
Coupling of Evolution and Learning to Optimize

a Hierarchical Object Recognition Model

Georg Schneider, Heiko Wersing, Bernhard Sendhoff, and Edgar Körner

Honda Research Institute Europe GmbH
Carl-Legien-Strasse 30, D-63073 Offenbach/Main, Germany

{Georg.Schneider, Heiko.Wersing}@honda-ri.de

Abstract. A key problem in designing artificial neural networks for vi-
sual object recognition tasks is the proper choice of the network architec-
ture. Evolutionary optimization methods can help to solve this problem.
In this work we compare different evolutionary optimization approaches
for a biologically inspired neural vision system: Direct coding versus a bi-
ologically more plausible indirect coding using unsupervised local learn-
ing. A comparison to state-of-the-art recognition approaches shows the
competitiveness of our approach.

1 Introduction

Evolutionary algorithms provide a general method for system design optimiza-
tion and their successful combination with neural networks has been shown in
various applications [1]. In the work presented here we optimize neural structures
applied to object recognition problems. A critical problem in the application of
neural vision systems is the introduction of invariance properties, such as trans-
lation, scaling and rotation of the input stimuli. We propose to use hierarchical
architectural principles, which are inspired by the human vision system. There
is strong biological evidence that hierarchical processing is an important prin-
ciple in the visual cortex [2]. Barlow [3] proposed that these hierarchical neural
representations are structured according to the principle of redundancy reduc-
tion. Along this line, unsupervised local learning rules were used to obtain visual
features similar to the ones found in early visual brain areas [4].

In order to apply evolutionary algorithms to the design of neural systems their
structure and parameters must be represented or encoded. Most approaches [1]
use direct or explicit coding, e.g., via a connection matrix, where each entry repre-
sents a connection between two neurons. Biologically this scheme is implausible
as the amount of information needed to be stored in the genome is far too large.
This makes indirect coding approaches, where not every neuron with every con-
nection is explicitly encoded in the genome, attractive. By using for example a
predefined building process which controls the development of the phenotype,
the only information which have to be encoded in the genome are process con-
trol parameters [5]. The next step is not only to use a set of fixed rules for the
development, but an active learning process for the indirect coding. Interesting

2 Georg Schneider, Heiko Wersing, Bernhard Sendhoff, and Edgar Körner

approaches which focus on this combination of evolution and learning can be
found [6, 7]. This scheme of an indirect coding using local learning rules for the
building process of a complex neural system is biologically far more realistic [8,
9]. Few researchers use a form of indirect coding in their evolutionary optimiza-
tions of neural networks. Kitano [5] suggests a graph generation grammar to
indirectly code neural networks and shows that the indirectly coded networks
exhibit a magnitude of speed-up in convergence of the evolutionary optimiza-
tion. Sendhoff and Kreutz [7] have included a developmental phase - a growth
process - in the analysis of the dynamic interaction between genetic informa-
tion and information learned during development. A strongly neurobiologically
inspired approach to the combination of evolution and learning for the design of
neural networks has been suggested by Rolls and Stringer [6]. Their optimized
networks are restricted to three canonic architectures: pattern association mem-
ory, auto-association network and competitive neural network. In summary, most
contributions which focus on indirectly coded evolutionary optimization schemes
did not approach complex tasks, like 3D object recognition.

In our work presented here we combine biologically inspired hierarchical net-
works with evolution strategies in a novel way to obtain powerful recognition
architectures for general 3D object recognition. Our focus is a comparison of di-
rect versus indirect coding of the features in the visual hierarchy with regard to
the generalization capabilities of the network. In the case of the indirect coding,
we use a coupling of evolution and different local learning processes. The target
value of the optimization is the classification performance of the vision network
in an 3D object recognition task. Our vision model architecture is introduced in
Section 2. The details of the evolutionary optimization are described in Section 3.
We state and discuss the results, including a comparison to other state-of-the-art
algorithms, in Section 4. In the last section, we conclude our work.

2 The neural vision system for object recognition

In the following, we define the hi-
Combinations

car

S2 Layer

C1 Layer
4 Pool

C2 Layer4 Gabors
S1 Layer

Visual Field

Cells

S3 Layer

View−Tuned

2

l

I
s

cup

mug

s1
l c l

s 2l c l

duck

3

1

duck

car

car

cat

cat

cat

Fig. 1. Sketch of hierarchical network.

erarchical model architecture that we
will use for the evolutionary optimiza-
tion. The model is based on a feedfor-
ward architecture with weight-shar-
ing and a succession of feature-sensitive
matching and pooling stages (see also
[10] for a discussion on the general
properties and biological relevance of
this architecture). The model comprises
three stages arranged in a processing
hierarchy (see Figure 1). The input
image is presented as a 64×64 pixel
image. The S1 layer consists of 4 Gabor feature planes at 4 orientations with a
dimension of 64×64 each. The C1 layer subsamples by pooling down to a reso-

Lecture Notes in Computer Science 3

lution of 16×16 for each of the 4 S1 planes. The S2 layer contains combination
coding cells with possible local connections to all of the C1 cells. The C2 layer
pools the S2 planes down to a resolution of 8× 8. The final S3 cells are tuned to
particular views, which are represented as the activity pattern of the C2 planes
for an input image.

The first processing stage consists of a convolution with 4 differently oriented
first-order Gabor filters, a Winner-Take-Most (WTM) mechanism between these
features and a final threshold function. We adopt the notation, that vector indices
run over the set of neurons within a particular feature plane of a particular layer.
To compute the response sl1(x, y) of a neuron in the first layer S1, responsive
to feature type l at position (x, y), first the image vector I is multiplied with a
weight vector wl

1(x, y) characterizing the receptive field profile:

ql1(x, y) = |w
l
1(x, y) ∗ I|, (1)

where the inner product is denoted by ∗, i.e. for a 10 × 10 pixel image, I and
wl

1(x, y) are 100-dimensional vectors. All neurons in a feature plane l have the
same receptive field structure, given by wl

1(x, y), but shifted receptive field cen-
ters, as in a classical weight-sharing architecture [11]. In a second step, a Winner-
Take-Most mechanism is performed with

rl1(x, y) =

{

0 if
ql
1(x,y)
M

< γ1 or M = 0,
ql
1(x,y)−Mγ1

1−γ1
otherwise,

(2)

whereM = maxk q
k
1 (x, y) and r

l
1(x, y) is the response after the WTMmechanism

which suppresses sub-maximal responses and provides a model of latency-based
competition [10]. The parameter 0 < γ1 < 1 controls the strength of the com-
petition. The activity is then passed through a simple threshold function with a
common threshold θ1 for all neurons in layer S1:

sl1(x, y) = H
(

rl1(x, y)− θ1
)

, (3)

where H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise and sl1(x, y) is the final activity
of the neuron sensitive to feature l at position (x, y) in the S1 layer. The activities
of the first layer of pooling C1-neurons are given by

cl1(x, y) = tanh
(

g1(x, y) ∗ sl1
)

, (4)

where g1(x, y) is a normalized Gaussian pooling kernel with width σ1, identical
for all features l, and tanh is the hyperbolic tangent function. The features in
the intermediate layer S2 are sensitive to local combinations of the features in
the planes of the previous layer, and are thus called combination neurons in the
following. We also use the term feature bank to denote the set of features of a
particular layer. We introduce the layer activation vector c̄1 = (c1

1, . . . , c
K
1) and

the layer weight vector w̄l
2 = (wl1

2 , . . . ,w
lK
2) with K=4. Here wlk

2 (x, y) is the
receptive field vector of the S2 neuron of feature l at position (x, y), describing
connections to the plane k of the previous C1 neurons. The combined linear

4 Georg Schneider, Heiko Wersing, Bernhard Sendhoff, and Edgar Körner

summation over previous planes is then given by ql2(x, y) = w̄l
2(x, y) ∗ c̄1. The

weights of these combination neurons are a main target of our evolutionary
optimization. After the same WTM procedure with strength γ2 as in (2), the
activity in the S2 layer is given by sl2(x, y) = H(rl2(x, y)− θ2) after thresholding
with a common threshold θ2. The step from S2 to C2 is identical to (4) and given
by cl2(x, y) = tanh(g2(x, y) ∗ sl2), with Gaussian spatial pooling kernel g2(x, y)
with range σ2. The nonlinearity parameters γ1, θ1, σ1, γ2, θ2, σ2 will be subject
to evolutionary optimization.

Classification of an input image with C2 output c̄2 is done by nearest neighbor
match to previously stored template activations c̄v2 for each training view v. This
can be realized e.g. by view-tuned units (VTU) in an additional S3 layer with a
radial basis function characteristics according to sv3 = exp(−||w̄v

3 − c2||
2) where

w̄v
3 = cv2 is tuned to the training C2 output of pattern v. Classification can then

be performed by detecting the maximally activated VTU.

3 Evolutionary optimization of the neural vision system

3.1 Evolution strategies

We employ a standard evolution strategy (ES) [12] with a semi-global step-
size-adaptation with two different step-sizes to optimize the vision system. This
turned out to be sufficient: one step-size for the 6 nonlinearity parameters and
one for the combination feature weights, described in more detail in the following
sections. In the case of the indirect coding, we need just one step-size since the
combination features are optimized by the local learning process. We used dis-
crete recombination for the 6 nonlinearity parameters. The strategy parameters
were recombined by a generalized intermediate recombination. In our studies,
we used the “ES-typical” deterministic (µ, λ) selection.

3.2 First and second order generalization

For the evaluation of the optimized vision

Classification Rate = First Order

Classification Rate = Second Order

Vision

Vision

Database B

Database A

Evolutionary

Loop
Optimization

�
�

�
�

��

Views

Generalization

Generalization

System

System

Training
Views

Test

Test ViewsTraining
Views

= Fitness

�
�
�
�
�
�
�

Fig. 2. Concept of first and sec-
ond order generalization.

systems we introduce the concept of first and
second order generalization (Note that the more
common terms test and validation error are
not suitable, since we are working on differ-
ent databases and not on two subsets of one
database.), which is displayed in Figure 2. The
flow of the evolutionary optimization of the
hierarchical neural vision system is the fol-
lowing: We code the vision system into the
chromosome (directly for the first two and
indirectly for the next three settings). Then
we apply evolutionary operators like mutation
and recombination to the population. There-
after, we construct the offsprings – different vision systems – and train these

Lecture Notes in Computer Science 5

using a few views from objects of an image database A. Then we test the sys-
tems with the classification of test object views from database A, not contained
in the training set. We use the classification rate as the fitness for the following
selection of the parents, which constitute the next generation. After a suffi-
cient number of generations we get vision systems which are well structured and
successfully classify objects of database A. We call this performance first order
generalization. With second order generalization we denote the ability of the sys-
tem optimized on database A, to successfully classify objects from a database
B, without any changes to features or nonlinearities.

3.3 Direct coding

In the representation of the vision system we differentiate between system non-
linearities and the combination features. The system nonlinearities are 6 parame-
ters which efficiently characterize the quality of the nonlinear processing steps of
the system. These are: 1. the WTM selectivities γ1, γ2 ∈ [0, 1], which control the
competition between the different features at the same image location within the
same layer, 2. the threshold parameters θ1, θ2 ∈ [0, 3], which control the number
of neurons firing, and 3. the pooling ranges σ1, σ2 ∈ [0.0001, 7], which control the
sizes of the Gaussian pooling kernels used in layer C1 and C2. The parameters
γ1, γ2, θ1, θ2, σ1, σ2 are coded as real values into the chromosome. Additionally,
to the system nonlinearities the weights w̄l

2 = (wl1
2 , . . . ,w

l4
2), which define the

combination feature bank, are directly coded into the chromosome, l = 1, ..., L,
where L is the number of S2 feature planes. For comparison with the different in-
direct codings we explored two different domains for the weights: a non-negative
one with wlk

2i ∈ [0, 1] and one with wlk
2i ∈ [−1, 1]. The coding of the combina-

tion feature bank is organized as follows: We define the size of one feature of
the combination feature bank w̄l

2 ∈ IR36=4×3×3. Each of the 4 planes of layer
C1 corresponding to four different local orientations in the image is convolved
with a 3 × 3 filter. We define wlk

2i , with k = 1, ..., 4, and i = 1, ..., 36 as the
ith entry of wlk

2 . The optimization was carried out with L = 9, 36, 50 features.
With 50 features 50 × 36 = 1800 values have to be optimized. Thus the full
optimization (including also the nonlinearities) took place in a 1806-dimensional
(1800 + 6 = 1806) search space.

3.4 Indirect coding

In the indirect coding approach, we still code the nonlinearities directly like
described before but we use three different unsupervised local learning processes
to determine the weights of the combination feature bank. These are the principal
component analysis (PCA), the fast independent component analysis (fastICA)
[13] and the non-negative sparse coding scheme (nnSC) [14]. The processes use
1440 randomly selected 3×3 pixel patches of the C1 layer (which contains 4
planes) to learn a filter bank. These patches therefore consist of 36 entries each
(3× 3× 4 = 36). The combination feature bank then consists of the L principal
component vectors of the C1 patches for the PCA and of the L independent

6 Georg Schneider, Heiko Wersing, Bernhard Sendhoff, and Edgar Körner

component vectors in the case of the fastICA. In the case of the nnSC the
bank is the basis for a sparse coding of the patches. In contrary to PCA and
fastICA it can be an overcomplete set and L > 36 is therefore possible. This
learning process is also controlled by a sparsity factor which determines the
trade-off between sparsity and reconstruction ability of the patch inputs. We
code this parameter in addition to the 6 nonlinearities into the chromosome and
therefore perform the optimization in a just 7-dimensional search space. The
space for the PCA and ICA optimization is 6-dimensional, as we have here no
additional parameters which are needed. In the following, we briefly summarize
the procedure of our indirect coding scheme from the genotype to the phenotype
to the fitness evaluation: For each genotype in the population do:

1. Construction of the phenotype up to the C1 layer.
2. Generation of C1 layer activations using the database A.
3. Collecting 3× 3-patches of the activated C1 layer.
4. Use of unsupervised local learning for the generation of the combination fea-

ture bank using the patches (and the sparsity parameter, which is explicitly
coded in the genotype, for the case of the nnSC).

5. Construction of the complete phenotype – the vision system – with all non-
linearities and the combination feature bank.

6. Training of the vision system with training views of database A (storing C2
activations as a VTU for each training view)

7. Calculation of the classification rate using test views of database A in a
nearest-neighbor classification based on C2 feature output. The result is the
fitness of the individual.

4 Results and Discussion

For the evolutionary optimization of the combination features and nonlinearity
parameters we used the object database COIL20 [15]. This database contains 20
different objects with 72 images of varying angles of rotation in depth, reaching
from 0 to 360 degrees in 5 degree steps. After the vision system is generated ac-
cording to the parameters in the chromosome, it is trained with 3 views (0, 120
and 240 degrees) of each object, by simply storing the highest order C2 feature
activation vectors of each training view (see Section 2). In the test phase, the
vision system has to classify 24 remaining views, which are equally distributed
between 0 and 360 degrees. These test views are matched in a nearest-neighbor
fashion to the stored training vectors. We note that other classifiers like lin-
ear discriminators could also be applied, see [10], but the nearest-neighbor ap-
proach has the advantage of not requiring an additional weight adaptation on
the view-tuned units. The target of the optimization is the determination of the
nonlinearities and the combination features in a way that the system will have a
minimal classification error after training, i.e., that the first order generalization
of the hierarchical vision system is maximal. A further test for the system is
the second order generalization. For this test, we use a subset of the COIL100

Lecture Notes in Computer Science 7

[15]1 database which contains 100 objects, also with 72 images of continually
varying rotation angle. We have to note that 17 objects of the COIL20 are also
objects of the COIL100 database. We excluded these objects to ensure a proper
measure of the second-order generalization. We call this reduced database of 83
objects COILselect. In the following tests, we optimized each setting 10 times
for 400 generations using a (7,19)-ES, which we identified to be a good setting
in preliminary studies, considering the trade-off between evaluation time and
performance. We ran 3 different settings with the number of features contained
in the combination feature bank set to L = 9, 36, 50 2.

The results are displayed in Table 1. Note that we focus in the following
discussion of the results on the average, and not on the best results achieved
with a setting. When we compare the performances with respect to the first
order generalization (the errors on the COIL20), we find that the direct coding
outperforms the indirect one significantly (with respect to the Student-t test).
This can be explained by the fact that the number of degrees of freedom is in the
direct case much higher than in the indirect case and therefore the vision system
could be adapted to perform particularly well on database A. Among the direct
codings the one which allows also negative values for the combination features
(denoted with “neg. CF”) performs better than the one with non negative values
(denoted with “non neg. CF”) for the same reason. The possibilities of the vision
system with negative values are in that sense higher, that not only the existence
of features could be combined, but also the absence of features. The neg. CF
setting again performs best with L = 36 features. Only 9 features seem to be
too few to represent the objects properly. With 50 features the performance
degrades compared to 36 because of the larger search space dimension.

Table 1. Results of directly and indirectly coded evolutionary optimization. L=number
of features, b=best result, m=mean, and s=standard deviation of 10 runs.

direct error error
coding COIL20 COILsel.

L b m s b m s

non- 9 7.9 8.6 0.5 24.2 27.6 3.0
neg. 36 7.7 8.3 0.5 23.2 26.5 2.2
CF 50 7.3 8.6 0.8 23.2 24.8 1.5
neg. 9 6.5 8.1 1.2 22.8 26.3 2.4
CF 36 7.1 7.8 0.5 22.9 24.2 1.8

50 7.1 8.1 0.7 22.4 24.3 1.7

indirect error error
coding COIL20 COILsel.

L b m s b m s

9 9.4 10.6 1.1 23.4 25.1 1.2
PCA 36 8.1 9.6 1.1 23.6 25.8 3.1
fast 9 8.5 9.4 0.7 24.4 26.7 1.8
ICA 36 8.8 9.7 1.0 22.5 24.7 2.8

9 9.0 10.0 0.6 24.1 26.5 1.6
nnSC 36 8.5 9.7 1.3 22.4 24.1 1.4

50 8.8 9.5 0.6 21.7 24.2 1.4

1 We converted the color images of the COIL100 database to grey value images and
scaled them down to 64x64 pixels.

2 except for the indirect coding with PCA and fastICA where L must be less or equal
to the data vector dimension.

8 Georg Schneider, Heiko Wersing, Bernhard Sendhoff, and Edgar Körner

We now focus on the errors on the COILselect database which give us a mea-
sure of how good the vision system performs on an arbitray database - the second
order generalization. We find that now both main settings (direct and indirect
coding) perform almost equally well. The advantage of the indirect coding is not
significant. From this result, we can draw the conclusion, that the unsupervised
learning processes have enough freedom and are capable of building up a high
performing vision system with regard to second order generalization. Among the
indirect coding settings the nnSC performs best, although only positive values
for the combination features are allowed in this method. Equally to the first
order generalization also here 36 features seem to be adequate as a trade off
between adaptability and increasing the search space too much.

In order to understand more about the properties of the optimization prob-
lem, it is interesting to find out whether similar sets of combination features
have been found during different optimization runs. For a comparison of two
sets of combination features we have to define a distance measure DCF which is
invariant under permutation of single features (as these permutations have no
effect on the fitness). DCF is defined as follows: Starting with the first feature
of one of the two CF-sets we search for the closest (in Euclidean metric) feature
in the second CF-set. We measure the distance d1 between these two features
and exclude both of them from the sets. Then we repeat this procedure with
the next feature of the first set and so forth. To have a symmetric measure,
we repeat the process with the two sets interchanged. The resulting distance
measure DCF is equal to the sum of all calculated distances divided by two:
DCF = 1

2

∑2L
i=1 di, where L denotes the number of combination features in each

set. Using the described distance measure we observed, that there exist a large
number of significantly different CF-sets that have similar performance.

In the following we shortly discuss the case: direct coding; L = 9; negative
CFs. In order to be able to interpret the absolute distance values, we take the best
vision system and add Gaussian noise to its CFs. We do this ten times and for
three different noise levels. After that, we measure DCF and the misclassification
rates of the changed system. For Gaussian noise with a standard deviation of
σnoise = 0.025 the mean distance measure is D̄CF = 1.4 and the misclassification
rate increased on average from 6.5% to 7.7% (i.e. ∆f̄ = 1.2). For σnoise =
0.05(0.1), we get D̄CF = 2.6(5.2) and ∆f̄ = 1.6(3.2). Then we calculate D̄CF =
40.1 for all pairs of two of the best CF-sets out of the 10 optimization runs.
Next, we derive D̄CF for 10 randomly generated CF-sets and get D̄CF = 40.5.
Comparing the similarities of optimized and random features, we conclude, that
the optimized CFs have almost no similarity to each other and seem to be widely
spread over the whole parameter space.

To assess the performance of the best result of the indirectly coded evolu-
tionary optimization, we have performed a comparison to a previous, manually
tuned version of the vision system (mtVS) [14], and to other state-of-the-art
systems. Here we use the results of Roobaert & van Hulle [16], who performed
an extensive study on the COIL100 database, comparing support vector ma-
chines (SVM), and the eigenspace-based system of Nayar et al. [15] (denoted

Lecture Notes in Computer Science 9

Columbia in the table). The results are shown in Table 2, where the number of
objects and the number of training views is varied (for less than 100 objects the
first n objects are taken). We see, that the evolutionary optimization could ef-
fectively improve the performance of the manually tuned vision system (mtVS).
Compared to other classifiers the optimized vision system (optVS) is highly com-
petitive and shows superior performance especially in the most difficult cases of
the task, where only few training views are available and a high number of ob-
jects have to be classified. The results of the nearest-neighbor classifier based on
the plain image data (NNC) illustrate the baseline similarity of the images in
the database.

Table 2. Comparison of misclassification rates on COIL100 database.

30 Objects 4 Training Views
Training Views Number of Objects

Method 36 8 2 10 30 100

NNC 0 7.5 29.5 13.5 18.2 29.9
Columbia 0 4.4 32.9 7.9 15.4 23.0
SVM 0 4.8 29.0 9.0 15.1 25.4
mtVS 0 7.3 28.3 18.4 15.8 23.9
optVS 0 4.4 22.9 12.4 12.9 20.2

5 Conclusion

The work presented here is the first study of the evolutionary optimization of a
biologically inspired vision network, which is capable of performing a complex
3D real world object classification task. We compared the optimization using a
direct and an indirect coding of the combination feature bank. We showed that
the used biologically inspired hierarchical architecture has a very robust behav-
ior, where a lot of different combination feature banks are equally well suited
for classification. Therefore, the directly coded evolutionary optimization found
good results with a good convergence behavior despite the huge dimensionality of
the search space for the direct coding with L = 50 features (1806-dimensional).
Considering second order generalization, the results are even better than the
ones for only 9 features (330-dimensional). For the more difficult COILselect
database, 36 or even 50 filters for the combination feature bank seem more ad-
equate [14] and the drawback of a harder optimization is compensated by the
enhanced representational capability of the network.

We found, that the coupling of evolutionary search with unsupervised local
learning processes yields good results. Hereby we can realize a biologically more
sensible encoding and work in a 6 respectively 7 dimensional search space (com-
pared to over 1800 before). Comparing direct and indirect coding, we find that
the direct evolutionary optimization yields significantly better results in the first
order generalization. This performance advantage stems from specialization to

10 Georg Schneider, Heiko Wersing, Bernhard Sendhoff, and Edgar Körner

the database used during evolution as the performance gain cannot be observed
for the second order generalization. Here we see even a slight advantage for the
indirect coding, which, however, does not have high statistical significance. We
also showed that the optimized architecture is highly competitive with other
current high-performing recognition methods like support vector machines.

Acknowledgment This work was supported by the BMBF under grant
LOKI 01IB001E.

References

1. X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no. 9, pp. 1423–
1447, 1999.

2. M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in cor-
tex,” Nature Neuroscience, vol. 2, no. 11, pp. 1019–1025, 1999.

3. H. B. Barlow, “The twelfth Bartlett memorial lecture: The role of single neurons
in the psychology of perception,” Quart. J. Exp. Psychol., vol. 37, pp. 121–145,
1985.

4. B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set:
A strategy employed by V1 ?” Vision Research, vol. 37, pp. 3311–3325, 1997.

5. H. Kitano, “Designing neural networks using genetic algorithms with graph gen-
eration system,” Complex Systems, vol. 4, pp. 461–476, 1990.

6. E. T. Rolls and S. M. Stringer, “On the design of neural networks in the brain by
genetic evolution,” Progress in Neurobiology, vol. 6, no. 61, pp. 557–579, 2000.

7. B. Sendhoff and M. Kreutz, “A model for the dynamic interaction between evolu-
tion and learning,” Neural Processing Letters, vol. 10, no. 3, pp. 181–193, 1999.

8. S. Quartz and T. Sejnowski, “The neural basis of cognitive development: A con-
structivist manifesto,” Behavioral and Brain Sciences, vol. 9, pp. 537–596, 1997.

9. A. G. Rust, R. Adams, S. George, and H. Bolouri, “Towards computational neural
systems through developmental evolution,” in LNCS, S. W. et al., Ed., vol. 2036,
2001, pp. 188–202.

10. H. Wersing and E. Körner, “Learning optimized features for hierarchical models of
invariant recognition,” Neural Computation, vol. 15, no. 7, pp. 1559–1588, 2003.

11. K. Fukushima, “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position,” Biol. Cyb., vol. 39,
pp. 139–202, 1980.

12. H.-P. Schwefel and G. Rudolph, “Contemporary evolution strategies,” in Proc. of

the Third European Conf. on Artificial Life : Advances in Artificial Life, ser. LNAI,
F. M. et al., Ed., vol. 929. Berlin: Springer Verlag, June 1995, pp. 893–907.

13. A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component
analysis,” Neural Computation, vol. 9, no. 7, pp. 1483–1492, 1997.

14. H. Wersing and E. Körner, “Unsupervised learning of combination features for
hierarchical recognition models,” in Int. Conf. Artif. Neur. Netw. ICANN, J. R. D.
et al., Ed. Springer, 2002, pp. 1225–1230.

15. S. K. Nayar, S. A. Nene, and H. Murase, “Real-time 100 object recognition system,”
in Proc. of ARPA Image Understanding Workshop, Palm Springs, 1996.

16. D. Roobaert and M. V. Hulle, “View-based 3d object recognition with support
vector machines,” in Proc. IEEE Int. Workshop on Neural Networks for Signal

Processing, Madison,USA. New York, USA: IEEE, 1999, pp. 77–84.

