := Tunlab\SR
13: W := trainTlab by RGLVQ givenW ⊲ retraining with given prototypes
14: acc := evaluation ofW on EvalS et;
15: if acc− accbest≥ improve then
16: Wbest=W, accbest= acc, ctnbest= 0
17: else
18: ctnbest= ctnbest+ 1
19: end if
20: ⊲ conformal prediction step
21: ATlab := {αi ,∀i ∈ Tlab} ⊲ α-values ofTlab w.r.t. W: eq. (7)
22: AL

Tunlab
:= {αl

i ,∀i ∈ Tunlab,∀l ∈ L} ⊲ α-values ofTunlab for all possible labels w.r.t.W: eq. (7)
23: PTlab := {pi ,∀i ∈ Tlab} ⊲ p-values ofTlab

24: PL

Tunlab
:= {pl

i ,∀i ∈ Tunlab,∀l ∈ L} ⊲ p-values ofTunlab for all possible labels based onATlab andAL

Tunlab

25: CFTlab := {c fi ,∀i ∈ Tlab}; CRTlab := {cri ,∀i ∈ Tlab};
26: CFTunlab := {c fi ,∀i ∈ Tunlab}; CRTunlab := {cri ,∀i ∈ Tunlab}; ⊲ confidence/credibility of Tlab/Tunlab by means ofPTlab/P

L

Tunlab
: eq. (8),(9)

27: generateISR of Tlab based onCFTlab andCRTlab ⊲ eq. (11)
28: generateSR of Tunlab based onCFTunlab andCRTunlab ⊲ eq. (10) andprc = 5%
29: generateWnew fromSR
30: itr = itr + 1
31: until |ISR| < 1% · |Tunlab| or itr = maxitr or ctnbest= winmax itr or Tunlab= ∅
32: return Wbest;

checkerboard data and banana-shaped data, with known vec-
tor representation to show the ability of dealing with partially
labeled data, especially non i.i.d labeled data. Then we com-
pare S3-C-RGLVQ with state-of-the-art semi-supervised SVMs
on SSL binary-class benchmarks. For vectorial data the dis-
similarity matricesD are obtained using the squared-Euclidean
distance. Additionally, five real life non-vectorial multi-class
data sets from the bioinformatics domain are used to compare
with original RGLVQ (trained only on labeled data). For all ex-
periments, prototypes are randomly initialized based on labeled
data and one prototype per class.

Artificial data sets: The checkerboard data set consists of
two classes with 1200 data points, in two dimensions and 2· 2
clusters. We randomly select about 3% as labeled data and
the remaining data as unlabeled data. RGLVQ can learn these
data only if the prototypes are initialized near the centersof
the multi-modal distributions, provided a sufficient number of
prototypes. TheS3-C-RGLVQ on the other hand automati-
cally adapts its model complexity according to the introduced
scheme, leading to an effective model with minimum initializa-
tion of one prototype per class only. As an example, Figure 2
shows some intermediate results up to convergence. We ran-
domly initialized two prototypes only on labeled data. Figure
2(a) shows that after the initial training two prototypes are lo-
cated in the center of the labeled data. Obviously, in this case
one prototype per each class is not sufficient to model the whole
data space. In Figure 2(b) after the conformal prediction pro-
cess, the secure region of unlabeled data and the insecure re-

gion of labeled data can be identified. To ’cover’ the insecure
region a new prototype (marked by red cross) is added there-
into. Moreover, there are some unlabeled data misclassifiedby
CP, which will be taken into the current retraining process.The
reason thereof is that due to the smaller number of prototypes
at the early stage which are not well distributed into the multi-
modal clusters, a reasonable number of points with relatively
lower confidence/credibility values (i.e. lowercc-value) exists,
which is a natural consequence, because by chance 50% got the
correct label. By a larger value of the parameter ’prc’ some of
these points can be considered in the next training. In this case
those points can also be considered as outliers. Due to the fact
that the prototype-based method is very stable against outliers,
i.e. the positions of prototypes depend on the whole data distri-
bution and are not widely affected by a single point, the move-
ment of the prototypes is mainly dominated by the correctly
classified points and the labeled data. As shown in Figure 2(d),
once the algorithm converges, those points can be correctlyas-
signed to their closest prototypes. Fig. 2(c) shows also the
intermediate result in the 10th iteration with more prototypes.

Another simulated data set consists of two banana-shaped
data clouds indicating two classes. Each banana consists of
300 two dimensional data points, see Figure 3. We randomly
select non i.i.d. a small fraction (ca. 5%) of each banana as
labeled data, the remaining as unlabeled data. The dissimilarity
matrix D thereof is obtained by Euclidean distance again. With
the same setting for checkerboard data we start with one proto-
type per class and train the initial model on the labeled dataas



8

(a) Initial training (b) 3. iteration

(c) 10. iteration (d) final S3-C-GRLVQ

Fig. 2: (a) The data consists of green/blue labeled data and gray
unlabeled data. Two prototypes are trained on labeled data and
marked with squares. (b) After the initial training, by means
of CP the secure regionSR can be found which consists of the
unlabeled data marked by stars, as well as the insecure region
ISR which contains labeled data marked by red circles. The
new prototype taken fromISR is marked with a big red cross.
(c) During the self-training process additional prototypes are
step–wise created. (d) the final result until convergence

shown in Fig. 3(a). The number of prototypes increased step-
wise during the retraining process by adding new prototype in
the insecure region, while by means of secure region the un-
labeled data are iteratively considered. Thereby at the endthe
data manifold can be well studied.

UCI two-class data sets:Furthermore, we evaluate the pro-
posed method on different widely used benchmarks for semi-
supervised learning from the UCI repository4 and compare it
with the best semi-supervised SVM with RBF-kernel taken
from (Li and Zhou, 2011)5. To keep the same experimental set-
ting, we randomly select 100 examples of the data to be used as
labeled examples, and use the remaining data as unlabeled data.
The experiments are repeated for 12 times and the average test-
set accuracy (on the unlabeled data) and standard deviationare
reported in Table 1. Except voting data, the proposed method
provides comparable results for all remaining data sets.

Real life multi-class data sets:Moreover, we also evaluate
the methods on five real life relational data sets from the bioin-
formatics domain, where no direct vector embedding exists and
the data are given as (dis-)similarities.

4http://archive.ics.uci.edu/ml/datasets.html
5In this paper the authors made a comprehensive comparison between differ-

ent semi-supervised SVMs, e.g. TSVM, S3VM, S4SVM, etc. withlinear and
rbf kernels. For our experiments we pick the best result of rbf-kernel among
them as reference for each data.

(a) two bananas (b) 10. iteration (c) final model of S3-
C-RGLVQ

Fig. 3: (a) The data consist of green/blue labeled data and gray
unlabeled data. Two initial prototypes are trained on labeled
data and marked with squares. (b) The secure regionSR con-
sists of the unlabeled data marked by stars and the insecure re-
gion ISR contains labeled data rounded by red circles. The
new prototype taken fromISR is marked with a big red cross.
During the self-training process additional prototypes are cre-
ated. (c) the final result of S3-C-RGLVQ

Table 1: Classification accuracy (%± std) of UCI Benchmarks
for two classes problems for SSL

two-class UCI data Semi-RLVQ Semi-SVMbest(rbf)
diabetes 70.17± 2.32 70.3± 2.1
german 71.61± 1.14 71.0± 1.1
haberman 73.30± 5.02 68.3± 2.8
voting 89.20± 0.89 92.6± 1.6
wdbc 92.34± 1.19 93.6± 1.7
austrailian 83.22± 1.51 81.8± 1.9
breast-cancer 96.20± 0.51 95.5± 1.0

- The SwissProtdata set consists of 5, 791 samples of
protein sequences in 10 classes taken as a subset from
the popular SwissProt database of protein sequences
(Boeckmann B, 2003) (release 37). These sequences are
compared using the Smith-Waterman algorithm (Gusfield,
1997) .

- The Copenhagen Chromosomesdata constitute a bench-
mark from cytogenetics. 4,200 human chromosomes from
21 classes are represented by grey-valued images. These
are transferred to strings measuring the thickness of their
silhouettes. These strings can be directly compared us-
ing the edit distance based on the differences of the num-
bers and insertion/deletion costs 4.5 (Neuhaus and Bunke,
2006).

- TheSonatasdata set contains complex symbolic data sim-
ilar to Mokbel et al. (2009). It is comprised of pairwise
dissimilarities between 1,068 sonatas from the classical
period (by Beethoven, Mozart and Haydn) and the baroque
era (by Scarlatti and Bach). The musical pieces were
given in the MIDI file format, taken from the online MIDI
collectionKunst der Fuge6. Their mutual dissimilarities
were measured with the normalized compression distance
(NCD), see (Cilibrasi and Vitányi, 2005). The musical
pieces are classified according to their composer.

6http://www.kunstderfuge.com
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- The Zongker digit dissimilarity data (2000 samples in 10
classes) from (Duin, 2012) is based on deformable tem-
plate matching. The dissimilarity measure was computed
between 2000 handwritten NIST digits in 10 classes, with
200 entries each, as a result of an iterative optimization of
the non-linear deformation of the grid (Jain and Zongker,
1997).

- The Vibrio data set consists of 1,100 samples of vibrio bac-
teria populations characterized by mass spectra. The full
data set consists of 49 classes of vibrio-sub-species. The
mass spectra are preprocessed with a standard workflow
using the BioTyper software (Maier et al., 2006). The Vib-
rio similarity matrix S has a maximum score of 3. The cor-
responding dissimilarity matrix is obtained asD = 3− S.

These data sets constitute typical examples of non-Euclidean
data which occur in complex systems, such as medical im-
age analysis, mass spectrometry, and symbolic domains. In all
cases, dedicated preprocessing steps and dissimilarity measures
for structures are used. The dissimilarity measures are inher-
ently non-Euclidean and cannot be embedded isometrically in
a Euclidean vector space.

We use the same experimental setting as for the UCI data,
i.e. we randomly select 100 examples as labeled data, the re-
maining as unlabeled data (with 10 repeats), prototypes areini-
tialized based on labeled data and one prototype per class. For
comparison, we report the results of RGLVQ trained only on
labeled data to tackle another problem for SSL, i.e. the degen-
eration issue as discussed by (Singh et al., 2008; Li and Zhou,
2011; Zhu and Goldberg, 2009). In order to keep the compar-
isons fair the number of prototypes for each class for RGLVQ
is set to the number of prototypes for each class of the final
S3-C-RGLVQ model. The mean classification accuracies are
reported in Table 2.

In all cases but one, a better classification accuracy can
be obtained using conformal prediction compared to original
RGLVQ only based on labeled data without consideration of
additional information about unlabeled data. The chromosome
is a perfectly balanced data set, it leads to the fact that theinitial
model based only on the labeled data is almost perfectly trained
by RGLVQ, so that the potential to improve the model by con-
sidering unlabeled information in this case is very limited.

In all cases, the incorporation of information about unlabeled
data into the classifier leads to an increased, at least equal,
classification accuracy of the resulting model, since the addi-
tionally available information can better be taken into account
to optimize the class boundaries. Thus, S3-C-RGLVQ consti-
tutes a very promising method to infer a high quality semi-
supervised prototype-based classifier for general dissimilarity
data sets which offers point-wise measures for confidence and
credibility about the classification.

6. Conclusions

In this contribution, we have developed an efficient semi-
supervised classification technique for general dissimilarity

Table 2: Classification accuracy (%± std ) for real life data.

Data S3-C-RGLVQ RGLVQ
swissprot 81.06± 5.53 79.37± 4.78
chromosome 78.88± 3.28 78.78± 3.70
sonatas 77.98± 3.94 71.99± 2.92
zongker 87.93± 0.84 86.48± 1.50
vibrio 98.76± 0.47 97.40± 0.84

data, which represents the decisions in the form of proto-
types, based on the conformal prediction concept and rela-
tional prototype-based classifier. It naturally inherits the mer-
its from both techniques. Due to a prototypical representa-
tion, unlike many alternative black-box techniques, it offers
the possibility of a direct inspection of the classifier by hu-
mans. Further, unlike kernel-based alternatives such as kernel
GLVQ (Qin and Suganthan, 2004) or relevance vector machine
(Tipping, 2001), this technique does not require that data are
embeddable into Euclidean space, rather, a general symmet-
ric dissimilarity matrix is sufficient. For those alternative tech-
niques to deal with dissimilarity data, extra preprocessing steps
have to be added as described by (Pekalska and Duin, 2005).
Due to the properties of conformal prediction, instead of pro-
viding only a predicted label, it also permits to identify the
safety of the prediction by means of point-wise measures for
confidence and credibility. Thereby the ’secure’ unlabeleddata
can be exploited and used to optimize the trained model, at the
same time the ’insecure’ training data can be identified and ac-
cordingly the complexity of the model is adapted.

We demonstrated the quality of the technique on different
SSL data sets. As a results, a powerful semi-supervised learn-
ing algorithm can be derived, which in most cases achieves
comparable results to semi-supervised SVM and with direct
interpretability of the classification in term of the prototypes.
It works especially well for non i.i.d labeled data. Duo to
the multi-class capability of prototype-based method, it can
directly deal with multi-class data sets. Furthermore, it does
not degenerate the learning performance by incorporating ad-
ditional information of unlabeled data which is still a cru-
cial issue in the semi-supervised learning (Singh et al., 2008;
Li and Zhou, 2011; Zhu and Goldberg, 2009).

One central problem of this technique as introduced above
has not yet been considered in this letter: we used a global
valueprc to identify the secure region of the training data in ev-
ery iteration. It may cause some uncertainty issues at the earlier
stages of retraining as we have seen in the checkerboard data, if
the number of prototypes is not sufficiently high and the proto-
types are not sufficiently distributed in the data space. In spite
of the fact that this potential issue can be partially solvedby
the nature of prototype-based method, i.e. its stability against
outliers, it should be more seriously studied, e.g. using a lo-
cal valueprc for each iteration to more precisely identify the
high confidence items. Future work will also address the model
sparsity for large scale problem and linear approximation tech-
niques as introduced in (Zhu et al., 2012).
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