
 
 

 

  

Abstract—During CAD development and any kind of design 
optimisation over years a huge amount of geometries 
accumulate in a design department. To organize and structure 
these designs with respect to reusability, a hierarchical set of 
components on different scalings is extracted by the designers. 
This hierarchy allows to compose designs from several parts 
and to adapt the composition to the current task. Nevertheless, 
this hierarchy is imposed by humans and relies on their 
experiences. In the present paper a computational method is 
proposed for an unsupervised extraction of design components 
from a large repository of geometries. Methods known from the 
field of object and pattern recognition in images are transferred 
to the 3D design space to detect relevant features of geometries. 
The non-negative matrix factorization algorithm (NMF) is 
extended and tuned to the given task for an autonomous 
detection of design components. The results of the NMF 
additionally provide an overview on the distribution of these 
components in the design repository. The extracted components 
sum up in a parts-based representation which serves as a base 
for manual or computational design development or 
optimisation respectively. 

I. INTRODUCTION 

HEN designing products for the automotive or 
aerospace domain it is crucial to find geometries with 

optimal properties. Traditionally, manual design optimisation 
is a resource and timeconsuming process performed by large 
teams of engineers and designers. While physical tests can be 
partially replaced by computational simulation tools such as 
Finite Element (FE) or Computational Fluid Dynamics 
(CFD) solvers, design optimisation makes up a significant 
part of the development process, hence substantially 
increasing the development costs. Therefore, it is desirable 
to devise fully autonomous design optimisation environments 
supporting design development and, ideally, evolving the 
final shape of a product with no or minimal human 
interaction. 
 A crucial aspect is the choice of the representation of the 
object that is the target of optimisation. Recently, for 
complex designs deformation methods have received 
considerable attention [1], [2], [3]. Instead of parameterising 
the design directly, e.g. by spline curves/surfaces, 
transformations that are applied to an initially chosen base 
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design are encoded. This has the great advantage that the 
number and distribution of parameters is decoupled from the 
geometrical description. State-of-the-art free form 
deformation (FFD), which was originally developed for soft 
object animation, has been successfully applied in an 
evolutionary design optimisation framework to a stator blade 
of a jet turbine [4], [5]. However, despite of the various 
advantages of this technique, the search space of the 
algorithm is quite restricted to the area in which the initially 
chosen design is located. In particular topological changes to 
the design like holes are practically impossible to realize. To 
overcome this disadvantage a parts-based representation 
embedded in the FFD environment has to be developed 
which allows exchanging components of the design during 
the runtime of the optimisation. Consequently, the question 
arises of how to establish a repository of components on 
which the optimisation algorithm can rely on. Naturally, a 
repository of components is not only helpful in automized 
processes but also in manual design development. 
 Assuming a given large database consisting of 3D designs, 
which have been created during CAD development or design 
optimisation, in a straightforward way an experienced user 
could try to scan through it, select representative designs and 
decompose them into meaningful components manually. 
Consequently, this process is very timeconsuming and the 
results depend highly on the experience of the user as well as 
his definition of a component. To decouple this process from 
the users experience, in the present paper a framework is 
proposed which originates from the field of object 
recognition and pattern detection in images. The method 
strives for a fully autonomous and unsupervised process 
delivering a repository of components in a parts-based 
representation [6].  

In the field of object recognition various algorithms have 
been proposed that can extract the building blocks of image 
sets. These components are used to represent the individual 
images more effectively and their presence helps to predict 
an image’s content (object label). Depending on the concrete 
scenario, the algorithms can be constrained to look for 
components with more global or more local character. Some 
local methods, like the non-negative matrix factorization 
(NMF) [7], find components that directly reflect the 
constituent parts of an object and are therefore called parts-
based methods. Because these methods usually do not make 
assumptions on the dimension of the data and because of the 
obvious analogy between a rigid object and a 3D design, 

Unsupervised Extraction of Design Components  
for a 3D parts-based Representation 

Zdravko Bozakov, Lars Graening, Stephan Hasler, Heiko Wersing and Stefan Menzel 

W 



 
 

 

these methods can be directly applied to the identification of 
the relevant parts of a 3D design in a pixel-like 
representation.  

The paper is organized as follows. In section II a brief 
literature review is given on state-of-the-art algorithms for 
shape analysis and decomposition. Section III describes 
thoroughly the non-negative matrix factorization and its 
variations in the field of object recognition. A framework for 
the unsupervised extraction of components is presented in 
detail in section IV, followed by concluding remarks.  

II.  REVIEWING ALGORITHMS FOR 3D SHAPE ANALYSIS AND 

SHAPE DECOMPOSITION 

The process of extracting meaningful design parts from 
3D shapes is not trivial. This is partly due to the fact that no 
universal definition of a design part exists. A human's idea of 
salient features which make up a part might strongly differ 
depending on the problem being evaluated. Computer based 
systems, on the other hand, derive completely different 
notions of a part. In the following, a brief overview of 
common 3D shape analysis and feature extraction techniques 
is presented. For further details the reader is referred to [8]. 

A. 3D Shape Descriptors 

The definition of adequate shape descriptors and the 
extraction of design features which encapsulate the required 
characteristics of a design is the main challenge for analyzing 
a repository of 3D designs. Design features may include 
statistical design properties such as moments, circularity or 
compactness. Alternative methods that use histograms of 
geometric statistics or statistics of frequency decomposition 
of shapes are mainly used for shape retrieval tasks. As an 
example, in [9] harmonic shape descriptors are suggested 
which use the amplitudes of spherical harmonic coefficients 
to generate a rotation invariant shape representation. Related 
to the task such representations are tuned for fast computing 
but miss the representation of details of the design. 
Furthermore, the resulting coefficients are hard to interpret 
for human beings.  

B. Clustering 3D Shapes 

For partitioning a design repository it is often desirable to 
classify the content into a set of groups or clusters based on 
the similarity of feature vectors or shape descriptors. This is 
useful for determining distinct types of designs contained in 
a set as well as analyzing the distribution thereof.  

A popular method which performs this type of clustering 
is the K-Means algorithm [10]. Given a number of  
N-dimensional data-points this iterative algorithm attempts to 
separate the data into K distinct clusters. The method is not 
guaranteed to converge to a global optimum. In fact the 
results of the algorithm strongly depend on the initial values. 
However, since the algorithm is very fast, it is common to 
execute it multiple times and select the results from the best 
run. A major drawback of the algorithm is the fact that the 

number of clusters must be known in advance, thus making it 
unsuitable for unsupervised problems. Furthermore, the 
result of the clustering algorithm strongly depends on the 
choice of the correct metric for calculating the similarity 
between the shapes.  

The Principal component analysis PCA, is a well 
established and widely used statistical technique for 
discovering the main features, or principal components, 
within complex data sets. The method is closely related to 
singular value decomposition. PCA has been successfully 
applied to various fields such as statistical analysis, lossy and 
lossless data compression, and face recognition. Given a set 
of N-dimensional points the PCA aims to re-express the data 
by finding a linear transformation of the coordinate system 
which results in an optimal representation of the data set in 
eigenvectors. Noise and redundancy are filtered out 
revealing hidden structure or features within the data. If all 
eigenvectors are used, a lossless reconstruction of the data 
set can be performed. However, if only the eigenvectors 
corresponding to the largest eigenvalues are used the number 
of dimensions required to represent the data set can be 
greatly reduced, at the cost of introducing only a small error. 

C. Segmentation of 3D Designs 

For our application it is necessary to analyse repositories 
based not only on overall shape similarity, but also on 
specific features or parts contained within objects. 

An approach called convex decomposition, initially 
developed for two dimensional polygons, has been used for 
decomposing three dimensional shapes. The aim is to 
segment the shape into a minimal number of convex 
polygons. The method has been studied extensively for 2D 
problems and optimal solutions have been suggested. A 
theoretical framework for the 3D case has been outlined in 
[11]. Unfortunately, the use of exact convex decomposition 
is only feasible for relatively simple shapes due to high 
computational costs. For shapes containing holes the 
problem is nondeterministic polynomial-time (NP) hard. 
Moreover, for complex polyhedrons, the decomposition 
typically results in a vast number of components, which are 
practically unmanageable. To alleviate this problem, 
approximate convex decomposition schemes have been 
proposed in [12] and [13], which decompose shapes into 
polygons which are allowed to exhibit a limited amount of 
concavity or group convex sub-components iteratively. 

Geometrical skeletons can be used to represent geometries 
using a set of line segments. A graph-based representation 
can then be extracted from the skeleton. If a large number of 
skeletons are available, methods from graph theory are 
applied to find matching sub-graphs, which represent 
individual components present in multiple geometries [14]. 

An approach for shape decomposition that uses fuzzy 
clustering for object segmentation and cuts to extract regions 
corresponding to features called patches is presented in [15]. 
Based on facet distance information, a probability is 



 
 

 

calculated that two facets belong to a certain patch. Since the 
method is computationally expensive, a decomposition of 
large models is accomplished by generating a simplified 
model on which the decomposition is performed and 
projecting the resulting patches onto the original model.  

D. Image-based Feature Extraction 

Due to the similar target of detecting patterns and relevant 
features in the field of object recognition and image 
processing, in the present paper we focus our analysis on the 
non-negative matrix factorization (NMF). NMF provides 
several characteristics that are also important for 
decomposing 3D objects into components. Based on a pixel 
representation, the NMF scans a database of images and 
decomposes the data set into relevant non-negative features 
and a coefficient matrix. The objective is to reconstruct the 
given database by these two matrices with a minimal error. 
Hence, this method fulfils two requirements for transferring 
it to the 3D object space. It allows an unsupervised execution 
of the algorithm and results in non-negative features, i.e. 
interpretable parts of the designs. The basic concept of the 
algorithm is described in detail in the next section. 

III.  THE NON-NEGATIVE MATRIX FACTORIZATION FOR 

OBJECT DETECTION AND PATTERN RECOGNITION 

A. Non-negative matrix factorization 

The NMF algorithm is a powerful technique for 
decomposing large image repositories into their salient parts. 
The method gained popularity after it was presented in [7] 
for parts-based face recognition (see Fig. 1). The data set of 
faces is decomposed into relevant parts, like different kinds 
of noses, eyes, eyebrows etc. The activation matrix contains 
detailed information of how to combine the extracted 
features to reconstruct the original face image with a minimal 
error. 

 

 
Fig. 1.  Non-negative matrix factorization applied to face image data [7]. 
The feature and coefficient matrix allows the reconstruction of a face image 
which is contained in the original data set with minimal error. 

 
Similarly to PCA, NMF can be used to reveal latent 

features in complex data sets. Unlike other rank reduction or 
matrix factorization techniques, such as PCA, independent 
component analysis (ICA) or vector quantization (VQ) a 
non-negativity constraint is imposed on the factor matrices. 
For many applications this facilitates the interpretation of the 

features. A major advantage is that the algorithm generates 
additional information about the distribution of the parts in 
the database. As a drawback the number of desired base or 
feature vectors F must be specified beforehand. 

The NMF objective is formulated as follows: given a  
non-negative matrix X є ℝN×I which contains in each column 
one of the N-dimensional images of the data set, find two 
non-negative matrices W є ℝN×F

 and H є ℝF×I in such a way 
that the product of both reconstructs the original data set 
with minimal square Euclidean distance. W denotes the 
feature matrix and H the coefficient matrix. 
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Initially two multiplicative algorithms for computing the 

NMF were proposed in [16] which have become a 
benchmark for the performance of all subsequently derived 
NMF variations. These algorithms are closely related to the 
method of gradient descent. In this paper, we will focus on 
the NMF based on the minimization of the square Euclidean 
distance between the original image set and the 
reconstruction which can be understood as a measure for the 
quality of the factorization or the reconstruction error (RE). 
Since it is not possible to compute a solution for W and H 
simultaneously, the objective function is solved by 
alternately applying the update rules (2) until convergence is 
reached. The elements of the matrices are initialized with 
random positive values. This initialization combined with the 
multiplicative nature of the algorithm guarantees that non-
negativity is enforced. The multiplication in the update rule 
and the division are performed element-wise. 
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To avoid divisions by zero, a small number 10-9 is usually 
added to the denominator of the update rules. While the cost 
function (1) is convex in either W or H alone, it is not convex 
for both variables together. Therefore, the factorization 
produced by the NMF algorithm is not unique but can be any 
kind of stationary point, e.g. a local optimum or a saddle 
point. 

B. Alternative NMF Formulations and Extensions 

Several extensions have been derived from the NMF 
which are now explained in more detail. Enforcing 
orthogonality of the NMF base vectors, by introducing the 
constraint WTW = I, results in the Orthogonal NMF (ONMF) 
which targets to extract non-overlapping features. The data 
set is decomposed into distinct parts which are physically 
interpretable. An extension of the NMF algorithm which 
incorporates this constraint has been presented in [17]. The 
constraint is imposed either in the feature or coefficient 
matrix or simultaneously in both. 



 
 

 

An algorithm called Local NMF (LNMF) has been 
introduced in [18] which focuses on an improvement of the 
extraction of localized features. This extension of the 
standard algorithms became necessary because the parts-
based character of the base vectors postulated by Lee and 
Seung is rarely achieved in practice. The algorithm targets 
three additional goals. Firstly, in order to minimize the 
number of feature vectors required to reconstruct the data 
set, the features should not unnecessarily be broken down. 
Secondly, in order to minimize redundancy among the 
feature vectors maximum orthogonality of the base vectors is 
required. The last constraint, maximum expressiveness, aims 
at enhancing the detection of features which contribute most 
to the reconstruction. 

To improve the quality of detected features, an NMF with 
Sparseness Constraints has been proposed in [19] and [20]. 
The activation of sparse vectors follows a probability density 
which is “highly peaked at zero and has heavy tails” [19]. In 
other words the vector elements contain mostly zero values 
and only a few non-zero values. Enforcing sparseness results 
in a decomposition which uses only a few active elements to 
represent the entire data set and facilitates the interpretation 
of the derived features. For 3D design decomposition, a high 
degree of sparseness prevents the emergence of partially 
activated feature vector elements which do not have a 
physical interpretation. Similarly, sparseness of the 
coefficient matrix will result in nearly binary activations of 
the base vectors. Several methods have been devised to 
introduce a degree of sparsity on top of the original NMF 
formulation, which usually involve penalty coefficients 
which must be set manually. In [20] a desired degree of 
sparseness is enforced by augmenting the original NMF with 
a projection step. 

A simple and yet very effective method for introducing 
sparsity in both the feature and the coefficient matrices was 
suggested in [21]. The original NMF factorization is 
extended to X ≈ WSH by a constant, symmetrical matrix S 
which strongly depends on a smoothness factor ω є [0, 1]. 
For ω = 0 the method equals the standard NMF described 
above. Because S is constant the factorization can be written 
as X ≈ (WS)H = W(SH) depending on whether the feature or 
coefficient matrix is currently being evaluated. Due to the 
multiplicative nature of the NMF, smoothing the feature 
vector will require the coefficient matrix to compensate the 
introduced error. This can only be achieved by adding zero 
values to the row vectors of the coefficient matrix, in other 
words H must become sparse. Conversely, smoothing the 
coefficient matrix will enforce sparsity in the feature vectors.  

IV.  A FRAMEWORK FOR THE UNSUPERVISED EXTRACTION 

OF COMPONENTS IN THE 3D DESIGN SPACE 

This section focuses on the development of a framework 
for extracting relevant components from 3D objects. Before 
discussing the problem of determining the optimal number of 
features, the turbine test scenario is introduced.  

A. Scenario: Decomposition of a Virtual Turbine 

To evaluate the performance of the existing NMF 
algorithms in the context of design optimisation, a test 
scenario has been used. In this scenario turbine-like designs 
have been generated consisting of a central cylinder plus a 
variation of up to seven blades attached to it at seven 
possible distinct positions. Two types of blades were created, 
a straight and a bend one. All geometries were given in the 
standard STL-file format containing a triangulated 3D 
surface. Three example designs are depicted in Fig. 2.  

 

     
Fig. 2.  Samples of base turbine designs. 

 
 To generate a large database of differently shaped 
turbines, five base turbines were defined. Each turbine was 
embedded in a free form deformation control volume which 
allowed small shape variations of the blades in tangential 
direction. From each base turbine 100 designs were 
generated by applying small random modifications to the 
blades. All 500 turbines were presented to the algorithm 
which had to calculate the optimal decomposition of the 
designs, i.e. the minimal number of parts which is required to 
reconstruct the database with a minimal RE. 
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Fig. 3.  Transformation of 3D designs into voxel space. 

 
In order to apply image based feature recognition 

techniques to the 3D domain, polygon mesh based designs 
are converted to a voxel based representation. The resulting 
voxel model can be interpreted as a binary 2D image by 
reshaping the 3D voxel matrix into a series of slices and 
connecting them as depicted in Fig. 3. Thereafter, the 
application of 2D NMF algorithms becomes straightforward. 



 
 

 

B. Optimal Number of Features 

The number of base vectors greatly influences the quality 
of the extracted features, as well as the feasibility of applying 
the NMF algorithms to a specific task in general. Since the 
method proposed in this paper aims at achieving a fully 
unsupervised design decomposition, it is essential to 
eliminate the need of a user interaction to specify the number 
of parts which should be extracted as it is required in the 
standard NMF algorithm [7]. 

One approach that we tested consists of finding a 
correlation between the RE and the specified number of 
features. Given a sufficiently large number of base vectors, 
the NMF algorithm should reconstruct the data set with an 
RE close to 0. Therefore, the idea is to execute multiple 
NMF runs, incrementing the number of feature vectors each 
time. It is expected, that the RE will improve significantly 
after each run until the optimal feature number is reached. 
After this point, adding more feature vectors should 
contribute only slightly for a further improvement of the RE. 
As a result a drop in the RE/feature curve should be 
noticeable which corresponds to the optimal feature number. 
Unfortunately, tests showed that implementing this method 
for complex data sets is difficult. The curves are quite 
smooth, making an unsupervised estimate of the feature 
number nearly impossible [6]. 

It has been observed that when specifying a large number 
of base vectors many of the tested NMF algorithms produced 
duplicate features containing only minor variations. The 
phenomenon occurs because all unconstrained NMF 
algorithms attempt to minimize the RE by fully utilizing all 
available base vectors. This observation motivates the idea to 
scan for similarity A = WTW between the base vectors during 
the execution of the algorithm and reduce the number of 
features when redundancy is detected. The feature reduction 
step is either applied when the algorithm converges or after a 
predefined iteration number. For values of Ai≠j which exceed 
a predefined similarity threshold Tsim the features are 
considered redundant, corresponding features are combined 
and the corresponding coefficient row is deleted. This 
method produces acceptable results, however some problems 
remain. Firstly, the optimal time at which the feature 
reduction step is performed is difficult to determine. If the 
reduction step is performed too early, too many vectors 
might be removed limiting the number of features found. 
Naturally, a suitable similarity threshold must be specified. 

An alternative method for finding the optimal feature 
number is to incorporate strong sparsity constraints into the 
used algorithm. Ideally, the penalty added to get a sparse 
coefficient matrix should prevent features which are not 
absolutely necessary from being activated, i.e. the coefficient 
rows corresponding to these base vectors should contain only 
zero values. Experiments showed that the nsNMF [21] 
approach for enforcing sparsity produces very good results. 
The smoothing matrix can be easily incorporated into a wide 
range of NMF algorithms and sparseness is added 

simultaneously to the coefficient matrix and the base vectors 
preventing the generation of partially activated feature vector 
elements. It is possible to adjust the amount of enforced 
sparseness by varying the parameter ω. However, for the 3D 
model decomposition task at hand, a value of ω = 0.5 was 
found to produce very good results for a wide range of data 
sets. As a consequence, only an upper limit of the feature 
number must be selected. Base vectors which are not 
necessary to reconstruct the data set are automatically set to 
zero by the algorithm [6]. 

C. Dilation of 3D Designs to reduce Misalignments 

A problem arises when dealing with voxel images while 
using the Euclidean distance as a similarity measure. Due to 
the nature of the data set which includes a large number of 
voxel images with numerous minor deformations, many parts 
of the design may not overlap. While a human observer 
would classify two features translated by several pixels in 
respect to each other as belonging to the same group, 
mathematically they have a similarity value close to zero. 
The problem is depicted in Fig. 4.  

 
Fig. 4.  Misaligned voxel designs and effect of dilation. 

 
To ensure that similar features are detected as a single 

module by the NMF algorithm, a 3D morphological dilation 
step is applied to the voxel data set by iteratively dilating 
each design with a 3x3x3 kernel until a user specified 
maximum dilation number is reached. The dilation number is 
reduced during runtime when the algorithm converges. This 
reduction process is repeated several times, in order to 
extract thin features. As a consequence, the quality of 
extracted features improved. Nevertheless, it should be noted 
that the dilation number is highly task dependent. It has to be 
adapted according to the occurring design variations in the 
database and the chosen resolution of the voxel space [6].  

D. Method Prerequisites 

In this section, an NMF based algorithm for analyzing 
large repositories containing geometrical data is presented. 
The proposed algorithm aims at extracting a minimal number 
of distinct sub-components present within the data set. The 
base vectors are not segmented more than absolutely 
necessary. By imposing an orthogonality constraint on the 
base vector set, the extracted features are unique and do not 
overlap, resulting in a minimal degree of redundancy within 
the feature-set. 

As physical parts cannot be represented using partially 
activated voxels, ideally the extracted features should 
contain only binary values. This attribute is also crucial for 



 
 

 

the transformation of the extracted features from the voxel 
domain back to a polygon based representation. The binarity 
constraint is enforced by requiring sparsity of the feature 
vectors and intermediate normalization steps.  

Similarly, a very high degree of sparseness is imposed on 
the coefficient matrix in order to eliminate partly activated 
features. Moreover, this way the number of used base vectors 
is minimized. 

Several algorithms satisfy one or more of the requirements 
mentioned above. The LNMF method [18] and feature 
orthogonal NMF algorithms in [17] enforce orthogonality 
constraints while simultaneously minimizing the number of 
active values in the matrices. However, sparsity is enforced 
only indirectly and not in the binary sense described above. 
Sparsity constraints can be added to either the feature or the 
coefficient matrix using a projected gradient approach as 
formulated in [20]. Although this approach produces 
adequate results, the constraints cannot be easily added to 
both factors at the same time. Additionally, to keep the 
amount of human interaction to a minimum it is desirable 
that the number of parameters to be configured is kept to a 
minimum. Algorithms which for example require a tuning of 
the step-size are therefore not feasible. 

Summarizing, based on numerous experiments [6] our 
proposed method uses the orthogonal NMF [17] augmented 
by a smoothing matrix S, as it has been suggested in [21] for 
the original NMF. It was found that this combination 
produces results which are very close to the optimal case. At 
the same time, the implementation and derivation of the 
algorithms is straightforward.  

E. Derivation of the Sparse Orthogonal NMF  

In the following we propose an algorithm for the 
unsupervised extraction of components of 3D designs. To 
begin the derivation of the update rule for the feature matrix, 
we construct an extended objective function. This objective 
function which results in equation 3 is constructed using the 
Euclidean norm based NMF cost function extended by the 
constant smoothness matrix S, the orthogonality penalty term 
WTW – I = 0 and a Lagrangian multiplier λ. While the 
derived approach bares similarity to the tri-factorization 
proposed for clustering in [17], in our case S is a constant 
matrix which is used to impose sparseness in W and H. 
Orthogonality is enforced only in the feature matrix and the 
update step for the smoothing matrix vanishes. The 
derivation is analogous to the approach in [17] augmented by 
a smoothing matrix S. 
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Using the gradient descent approach outlined by Lee and 

Seung the update rule for W is derived. 
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Next, the derivative of L with respect to W is calculated 
and ε is set so that the additive components are eliminated. 
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Substituting the equations above into equation 4 results in 

the update rule for W.  
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The Lagrangian multiplier λ is approximated using the 
Karush-Kuhn-Tucker (KKT) condition ∇WL(W,λ) = 0. To 
ensure the non-negativity of the update, the inequality 
SHHTS + λ ≥ 0 must hold, which is the case for: 
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Substituting λ into (7) results in the final form of the 

update rule. Additionally, the square root of the right hand 
side of (7) is taken in order to ensure convergence [17]. 
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 Because orthogonality of the coefficient matrix is not 
required, the standard NMF update step for H is utilized. W 
is substituted with WS to incorporate the sparsity constraint.  
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The initialization of the coefficient matrix and the base 

vectors has a strong influence on the results of the NMF. The 
effects of initialization have been summarized in [22]. The 
most basic approach is the initialization of both matrices 
with random non-negative values. However, this method 
typically leaves traces of noise in the feature vectors when 
factorizing binary voxel images. For our case a 
homogeneous initialization of the feature matrix with Wij  = 1 
provides very good results. An even more suitable alternative 
is to apply a fast clustering algorithm such as K-means to the 
input data, using each clusteroid to initialize a feature matrix 
column. As a consequence, all input voxel images are 
contained in one of the base vectors and therefore the 
probability that a feature is missed is minimized. On the 
other hand, large portions of each feature image which do 
not contain any information are fixed to zero, thus speeding 
up convergence. The likelihood of premature convergence to 



 
 

 

a local optimum of the algorithm is greatly reduced. For the 
coefficient matrix a random initialization with a lower bound 
constraint Hij > 0 was used. The complete algorithm used in 
this paper is outlined in the following. The symbol ⊙ denotes 
element-wise multiplication, the symbol ⊘ denotes element-
wise division. 

    
Algorithm 1: Sparse Orthogonal NMF Algorithm. 

 nz  ← 1 × 10-20 

 D   ← maxDilation 
 load image-set X 
 XD  ← dilate3D(X,D) 

L2  ← (I ⊙ 5.0))( D
T
D XX  

XD  ←
1

2
−LX D

 

initialize feature matrix W columns using K-means 
initialize coefficient matrix H with random values 
initialize smoothing matrix S according to ω, 
repeat 

XD  ← dilate3D(X,D) 
L2  ← (I ⊙ 5.0))( D

T
D XX  

XD  ←
1

2
−LX D

 

repeat 
Ws  ← (WS)T 

H   ← H ⊙ (WsXD) ⊘ (( T
ssWW )H + nz) 

Hs  ← HTS 
W  ← W ⊙ ((XDHs) ⊘ (W(WT(XDHs)) + nz))0.5 

L2  ← (I ⊙ (WTW))0.5 

H   ← L2 H 
W  ← 1

2
−WL  

until convergence 
D   ← D – 1 

until  (D < 0) 
 

F. Feature Extraction Results of a Turbine Test Scenario 

The tests presented in this paper were conducted on five 
turbine-like design groups. A cross-section showing the top 
of a sample of each design group is depicted in Fig. 5.  

 

   

  
Fig. 5.  Cross section at the top of the five base turbines. 

For each design group 100 slightly deformed versions were 
generated using the standard FFD technique as described 
above resulting in a total number of 500 designs. To apply 
our proposed framework two parameters have to be specified 
explicitly. The maximum number of feature vectors was 
initially set to 15 and as smoothing factor a value of ω = 0.5 
was used, as it indicated to provide robust results for 
different test setups. The convergence of Algorithm 1 is 
generally assumed when the RE ceases to decrease 
significantly, e.g. the first 3 digits do not change for 10 
iterations. With respect to computation time, typical runs 
took approximately 2 hours on an AMD Opteron 250,  
2.4 GHz system with 4 GB memory. The 3D results 
produced by the sparse orthogonal NMF combined with 
multistage dilation are depicted in Fig. 6. During runtime of 
Algorithm 1 the initial number of 15 features has 
automatically been reduced to 5. All 5 orthogonal features 
necessary to reconstruct the input data set with a minimal RE 
are extracted correctly. Moreover, the modules contain 
almost no artefacts and no voxels with low activation which 
strengthens the interpretability of each feature. The central 
cylinder is not extracted explicitly since it is present in all 
designs without any variation. As a result of the sparsity 
constraint only a minimal number of features is activated in 
the coefficient matrix partially shown in Fig. 7.  

 

 

 
Fig. 6.  Extracted features resulting from the Sparse Orthogonal NMF. 

 

 
Fig. 7.  Coefficient matrix corresponding to the extracted features in Fig. 6. 

 
In Fig. 7 each activated pixel in each 15 pixel-sized 

column indicates which features are used to reconstruct a 
certain design. The level of activation is given by the 
brightness of the pixel colour. Hence, e.g. designs similar to 
base turbine 1 are composed of features b and e, and those 
close to turbine 3 of features a and e. To confirm the 
independency of the algorithm from random initialisations 
the scenario has been run multiple times. In all tests the same 

1 2 3 

4 5 

a b c 

d e 



 
 

 

features were found underlining the good reliability of the 
proposed method. 

V. CONCLUSIONS 

In the present paper, we focused on a transfer of methods 
which have been developed in the field of object recognition 
to the field of 3D design development. The similar approach 
of an unsupervised detection of meaningful patterns in 2D 
image data sets motivated our proposed method for 
decomposing 3D designs. The NMF characterised by 
creating a parts-based representation consisting of  
non-negative components has been favoured. We propose a 
sparse orthogonal NMF algorithm, an augmentation of the 
orthogonal NMF with a constant smoothing matrix, which 
results in slightly modified update rules. This technique has 
been applied to voxelized 3D models. It has been shown that 
this method allows an unsupervised and autonomous 
decomposition of large numbers of 3D models stored in a 
data repository into salient components. As parameters, 
mainly the maximum number of features and the smoothing 
factor ω  have to be specified. For ω we suggest 0.5 which 
has proven a good reliability. In addition to the 
decomposition of salient components, the presented method 
generates also information about the distribution of the parts 
within the database which allows an identification of outliers. 

 Furthermore, some constraints that are vital for a correct 
and meaningful decomposition are highlighted. These 
include feature vector orthogonality and a high degree of 
sparseness in both the feature and coefficient matrices. As a 
result, the problem of determining the correct number of 
parts is largely eliminated and only an upper limit on the 
number of desired features must be specified. Finally, the 
importance of voxel model dilation was emphasized in the 
context of module extraction which minimizes the number of 
features necessary for a complete representation of a data set. 

Some aspects of the methods presented in this paper 
remain to be evaluated in future works. The possibility of 
incorporating rotation and position invariance of the 
extracted features [24], the handling of outliers and the 
coupling of local real world performances to local design 
features are some of them. Finally, the automized integration 
of components into an FFD design optimisation framework 
remains the main target.  
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