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Abstract

Due to intuitive training algorithms and model representation, prototype-
based models are popular in settings where on-line learning and model inter-
pretability play a major role. In such cases, a crucial property of a classifier
is not only which class to predict, but also if a reliable decision is possible
in the first place, or whether it is better to reject a decision. While strong
theoretical results for optimum reject options in the case of known probability
distributions or estimations thereof are available, there do not exist well-
accepted reject strategies for deterministic prototype-based classifiers. In this
contribution, we present simple and efficient reject options for prototype-based
classification, and we evaluate their performance on artificial and benchmark
data sets using the example of learning vector quantization. We demonstrate
that the proposed reject options improve the accuracy in most cases, and
their performance is comparable to an optimal reject option of the Bayes
classifier in cases where the latter is available. Further, we show that the
results are comparable to a well established reject option for support vector
machines in cases where learning vector quantization classifiers are suitable
for the given classification task, even providing better results in some cases.
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1. Introduction

The digitalisation of many domains has turned automated classification
algorithms into a standard tool in diverse application areas such as fraud de-
tection, image recognition, handwritten digit classification, etc. Dramatically
improved sensor technology and the increasing availability of high quality
digital information carries the promise of radically new possibilities offered
by machine learning technology in high impact domains such as personalised
medicine [1]. In biomedical applications or safety-related fields, however, a
wrong classification can severely affect the applicability of a classifier. The
reliability of a classification constitutes a critical property of any method
used in such domains [2, 3]. In these fields, the reliability of classification
results is as important as the accuracy of a classifier. It is often better to
refuse the classification of a given data point rather than to predict a class
with uncertain assignment [4]. In case of doubt, data can then be analysed
by a human expert or it can be marked for further tests instead of a direct,
uncertain classification.

Due to this demand, there exists an extensive literature of how to extend
classification rules by reject options in an optimum way. The classical work of
Chow [5] formalises the underlying learning scenario in terms of a loss function
where the costs of a reject can be lower than the costs of a misclassification
depending on the actual circumstances. In such cases, an optimum reject
option can be derived with respect to these costs, provided class probabilities
are known. Since the latter is usually not the case, the approach [6] studies
the setting of plugin-rules for an estimation of the class probabilities. Consis-
tent rules can be derived provided the probability estimation is of sufficient
quality and no density mass accumulates in regions of the reject boundary.
While providing a very elegant theoretical framework, the results are not fully
satisfactory for a wide range of applications: first, the technology requires
an estimation of the underlying class probabilities, which is often difficult
in practice. For this reason, many approaches center around possibilities
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to reliably estimate class probabilities from given classifiers such as support
vector machines (SVM), see e.g. the approaches [7, 8] for technologies to
approximately turn two-class or multiple-class SVMs, respectively, into fully
probabilistic models. These methods, however, assign additional computa-
tional burden to the classifier and do not always allow reliable results. Second,
the resulting loss function is no longer convex and hence its optimisation
can become problematic. See e.g. the approaches [9, 10] to approximate the
setting by convex loss functions.

Due to these problems, there has been a strong interest how to devise
reject strategies which can directly be used for a given (deterministic) classifier.
As discussed in the article [11], there are two main reasons for an uncertain
classification: (i) ambiguous regions, e. g. points lie near class borders or (ii)
outliers which are caused by noise in the data or which are examples of a
new type that is not yet represented by the actual model. Based on such
considerations, quite a few heuristic reject strategies which capture these
causes have been proposed [12, 13, 14, 15, 16, 11].

Prototype-based classification constitutes a powerful machine learning
scheme that has the advantages of an intuitive model understanding and
sparse representation [17], leading to very interesting results e.g. in the
biomedical domain [18]. One of the most popular examples for a supervised
prototype-based model is offered by learning vector quantisation (LVQ) [19] for
multi-class classification tasks. Due to the representation of models in terms
of prototypes, this approach is particularly suited for on-line scenarios [20]
or lifelong learning [21]. While classical LVQ models have been introduced
on heuristic grounds, modern variants are based on cost-function models
like generalized LVQ (GLVQ) [22], or robust soft LVQ (RSLVQ) [23]. This
enables a principled treatment to guarantee the generalization performance
and learning convergence of the resulting classifier [24, 25]. Interestingly,
prototype-based models provide a particularly efficient framework in which
to integrate the powerful concept of metric learning such as presented in
the overview [26]. Prototype models offer efficient metric parametrisation
strategies by their decomposition of the data space into homogeneous receptive
fields, see [25, 27|, for example. In this contribution, we will focus on different
LVQ schemes, and we will investigate different efficient reject strategies which
can be directly combined with classical, powerful LVQ classifiers.

While probabilistic classification models like Gaussian mixture models or
Bayes classifiers directly provide a reject option based on their class probabil-
ities, deterministic models such as prototype-based approaches often do not.



Only few methods in the literature address prototype-based reject options
without estimating probabilities [14, 28, 13] thereby lacking a comparison to
other well established reject options. Common approaches for rejection usually
rely on an estimation of class probabilities on top of a classifier to enable an
optimum rejection following the approaches [5, 6], see e.g. [11, 29, 30, 7, 8].

In this contribution we will propose several simple, efficient prototype-
based reject options: We will consider reject options based on the distance of
the point to the classification boundary, based on the indication of the point
being an outlier, a combination of both, as well as a simple direct measurement
inspired by the GLVQ cost function, which we will dub ’relative similarity’.
In addition, we will consider the behaviour of the probabilistic model RSLVQ
together with an optimum reject as specified by probabilistic plugin-rules.
We will compare their performance to the optimal reject option of the Bayes
classifier in a case where the latter is available. Further, we will compare
their performance to a well established reject option of the support vector
machine (SVM) [7, 8]. We will demonstrate that the proposed reject options
can have the same performance and even provide better results in some cases.
In particular, the relative similarity seems an excellent compromise between
a reliable reject measurement and its efficient computation.

2. Prototype-based Classification

We are interested in in classification scenarios in R™ with Z classes,
enumerated as {1,...,Z}. Prototype-based classifiers are defined as follows:
A set W of prototypes (w;,c(w;)) € R* x {1,...,Z}, j € {1,...,w} is
specified which should represent the data and its underlying classes in a
proper way. Every prototype w is equipped with a class label ¢(w). Then,
given a new data point, the winner takes all scheme (WTA) is used for
classification:

c(x) = ¢(w;) with [ = arg min d(w, x) (1)
w;eW
where d is a distance measure, often the standard Euclidean distance. Hence
the closest prototype w;, the winner, determines the class label of a new data
point x; it is also called the best matching unit (BMU). Training aims at an
optimum determination of prototype locations given a set X of training data
(x;,9:) € R* x {1,...,Z}.

Note that prototype-based models are very similar to k-nearest neighbour

[31] (k-NN) classifiers due to their strong dependency on similarity calculations.
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A k-NN classifier simply stores all training points as 'prototypes’ and predicts
a label according to the closest (k = 1) or the k closest units. In contrast,
prototype-based training models aim at a sparser representation of data by a
predefined number of prototypes. Training techniques can be divided into
methods which are based on heuristics or alternatives which are derived from
an explicit cost function. Original LVQ as proposed by Kohonen relies on the
heuristic Hebbian learning paradigm [19], for example, with surprisingly good
results in typical model situations, see [32].

Here, we will focus on extensions of LV(Q which are derived from explicit
cost functions such as generalized LVQ (GLVQ) [22] and robust soft LVQ
(RSLVQ) [23]. These techniques have the advantage that convergence guar-
antees directly follow from their derivation. Further, an extension to more
complex scenarios such as powerful metric adaptation is directly possible
based on the formal objective function [25], the generalized matrix LVQ
(GMLVQ). In addition the local version of the GMLVQ, the LGMLV(Q [25] is

used in one experiment. This algorithm uses one local metric per prototype.

2.1. GLVQ and GMLV(Q and its local version

Sato & Yamada [22] generalize the LVQ rule based on the formalisation
as cost minimisation with the cost function

g (0 ()
£= 3 (Fag ) 2

The resulting model is dubbed generalised LVQ (GLVQ). The function ®
has to be monotonic increasing, e. g. the logistic function. d* is the distance
to the closest prototype w¥ of the correct/incorrect class for a data point
x;. GLVQ optimizes the location of prototypes by means of a stochastic
gradient descent based on this cost function (2), see e.g. [33] for a proof of
its validity at the boundaries of receptive fields. A generalization of GLVQ
towards an algorithm with metric adaptation has been published under
the acronym GMLVQ [25], which is a short hand notation for generalized
matrix LVQ. This takes into account a positive semi-definite matrix A in
the general quadratic form which replaces the metric d of the GLVQ), i.e.
d(wj,x) = (x — w;)TA(x — w;). The local version, the LGMLVQ uses a
single metric d;(w;,x) = (x — w;)7A;(x — w;) for each prototype w;.

The cost function (2) strongly correlates to the classification error since a
data point is classified correctly iff the nominator of the cost function is smaller




than zero. Further, the nominator can be linked to the hypothesis margin
of the classifier which influences its generalization ability [25]. Note that
the value of the fraction ranges in the interval (—1,1) with —1 indicating a
certain classification because d* is much smaller than d~. Due to its excellent
performance in practice [34], we will consider a reject option related to these
costs in the following.

2.2. RSLVQ

Robust soft learning vector quantization [23] is based on the assumption
of a Gaussian mixture model with labelled types. Training is derived thereof
as an optimisation of the data log likelihood:

p(xi, yil W)
E= glogp(inXn Zl BTG

p(xi|W) = >, p(w;)p(xi|w;) is a mixture of Gaussians with uniform prior
probability p(w;) and Gaussian probability p(x;|w;) centred in w; which
is isotropic with fixed variance and equal for all prototypes or, more gen-
erally, a general (possibly adaptive) covariance matrix. The probability
p(xi, yilW) =32, 5c(x ) p(wj) (xi|w;) (67 is the Kronecker delta) restricts to
mixture components with correct labelling. Relying on a probability model,
RSLVQ provides an explicit certainty value p(y|x, W) for every pair x and v,
paying the price of a higher computational complexity for training.

3. Global Reject Option

A reject option relaxes the constraint on a classifier to provide a class
label for every input. We will consider reject options which are based on
certainty measures. Given a certainty measure

r:R" — R, x — r(x) (3)
for a data point x and a threshold 6 € R, a simple reject option is to reject x

ift
r(x) < 6. (4)

If a data point is rejected no classification will take place and the decision is
postponed. We denote such a reject option as ‘global reject option’ because
the threshold 6 is chosen uniformly for the whole input space. Extensions to
local threshold strategies are possible, but out of the scope of this article [35].
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As mentioned in [11], uncertainty can have two different reasons: data
points being outliers, or data points being located in ambiguous regions. As
we will discuss, certainty measures can take these two causes into account to
varying degrees. Further, certainty measures differ according to their scaling,
allowing a uniform threshold @ iff r(x) is normalized, and they differ according
to their computational complexity and on-line computability, i.e. efficiency.
We will focus on different possible choices for natural certainty measures in
the following section.

3.1. Certainty Measures

Common choices for a rejection measure r are based on estimated proba-
bilities or on heuristics. Measures based on probabilities often either require
a probabilistic classification model [5, 36] or a probabilistic model on top of
the trained classifier to estimate the probabilities [11, 29]. Both approaches
are computationally expensive. Heuristic measures can be based on distances
[14, 7, 8, 37] or on the neighbouring class labels [28]. In the following we
introduce two probabilistic measures based on a probabilistic classification
model and several heuristic measures based on distances.

Note we use d as symbol for all metrics. The definition of d for the used
algorithms can be found in the list below:

e GIVQ: d(w;,x) = (x — w;)T(x — w;)
e GMIVQ: d(w;,x) = (x — w;)TA(x — w;)

e LGMIVQ: dj(w;,x) = (x — w;)TA;(x — w;) for each prototype w;

Bayes. The Bayes classifier provides class probabilities for each class provided
the data distribution is known. The reject option corresponding to the
certainty measure

TBayes<X) - 121]a<xzp(j|x) (5>

is optimal in the sense of an error-reject trade-off [5]. We will use it as
ground truth for an artificial data set with known underlying distribution.
Figure 1 shows the contour lines of Bayes (5) for an artificial two class problem
with known class densities. In general, the class probabilities are unknown,
such that this optimum Bayes reject option can serve as Gold standard for
artificially designed settings with ground truth only.
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Figure 1: [37] Contour lines of the measures for artificial 2D data. The heading of a plot
indicates which measure is used. This two class problem consists of data of two Gaussians
(symbols: <, >). Black squares are GLVQ/RSLVQ prototypes.

Conf. Classifiers based on probabilistic models such as RSLVQ provide a
certainty value of the classification:

TConf (X> = 1I£l]a<XZ ﬁ(]lx) (6)



with the estimated probability p(-) as obtained during training. We can use
this certainty measure for every setting where a probability value is obtained
while training. Hence these settings fall under the framework of plugin-rules
as investigated in [6]. One problem is caused by the fact that it is often
unclear how good the empirical estimation p(-) resembles the underlying
probability. This is particularly problematic in supervised settings where the
objective is often modelled as a good classification accuracy of the model
rather than an exact estimation of the probability values.

This measure is normalized and, depending on the probability model, it
takes into account ambiguous regions (Fig. 1). Note that it does not necessarily
reject outliers, depending on the quality of the empirical estimation. A severe
drawback is that this measure can only be used for probabilistic models such
as RSLVQ, and its accuracy relies on the (often problematic) quality of the
density estimation. In our case, we are faced with the higher computational
complexity of RSLVQ as compared to its deterministic counterparts GLVQ or
GMLVQ. In the following, Conf serves as baseline for an evaluation whether
simple geometric measures can reach (or even outperform) the quality of an
explicit probabilistic modelling.

RelSim. The relative similarity is a GLVQ cost function (2) related measure
which is a slight modification of the p(x) rejection, first mentioned in [22]
where the argument of the ® function in (2) is denoted as p(x). RelSim [37]
takes the distance of the closest prototype (BMU) dt and the distance of
closest prototype of a different class d~ for a new unlabelled data point into
account. This means the prototype which belongs to d* defines the class
label of this unlabelled data point if it is not rejected. The measure calculates
values according to:

d- —d*
elsim (X) = ————— . 7
TRelsim (X) d +dt (7)
The relation rgegim(x) = —u(x) is valid for the function u(x) in [22] in the

case of a GLVQ classifier. The measure ranges in the interval (0, 1) where
values near 1 indicate a certain classification and values near 0 are an indicator
for uncertain class labels.

The values of d™ and d~ are already calculated by the used algorithm and
therefore no additional computational costs are caused. Furthermore RelSim
(7) depends only on the stored prototypes W and the new unlabelled data
point x. Therefore no additional storage is needed, and the technique is well
suited for on-line computation. Figure 1 shows the contour lines of RelSim (7)



for an artificial two class problem with trained prototypes by the GLVQ. The
values near the class border are low. This means the measure correctly detects
ambiguous rejection. In addition, as can be seen from the circular contour
lines (in the Euclidean metric), a rejection of outliers is included. Therefore,
this measure seems a good compromise between an efficient measure and a
richness of its representation.

Dist. As certainty measure, we consider the uniqueness of the classification
as measured by the distance of a point to the closest decision boundary of
the classifier. The distance of a point x to the hyperplane separating the
receptive fields of w' and w™ is given by

|dF —d”]|

T 2wt — w2

rpist(X) (8)
provided every class is modelled by only one prototype. Figure 1 shows
the contour lines of Dist (8) for an artificial two class problem with trained
prototypes by the GLVQ.

Note the distance between the prototypes ||[w™ —w~||? has to be calculated
as the distances d*.

For settings where more than one prototype per class is used, the under-
lying topology has to be estimated using e. g. Hebbian learning [38]. Then,
(8) can be used for the pairs of prototypes that define the corresponding
class border. An experimental evaluation has shown that the approximation
of Dist based on d*,d”,w", w~ (even if w" and w~ do not define a class
border) provides good results with less effort compared to the correct cal-
culation. Therefore, we always use this approximation, avoiding additional
computational burden.

Dist can be computed efficiently, but its range is not normalized. It
depends on the stored prototypes W, the distance calculation, i.e. d*,d~
and the new data point x. This means no additional storage is needed and
the needed values for the Dist calculation can be used directly without much
additional computational effort.

Note that Dist and the reject option of the SVM [7] are closely related
in case of a binary setting and one prototype per class in a prototype-based
classification model since both models determine one separating hyperplane
in this setting. Dist takes the pure distance of a data point to the hyperplane
as rejection measure. The rejection of the SVM scales the distances to the
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hyperplane with an adapted sigmoid function. This can cause a shifting of
the classification border especially if the classes are unbalanced.

d*. Outliers can be identified by their distance to the closest prototype d*
(Fig. 1 ). We use this information for an outlier-based certainty measure as
basis for a reject option:

rer(x) = —d*(x) . 9)

d™ uses the stored prototypes W and the distance calculation. Therefore this
measure is efficient. Note, that the measure d* is not normalized.

Comb. This measure combines the previous two reject options

TComb(X) - (TDist (X)7 rq+ (X>> <1O>

leading to a reject strategy based on a threshold vector 6 = (61,65): x is
rejected iff
Tpist(X) < 01 or rg+ (X) < 6y . (11)

The measure takes into account ambiguity and outliers, but it requires two
threshold parameters. For evaluation, we refer to the best combination of
both thresholds determined via exhaustive search. This combination is no
longer efficient since it requires a loop over the regime of threshold vectors,
but it can excellently serve as a baseline for comparison.

3.2. Characteristics of the Measures

These measures display different principled properties, which we discuss in
the following. Table 1 shows an overview of a few relevant formal properties.
The top row lists the different measures whereby SVM refers to a rejection
based on an SVM and standard rejection techniques as implemented in
LibSVM [39]. The first column states the properties for comparison. The
first row specifies requirements of the techniques. The measures RelSim, d™,
Dist and Comb do only rely on a set of prototypes W, whereas the measures
Conf and Bayes need class probabilities or its estimations, respectively. For
the reject option as provided by SVM the training set needs to be stored.

The next property specifies the co-domains of the measures. This is
particularly interesting since it indicates whether a natural predefined choice
of the threshold @ is possible (for a normalised co-domain) or not (if the
co-domain is unlimited). Still, even for the same co-domains such as for
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RelSim and Conf, it is unclear whether their interpretation coincides and
hence similar thresholds have the same meaning.

The next property, comparable scaling, makes this more precise. It
refers to the question whether the provided value displays the same range
independent of the location of data points in the data space, or whether the
scaling can severely change with different locations in the data space and
different receptive fields. In the latter case, it is likely that global threshold
strategies do not provide satisfactory results, but local threshold values have
to be used. Provided measurements refer to probabilities such as for Conf
and Bayes, a uniform scaling is present. For all other measures (RelSim, d™,
Dist, Comb) a uniform scaling is not guaranteed since relative distances can
vary severely across the data space.

The next two lines refer to the type of rejects offered by the measures: Do
they detect outliers and/or ambiguous regions, respectively?

A very interesting property is summarised in the final row: Can the
measures be used in on-line settings, i.e. is it computable based on a finite
number of parameters of the model? The proposed measures (RelSim, d*,
Dist, Comb, Conf) can be used in on-line settings because they only depend
on the prototypes W. This means if the model is adapted in an on-line
way the rejection measures takes these changes immediately into account
because they are based on distances from data to prototypes only. For Bayes
and SVM rejection this is not possible in an on-line way although there
exist on-line training schemes of these algorithms: The rejection techniques
require the whole training data for its computation, hence an update of the
reject measure cannot be done in on-line settings with a finite amount of
memory. Therefore a previous calculated rejection measure fits no longer to
the permanent updated model of a Bayes or SVM classifier trained in an
on-line way.

4. Experiments

After these theoretical considerations, we evaluate the results of the reject
strategies for different data sets. In all cases, we use a 10-fold repeated cross-
validation with ten repeats for RSLVQ, GLVQ, and (L)GMLVQ with one
prototype per class. We compare our results with the results of the standard
rejection measure of SVM [7, 8] implemented in the LibSVM toolbox [39].
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RelSim d* Dist Comb Conf  Bayes SVM
Requirements W w w w p(jlx) p(jlx) data
Co-domain (0,1) (—00,0) (0,00) (—o00,00) (0,1) (0,1) (-1,1)

Comparable

Scaling no no no no yes yes no
Outliers yes yes no yes no no no
Ambiguity yes no yes yes yes yes yes
On-line yes yes yes yes yes no no

Table 1: Properties of the analysed measures

4.1. Evaluation Scheme

As already mentioned, we use one global threshold 6 for rejection. We
evaluate the performance by means of the resulting accuracy reject curves
(ARC) [40]. The latter is defined as follows: For a given value 6 the data
decompose into two sets X = Xy U R. The set R contains the rejected data
points; Xy contains the remaining data points which are classified. For an
increasing threshold @ starting from no reject (6 = min, r(x;), original model)
to full reject ( @ = max;r(x;), no data point is classified any more) the
cardinality of R increases whereas the cardinality of Xy decreases. In the
ARC, the relative size of | Xy|/|X| versus the accuracy on Xy is reported by
means of a variation of the threshold # in the interval [min; r(x;), max; r(x;)].

In Fig. 2 to 4, we display the ARC averaged over 100 runs per data set
and rejection measure. For numerical reasons, we do not display the point for
| Xy| = 0 where no point is classified. Note that the single curves can end in
different points with maximum threshold value. To ensure a reliable display,
we only report those points where at least 80% of the repeats deliver a value.

4.2. Artificial and Benchmark Data

We report experiments on one artificial data set with known ground truth
for the Bayes optimal rejection and four benchmarks.

Gaussian clusters. This data set contains two artificially generated overlap-
ping 2D Gaussian clusters. These are overlaid with uniform noise. (parameters:
pe = (—4,4.5), p, = (4,0.5), 0, = (5.2,7.1), 0, = (2.5,2.1))
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Tecator data. The tecator data set consists of 215 spectra with 100 spectral
bands ranging from 850 nm to 1,050 nm [41]. The task is to predict the fat
content of the probes, which is turned into a two class classification problem
to predict a high/low fat content by binning into two classes of equal size.

Image Segmentation. The image segmentation data set consists of 2,310
data points representing small patches from outdoor images with 7 different
classes with equal distribution such as brick-face, sky, ...[42]. Each data
point consists of 19 real-valued image descriptors.

Haberman. The Haberman survival data set contains 306 instances from
two classes indicating the survival for more than 5 years after breast cancer
surgery [42]. Data are represented by three attributes related to the age, the
year, and the number of positive axillary nodes detected.

COIL-20. The Columbia Object Image Database Library (COIL-20) consists
of gray scaled images of twenty objects [43]. The objects are rotated in 5°
steps, so that there are 72 images per object. The data set contains 1,440
data points which are 16,384 dimensional. We use PCA [44] to reduce the
dimensionality to 30. The task is to classify each single object.

4.8. Results

We report the effect of the different reject strategies for the different models
RSLVQ, GLVQ, and (L)GMLVQ where applicable: We can combine RSLVQ
with Conf since the former provides explicit probabilities. All techniques can
be combined with d*, Dist, and Comb, since these measures depend on the
provided prototypes only. For GLVQ and GMLVQ, the measure RelSim is
already computed while training. For the artificial data set, the ground truth
in the form of the data distribution is available, such that we can compare to
the optimum Bayes decision.

4.8.1. Ezxperiments on Artificial Data

Figure 2 displays the results for the Gaussian clusters data set. Note that
errors mostly stem from ambiguity in the overlapping region, such that a
reject option due to outliers is less efficient for this setting. We can observe
that the probabilistic model RSLVQ together with a confidence estimation
well resembles the optimum reject strategy of a Bayes classifier. GLVQ
does not reach the performance of the Bayes classifier because it relies on
the standard Fuclidean distance. Hence it cannot account for the different
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Figure 2: [37] Accuracy reject curves for different reject options when applying RSLVQ,
GLVQ and GMLVQ models trained on Gaussian clusters. We display the relative size of
the remaining data points Xy vs. the accuracy of the classifier on this set.

standard variations in the two axes of the two Gaussians. Matrix adaptation
improves this behaviour, and RelSim as well as Dist and Comb reach the
performance of the optimum Bayes reject in the (important) regime of up to
25 % rejected data points. For more rejects, the accuracy of RelSim drops
due to its reject of outliers. Overall, this setting shows that the reject options
as proposed in this contribution which rely on the distance to the decision
boundary or the confidence value are well suited for a close to optimum reject
in the interesting regime, provided the underlying prototype-based model is
sufficiently flexible to capture the nature of the data.

4.3.2. Benchmark data

Figure 3 displays the average ARCs of the rejection measures for the
benchmark data sets. Mere outlier detection d* does not work well on average,
which can be attributed to the fact that most errors can be accounted for by
ambiguities rather than unknown types. This principle might become more
important in on-line scenarios where the underlying distribution is subject to
trend.

Dist and Conf show similar results for the RSLVQ models, with an
exception being the Coil data where dist is even superior to Conf. This
finding indicates that the more efficient measure Dist can be sufficient for a
reliable reject option, making the (more complex) estimation of probability
values superfluous. For the Coil data, Dist is even superior, which indicates
that the plugin estimation of the probability by the RSLV(Q values is not a
good estimator for these data.

GLVQ displays results which are mostly inferior to RSLVQ, while GMLVQ
can reach the same or even better accuracy. This can be attributed to the fact
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Figure 3: [37] Accuracy reject curves for several prototype-based classifiers trained on
benchmark data sets.

that GLVQ does not process sufficient flexibility of data representation since it
is restricted to isotropic isobars with uniform scaling over all prototypes, while
RSLVQ can change the bandwidth as a meta parameter, and GMLV(Q can
even adapt the local metric according to the data. For GLVQ, Dist and RelSim
mostly provide comparable results in the relevant regime of up to 25 % rejected
data points. Interestingly, taking into account an optimum combination with
outlier detection can improve this performance, albeit outlier detection alone
(d") is not very performant. This combination, however, does not offer an
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efficient technology since it requires an additional loop over possible threshold
vectors.

For GMLVQ), RelSim and Dist both provide excellent results which are
comparable to or even better than a fully probabilistic modelling as offered by
RSLVQ and Conf. Hence it offers a good compromise between model accuracy
and efficiency of the reject option. In addition, it has the benefit that an
adaptation to on-line scenarios is easily possible, the measures depending on
the position of the prototypes only.

4.3.8. Comparison to SVM Rejection

We compare the results of the rejection measures Conf, Comb, Dist,
and RelSim with a state of the art reject option on top of an SVM model.
This enables us to compare the efficiency of the proposed reject options to
alternative models which are not based on prototypes. For the SVM reject
option for binary classes, a technology which rescales the distance to the
boundary has been proposed in [7]: A sigmoid function is fitted against the
binned distances of the training data points to the separating hyperplane
such that probabilities which are estimated from the data are matched as
closely as possible. This approach can be extended to multi-class settings by
means of a pairwise coupling as proposed in [§].

Figure 4 displays the results of RSLVQ and GMLVQ as taken from Fig. 3
and results for the LGMLV(Q in comparison to SVM for the relevant reject
options and the data sets Tecator, Image Segmentation, Habermann, and
Coil. For GMLVQ and RSLVQ all data but Habermann, SVM is capable
of obtaining a better accuracy at the price of a more complex model: The
average number of support vectors per model is 14.96 for Tecator, 265.81 for
Image Segmentation, and 145.51 for Haberman. For the sake of completeness,
we show the results for Coil, although the SVM reaches an accuracy close to
100%, hence the reject option cannot be evaluated in a meaningful way. The
difference between the accuracy of the SVM and the LGMLVQ are very small
because the latter is powerful due to its trained local metrics.

Interestingly, in all cases reject options decrease the difference of the
accuracy provided by SVM and the accuracy of RSLVQ or GMLVQ. Hence
the proposed reject options seem to provide a very suitable strategy as
concerns the acquired performance. For the Haberman data set, the results
are even superior as compared to SVM. Hence prototype-based methods such
as (L)GMLVQ or RSLVQ together with efficient reject options such as Conf
or RelSim offer a good compromise of a sparse classification model enhanced
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with the possibility of reject, and a good classification accuracy.
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Figure 4: Comparison to SVM rejection

5. Conclusion

We have proposed and systematically compared several reject options
for prototype-based techniques using the example of learning vector quanti-
sation. In particular, we have proposed efficient geometric reject measures
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for prototype-based approaches which have the potential of direct on-line
applicability. We have compared these direct measures with statistical reject
strategies which are based on a full (more demanding) probabilistic modelling,
and with state of the art rejection for SVM on benchmark data sets. Interest-
ingly these settings constitute typical representatives of popular classification
paradigms: (L)GMLVQ as a popular LVQ scheme based on a cost function
and motivated by large margin optimisation, incorporating the very powerful
framework of metric learning in its model; RSLVQ as statistically motivated
discriminative model; and, in comparison, SVM as discriminative large mar-
gin model which, unlike sparse prototype-based representations, relies on a
representation of class boundaries in terms of support vectors.

We have demonstrated that efficient geometrically motivated measures
(RelSim, Dist) can be used as efficient reject options, providing results which
are comparable to optimum Bayes reject strategies where available, but
releasing the burden of explicit statistical modelling. Interestingly, geometric
measures reach the accuracy of fully probabilistic models used as plugin-rules.
Further, the reject options approach the performance of SVM techniques
equipped with state of the art reject options. In such settings, however,
SVM usually displays a better overall accuracy for the full model due to
its ability to use a flexible description of the class boundaries in terms of
support vectors rather than a sparse prototype-based representation only.
We would like to stress the fact that the proposed reject measures are not
restricted to LVQ classifiers but they have a broader scope: On the one hand,
the training technique is not relevant for the scenario, rather any prototype-
based classifier can be enhanced accordingly, such as unsupervised techniques
equipped with posterior labels. On the other hand, some of the concepts
transfer to alternative models such as the distance to the class boundary. E. g.
any model where one can define the closest distance to the class boundary of
a data point one can apply a reject option based on this measure.

These findings open the way towards the design of efficient lifelong model
adaptation for popular prototype-based classifiers such as (L)GMLVQ: The
model complexity can easily be tailored on-line towards regions with a low
certainty of the classification, e.g. introducing novel prototypes which are
capable of representing novel aspects of the data.

19



References

1]

[9]

[10]

[11]

J. C. Weiss, S. Natarajan, P. L. Peissig, C. A. McCarty, D. Page, Machine
Learning for Personalized Medicine: Predicting Primary Myocardial
Infarction from Electronic Health Records., AI Magazine 33 (4) (2012)
33-45.

C. Rudin, K. L. Wagstaff, Machine learning for science and society,
Machine Learning 95 (1) (2014) 1-9.

A. Vellido, J. D. Martin-Guerrero, P. J. G. Lisboa, Making machine
learning models interpretable, in: ESANN, 20th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning, 2012, pp. 163-172.

B. Hanczar, E. R. Dougherty, Classification with reject option in gene
expression data., Bioinformatics 24 (17) (2008) 1889-1895.

C. K. Chow, On Optimum Recognition Error and Reject Tradeoff, in:
IEEE Transactions in Information Theory, Vol. 16(1), 1970, pp. 41-16.

R. Herbei, M. H. Wegkamp, Classification with reject option, Canadian
Journal of Statistics 34 (4) (2006) 709-721. doi:10.1002/cjs.5550340410.

J. C. Platt, Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods, in: Advances in Large
Margin Classifiers, MIT Press, 1999.

T.-F. Wu, C.-J. Lin, R. C. Weng, Probability Estimates for Multi-
class Classification by Pairwise Coupling, Journal of Machine Learning

Research 5 (2004) 975-1005.

P. L. Bartlett, M. H. Wegkamp, Classification with a reject option using
a hinge loss, Journal of Machine Learning Research 9 (2008) 1823-1840.

M. Yuan, M. Wegkamp, Classification Methods with Reject Option Based
on Convex Risk Minimization, Journal of Machine Learning Research 11
(2010) 111-130.

A. Vailaya, A. K. Jain, Reject Option for VQ-Based Bayesian Classifica-
tion, in: International Conference on Pattern Recognition (ICPR), 2000,
pp. 2048-2051.

20



[12]

[13]

[14]

[18]

[19]

[20]

G. Fumera, F. Roli, G. Giacinto, Reject option with multiple thresholds,
Pattern Recognition 33 (12) (2000) 2099-2101.

C. De Stefano, C. Sansone, M. Vento, To Reject or Not to Reject: That
is the Question-An Answer in Case of Neural Classifiers, Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions

on 30 (1) (2000) 84-94. doi:10.1109/5326.827457.

J. Suutala, S. Pirttikangas, J. Riekki, J. Roning, Reject-Optional LVQ-
Based Two-Level Classifier to Improve Reliability in Footstep Identifica-
tion, in: A. Ferscha, F. Mattern (Eds.), Pervasive, Vol. 3001 of Lecture
Notes in Computer Science, Springer, 2004, pp. 182—-187.

G. Fumera, F. Roli, Support Vector Machines with Embedded Reject
Option, in: International Workshop on Pattern Recognition with Support
Vector Machines (SVM2002), Niagara Falls, Springer, 2002, pp. 68-82.

L. P. Cordella, C. de Stefano, C. Sansone, M. Vento, An Adaptive
Reject Option for LVQ Classifiers, in: International Conference on Image
Analysis and Processing (ICIAP), 1995, pp. 68-73.

M. Biehl, B. Hammer, P. Schneider, T. Villmann, Metric Learning for
Prototype-Based Classification, in: M. Bianchini, M. Maggini, F. Scarselli,
L. C. Jain (Eds.), Innovations in Neural Information Paradigms and

Applications, Vol. 247 of Studies in Computational Intelligence, Springer,
2009, pp. 183-199.

W. Arlt, M. Biehl, A. Taylor, S. Hahner, R. Libe, B. Hughes, P. Schneider,
D. Smith, H. Stiekema, N. Krone, E. Porfiri, G. Opocher, J. Bertherat,
F. Mantero, B. Allolio, M. Terzolo, P. Nightingale, C. Shackleton,
X. Bertagna, M. Fassnacht, P. Stewart, Urine steroid metabolomics

as a biomarker tool for detecting malignancy in adrenal tumors, Journal
of Clinical Endocrinology and Metabolism 96 (2011) 3775-3784.

T. Kohonen, Self-Organization and Associative Memory, Springer Series
in Information Sciences, Springer-Verlag, third edition, 1989.

A. Denecke, H. Wersing, J. J. Steil, E. Korner, Online Figure-Ground Seg-
mentation with Adaptive Metrics in Generalized LVQ, Neurocomputing

72 (7-9) (2009) 1470-1482.

21



[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

S. Kirstein, H. Wersing, H.-M. Gross, E. Korner, A Life-Long Learn-
ing Vector Quantization Approach for Interactive Learning of Multiple
Categories, Neural Networks 28 (2012) 90-105.

A. Sato, K. Yamada, Generalized Learning Vector Quantization, in:
Advances in Neural Information Processing Systems, Vol. 7, 1995, pp.
423-429.

S. Seo, K. Obermayer, Soft Learning Lector Quantization., Neural Com-
putation 15 (7) (2003) 1589-1604. doi:10.1162/089976603321891819.

M. Biehl, A. Ghosh, B. Hammer, Dynamics and generalization ability
of LVQ algorithms, The Journal of Machine Learning Research 8 (2007)
323-360.

P. Schneider, M. Biehl, B. Hammer, Adaptive Relevance Matrices in
Learning Vector Quantization, Neural Computation 21 (12) (2009) 3532—
3561.

A. Bellet, A. Habrard, M. Sebban, A Survey on Metric Learning
for Feature Vectors and Structured Data, Tech. rep. (Jun. 2013).
arXiv:1306.6709.

P. Schneider, M. Biehl, B. Hammer, Distance Learning in Discriminative
Vector Quantization, Neural Computation 21 (10) (2009) 2942-2969.

R. Hu, S. J. Delany, B. M. Namee, Sampling with Confidence: Using k-NN
Confidence Measures in Active Learning, in: Proceedings of the UKDS
Workshop at 8th International Conference on Case-based Reasoning,
ICCBR’09, 2009, pp. 181-192.

E. Ishidera, D. Nishiwaki, A. Sato, A confidence value estimation method
for handwritten Kanji character recognition and its application to candi-
date reduction, International Journal on Document Analysis and Recog-
nition 6 (4) (2004) 263-270.

P. R. Devarakota, B. Mirbach, B. Ottersten, Confidence Estimation in
Classification Decision: A Method for Detecting Unseen Patterns, in:

International Conference on Advances in Pattern Recognition (ICAPR
2007), 2006.

22



[31]

[32]

[33]

[34]

[35]

[36]

[37]

T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE
Transactions on Information Theory 13 (1) (1967) 21-27.

M. Biehl, A. Ghosh, B. Hammer, Dynamics and generalization ability of
LVQ algorithms, Journal of Machine Learning Research 8 (2007) 323-360.

B. Hammer, M. Strickert, T. Villmann, Supervised Neural Gas with
General Similarity Measure, Neural Processing Letters 21 (1) (2005)
21-44.

M. Biehl, K. Bunte, P. Schneider, Analysis of flow cytometry data by
matrix relevance learning vector quantization, PLoS ONE 8 (3) (2013)
€59401. doi:10.1371/journal.pone.0059401.

L. Fischer, B. Hammer, H. Wersing, Local Rejection Strategies for
Learning Vector Quantization, in: ICANN, 24th International Conference
on Artificial Neural Networks, 2014, pp. 563-570.

L. Fischer, D. Nebel, T. Villmann, B. Hammer, H. Wersing, Rejection
Strategies for Learning Vector Quantization — a Comparison of Proba-
bilistic and Deterministic Approaches, in: WSOM, 10th Workshop on
Self-Organizing Maps, 2014 accepted.

L. Fischer, B. Hammer, H. Wersing, Rejection Strategies for Learning
Vector Quantization, ESANN, 22nd European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning,
i6doc.com, 2014, pp. 41-46.

T. Martinetz, K. Schulten, Topology representing networks, Neural
Networks 7 (1994) 507-522.

C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines,
ACM Transactions on Intelligent Systems and Technology 2 (2011) 27:1—
27:27.

M. S. A. Nadeem, J.-D. Zucker, B. Hanczar, Accuracy-Rejection Curves
(ARCs) for Comparing Classification Methods with a Reject Option,
in: International Workshop on Machine Learning in Systems Biology
(MLSB), 2010, pp. 65-81.

23



[41] H. H. Thodberg, Tecator data set, contained in StatLib Datasets Archive
(1995).

[42] K. Bache, M. Lichman, UCI machine learning repository (2013).

[43] S. A. Nene, S. K. Nayar, H. Murase, Columbia Object Image Library
(COIL-20), Technical Report CUCS-005-96.

[44] L. J. P. van der Maaten, Matlab Toolbox for Dimensionality Reduction
(March 2013).

24



