
Video Surveillance of Interactions

Yuri Ivanov
MIT Media Laboratory
Cambridge, MA 02139
yivanov@media.mit.edu

Chris Stauffer
MIT Artificial Intelligence Laboratory

Cambridge, MA 02139
stauffer@ai.mit.edu

Aaron Bobick
MIT Media Laboratory
Cambridge, MA 02139
bobick@media.mit.edu

W. E. L. Grimson
MIT Artificial Intelligence Laboratory

Cambridge, MA 02139
welg@ai.mit.edu

Abstract

This paper describes an automatic surveillance system,
which performs labeling of events and interactions in an
outdoor environment. The system is designed to monitor
activities in an open parking lot. It consists of three compo-
nents - an adaptive tracker, an event generator, which maps
object tracks onto a set of pre-determined discrete events,
and a stochastic parser. The system performs segmentation
and labeling of surveillance video of a parking lot and iden-
tifies person-vehicle interactions, such as pick-up and
drop-off. The system presented in this paper is devel-
oped jointly by MIT Media Lab and MIT Artificial Intelli-
gence Lab.

1 Introduction

Research in visual surveillance is quickly approaching
the area of complex activities, which are framed by extended
context. As more methods of identifyingsimple movements
become available, the importance of the contextual methods
increases. In such approaches, activities and movements are
not only recognized at the moment of detection, but their
interpretation and labeling is affected by the temporally ex-
tended context in which the events take place (e.g., see [2]).
For example, in our application, while observing objects of
different classes, cars and people, the detection of the class
of an object may be uncertain. However, if when participat-
ing in an interaction the object behaves like a car, entering
interactions with other objects in a way characteristic to a
car, then belief about its class label is reinforced.

The monitoring system we describe in this paper is an ex-
ample of an end-to-end implementation, which is adaptive
to the physical features of the monitored environment and

exhibits certain contextual awareness. Adaptation to the en-
vironment is achieved by a tracker based on Adaptive Back-
ground Mixture Models ([18]). It robustly tracks separate
objects in environments with significant lighting variation,
repetitive motions, and long-term scene changes. The track-
ing sequences it produces are probabilisticallyclassified and
mapped into a set of pre-determined discrete events. These
events correspond to objects of different types performing
different actions.

Contextual information in the system is propagated via a
stochastic parsing mechanism. Stochastic parsing handles
noisy and uncertain classifications of the primitive events
by integrating them into a coherent interpretation. Parallel
input streams and consistency checking allow for detection
of high level interactions between multiple objects. The
system demonstrates integration of low level visual infor-
mation with high level structural knowledge, which serve
as contextual constraints. The system is capable of main-
taining concurrent interpretations when multiple activities
are taking place simultaneously. Furthermore, the system
allows for interpretation of activities involving multiple ob-
jects, such as interactions between cars and people during
PICK-UP and DROP-OFF.

The remainder of this paper is organized as follows: sec-
tion 2 introduces the problem domain and gives a brief
overview of previous and ongoing research in building au-
tomated surveillance systems. Section 3 gives an overview
of the system and details of its implementation. The section
describes the system components, a tracker (section 3.1), an
event generator (section 3.2) and the parser (section 3.3) pre-
senting the level of detail necessary for general understand-
ing 1. Results of the system workingon the surveillance data
are shown in section 4, which is followed by conclusions,

1Complete details on the tracker can be found in [11] and [18]. Parser
is described in full in [2], [12] and [13].



presented in section 5.

2 Related Work

The work presented in this paper spans a broad range
from low level vision algorithms to high level techniques
used for natural language understanding.

The tracking component of the system uses an adaptive
background mixture model, which is similar to that used
by Friedman and Russell ([10]). Their method attempts
to explicitly classify the pixel values into three separate,
predetermined distributions corresponding to the color of
the road, the shadows, and the cars. Unfortunately, it is not
clear what behavior their system would exhibit for pixels
which did not contain these three distributions.

Pfinder ([20]) uses a multi-class statistical model for the
tracked objects, but the background model is a single Gaus-
sian per pixel. After an initializationperiod without objects,
the system reports good results indoors. Ridder et al. ([17])
modeled each pixel with a Kalman filter which made their
system more robust to lighting changes in the scene. While
this method does have a pixel-wise automatic threshold, it
still recovers slowly and does not handle bimodal back-
grounds well.

Contextual labeling in our system is performed by a
stochastic parser, which is derived from that developed by
Stolcke in [19], as was previously described in [2]. We ex-
tended standard Stochastic Context-Free Grammar (SCFG)
parsing to include (1) uncertain input symbols, and (2) tem-
poral interval primitives that need to be parsed in a tempo-
rally consistent manner. In order to allow for noisy input we
used the robust grammar approach, similar to that of Aho
and Peterson ([1]). We extended the SCFG parser to accept
a multi-valued input strings which allow for correction of
the substitution errors, which is similar to the work done by
Bunke([6]).

[8] is fully devoted to syntactic analysis of interactions
and cooperative deterministic processes. It is related to our
solution, formulating problems similar to ours, which are
cast in terms of cooperative grammatical systems. In con-
trast, we describe interactions by a single stochastic gram-
mar and use a single parser in an attempt to avoid the compu-
tational complexity of the complete Cooperative Distributed
(CD) Grammar Systems.

In the area of monitoring long term complex activities,
Courtney ([7]) developed a system, which allows for de-
tection activities in a closed environment. The activities
include person leaving an object in a room, or taking it out
of the room. Perhaps the most complete general solution is
described in Brill at al. ([5]), who are working on an Au-
tonomous Video Surveillance system. Brand ([3]) showed
the results of detecting manipulations in video using a non-
probabilistic grammar. This technique is non-probabilistic
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Figure 1. System architecture. The video from
a camera is processed by the tracker module,
which outputs tracks and candidate class la-
bels to the event generator. Event generator
maps the partial tracks onto a set of events,
interpreted by the parser, according to the ac-
tion grammar.

and requires relatively high quality low-level detectors.
The work of Remagnino, Tan and Baker ([16]) shows

an elegant solution to the parking lot monitoring task. Be-
havior and situation agents model object interactions using
Bayesian networks. It is not clear, however, how well the
system performs in a situationwith occlusions where objects
get completely lost for periods of time.

Morris and Hogg ([14]) show a technique which describes
the events in the scene in terms of distance to the closest
landmark and the object speed. The system estimates prob-
abilities of these events and then reasons about typicality of
their occurrences. This approach implicitly represents inter-
actions between cars (landmarks) and people. In our system
we attempt direct description of behaviors and interactions
to produce textual most likely interpretations of high level
events in the scene.

Oliver and Rosario ([15]) developed a system for detect-
ing people interactions, which modeled interactions using
Coupled Hidden Markov Model ([4]). In the course of the
latter research, a multi-agent simulation was used to pro-
duce synthetic training data to train the CHMM modeling
the interaction. The relation to our work is that their repre-
sentation of the multi-agent simulation can be viewed as a
structured, stochastic grammar-like description of the inter-
actions.

3 Monitoring System

The architecture of the monitoring system described in
this paper is shown in figure 1. The system consists of
three components. The tracker processes the data from a
camera and identifies moving objects in the camera view.
The objects are tracked and the data about their movement
are collected into partial tracks.

The partial tracks are then passed to the event generator,
which generates discrete events for the beginning and the
end of each track according to a simple environment model.
This model encodes the knowledge about the environment
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and can be learned. The map helps the generator to differen-
tiate between tracks that correspond to objects entering and
leaving the scene from objects which are lost by the tracker
due to occlusion.

The parser analyzes the events according to the gram-
mar which structurally describes possible activities. The
grammar represents the knowledge about structure of possi-
ble interactions, making it possible to enforce structural and
contextual constraints. We presently describe each compo-
nent in detail.

3.1 Tracker

The tracker used in our system is based on a adaptive
mixture of Gaussians technique described in detail in [18].
In this approach each pixel is modeled by a separate mixture
of K2 Gaussians as follows:

P (Xt) =
KX
i=1

!i;t � �(Xt; �i;t;Σi;t) (1)

where !i;t is an estimate of the ith mixture coefficient for
time t, Xt is the current pixel value, and �i;t and Σi;t are the
parameters of the corresponding component.

If the current pixel value, Xt, is found to be well modeled
by one of the mixture components (Xt is within 2:5 standard
deviations from the mean), the weights !(i; t), and parame-
ters of the corresponding component are re-estimated. If the
former is not true, the least likely component of the mixture
is replaced by a new one, with the mean �(i; t) set toXt and
high initial variance, Σi;t.

The next step is to determine if the pixelXt belongs to the
background. In order to do that, we sort all the components
in the mixture in the order of decreasing ratio != jΣj2. This
ratio effectively assigns higher importance to the mixture
components that received the most evidence and have the
lowest variance. The intuitive meaning of this ratio is that the
components which correspond to background typically have
more observations attributed to them and those observations
vary little.

Then, after the components are sorted, we can set a
threshold, T , which will separate components responsible
for background pixels from the ones modeling foreground
as follows:

B = argminb

 Pb

k=1 !kPK

k=1 !k

> T

!
(2)

where the meaning of the value B is that the first B com-
ponents of the sorted mixture are found “responsible” for
background. Now, if the pixel Xt is best modeled by one of

2For the system described in this paper we use a mixture of 4
components.

the “background” components, it is marked as belonging to
the background.

Finally, foreground pixels are segmented into regions by
a two-pass, connected components algorithm.

Establishing correspondence of foreground regions be-
tween frames is accomplished using a linearly predictive
multiple hypotheses tracking algorithm which incorporates
both region position and size. We have implemented an
on-line method for seeding and maintaining sets of Kalman
filters, modeling the dynamics of foreground regions. De-
tails of this process can be found in [18]. Essentially, for
each frame, the parameters of the existing dynamical mod-
els are estimated; those models are used to explain observed
foreground regions, and, finally, new models are hypothe-
sized based on foreground regions which were not explained
by any existing model.

Our system adapts to robustly deal with lightingchanges,
repetitive motions of scene elements, tracking through clut-
tered regions, slow-moving objects, and introducing or re-
moving objects from the scene. Slow moving objects take
longer to be incorporated into the background because their
color has a larger variance than the background. Also, repet-
itive variations are learned, and a model for the background
distribution is generally maintained even if it is temporar-
ily replaced by another distribution which leads to faster
recovery when objects are removed.

3.2 Event Generator

The event generator in our system is responsible for map-
ping the tracks produced by the tracker onto a set of pre-
determined discrete events. These events form the basis for
the syntactic constraints that the parser enforces on the input
stream. The events in our system are not object-centered,
but rather are formulated in terms of tracker states. While
identity of an object is unknown to the tracker, it remains the
same throughout the detected object trajectory. The tracker
can "lose" an object and then "find" it again later due to
occlusion or sudden change of lighting, in which case the
identity of the object is not preserved. Reasoning about ob-
ject identity in such situations is deferred to the parser which
can enforce contextual information. In this reasoning, ex-
act configuration of the object trajectories is not important.
Only the endpoints of the tracks influence how the identity
is computed.

Every time the tracker reports beginning or the end
of a track, the event generator produces an event. This
set of primitive tracker states, such as object-lost,
object-found, forms the alphabet of interactions, pre-
sented to the parser in form of a grammar.

In order to generate events, the event generator is given
a simple environment map. Based on this map the event
generator determines if the events occurred in “special lo-
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cations”, where the objects tend to enter or leave the scene.
In addition, if the tracker does not have sufficient degree
of confidence about the object’s class, multiple candidate
events are generated, one per candidate class with likeli-
hoods assigned to each according to what’s reported by the
tracker. In the system there are total of 9 events, which are
generated according to the following rules:

1. If the track began in an area where objects tend to
enter the scene, car-enter and person-enter
events are generated. The events are marked with the
corresponding likelihoods to account for errors in clas-
sification. For instance if a beginning of a person track
is reported by the tracker and the likelihood of that
event is 0:7, a person-enter event with likelihood
0:7 is posted to the parser. Along with it, a comple-
mentary event car-enter is posted in the same time
slot, with the likelihood of 0:3.

2. If the track did not begin in one of the "entry" areas,
car-found and person-found events are gener-
ated.

3. If the track ended in one of the "exit" areas, car-exit
and person-exit events are produced.

4. If the track did not end in one of the "exit" areas,
car-lost and person-lost events are posted.

5. If an object’s velocity dropped below a certain thresh-
old, an object-stopped event is generated.

The process of generating events is illustrated in figure
2. Note that some of the track endpoints are mapped onto a
pair of concurrent events, which accounts for classification
errors. The parser will select one or the other, depending on
which one results in the overall parse with maximum prob-
ability. Typically, at the beginning of each track, the tracker
has not observed the object long enough to be certain about
its class membership. Therefore, x-enter and x-found
events have likelihoods close to 0.5. In contrast, by the time
the object disappears or is lost, there is enough data to make
more accurate classification decision. Consequently, class
likelihoods of x-exit and x-lost events are typically
higher than those of x-enter and x-found.

3.3 Parser

Our SCFG parser is an extension of that by Earley ([9])
and Stolcke ([19]). For each input symbol, the parser keeps
a state set, a set of parser states that collectively describe
current pending derivations. A state is a production rule,
augmented with two additional markers, i and k. Marker k
indicates where in the input string the rule is applied, and
marker i shows where in the rule the parser is currently

located. The position of the parser inside the rule that cor-
responds to i is shown by the symbol ".". We denote a state
as:

i : Xk ! �:Y � [�; 
] (3)

where X and Y are non-terminals and � and � are arbitrary
sequences of terminals and non-terminals. In the SCFG
parsing algorithm ([19]), each state also carries forward and
inner probabilities denoted in (3) by � and 
, respectively.
�, also called a prefix probability, is the probability of the
parsed string up to position i, and 
 is a probability of the
sub-string starting at k and ending at i.

Parsing begins with initializing the first state set with an
initial state. The parsing proceeds as an iteration between
three steps - prediction, scanning and completion until the
final state is reached. In this paper we only give a minimal
exposition of the parsing algorithm, as it is presented in full
elsewhere (eg. see [19], [2] and [12]).

In order to propagate track data through the parse we
modify each state to include two additional auxiliary vari-
ables - l and h (a low mark and a high mark of the state).
These variables hold the data about endpoints of the corre-
sponding track:

l =

0
BBBBB@

fl
tl
xl
yl
dxl
dyl

1
CCCCCA h =

0
BBBBB@

fh
th
xh
yh
dxh
dyh

1
CCCCCA (4)

where f is a frame number, t - a time stamp, x and y are
object coordinates in the image, and dx and dy are object
velocity components.

These data are used to compute the penalty function of
equation (5), which weighs total probability of the parse
by joining two partial tracks with endpoints at h 1 and l2.
This penalty function ensures that the tracks, considered for
joining, are not too far apart and are temporally consistent.

f(rp; r2) =

(
0; if (t2 � t1) < 0

exp
�
(r2�rp)

T
(r2�rp)

�

�
; o=w

(5)

where rp is computed from r1, based on a constant velocity
assumption: rp = r1 + dr1(t2 � t1), r1 and r2 correspond
to the track endpoint positions at the track break, and dr1 is
the instantaneous velocity of the object at position r1.

When an event from the event generator is received, the
parser advances by one step, producing a new state set and
searching it for the final state. If the final state is found, the
parser traverses the parsing queue and assembles the most
likely parse. After the parse is assembled, the parser outputs
the resulting interpretation. Note, however, that since this
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car-exit 1 1 0.784 0.1 0.1 38.216

Event Likelihood x y dx dy time
car-enter 0.5 0.454 1 -0.01 0.05 10.233
person-enter 0.5 0.454 1 -0.01 0.05 10.233

P

10.233

10.233

38.216

Figure 2. Illustration of a process of mapping tracks onto discrete events. The tracker reports the
beginning and the end of the track. In this example, the beginning of the track corresponds to an
object entering the scene. At that point the class label of the class cannot be determined. This
results in generation of two concurrent events - one per class (cars and persons) with probability of
the label being 0:5.

operation is local, it is possible that it will be subsumed at
a later time by a more general interpretation. This is the
case when interpreting such interactions as DROP-OFF and
DRIVE-IN, where in our grammar (shown later) the latter
is a subset of the former (e.g. see figure 4).

In the course of developing the parser, we implemented a
mechanism which allows the parser to deal with parallelism
in primitives and interpretations. These two kinds of paral-
lelism normally present a significant obstacle for traditional
parsers, as they are strictly sequential machines. Parallelism
in interpretations, where several derivations, related to dif-
ferent activities are being traced concurrently, is accounted
for by traditional error recovery methods ([1, 6]). In the
spirit of this technique we replace the original grammar G
by a robust one Ĝ, formed as follows:

1. Each terminal, say b, appearing in productionsof gram-
mar G is replaced by a pre-terminal, e.g. B̂, in Ĝ:

G : ) Ĝ :
A! bC A! B̂C

2. Each pre-terminal of Ĝ is expanded to the correspond-
ing terminal augmented by a SKIP rule. For instance:

Ĝ :
B̂ ! b j SKIP b

3. SKIP rule is added to Ĝ, which includes all repetitions
of all terminals:

Ĝ :
SKIP ! b j : : : j b SKIP j : : :

The robust grammar will consume the erroneous symbols
by theSKIP production. During the parse, while analyzing
the current symbol, the parser will simply ignore all the

symbols unrelated to the current derivation by collecting
them in SKIP rules.

The second kind of concurrency relates to the fact that an
interaction involves at least two objects, subject to their own
independent consistency constraints ([2, 12]). [8] shows a
complete multi-agent solution to this problem. We chose not
to follow that route because it requires perfect detection of
the objects in the scene. Instead, we developed a multi-class
interleaved consistency mechanism ([13]), which allows to
achieve similar goals within a single parser.

4 Experimental Results

Here we show results of the system run on a data collected
on a parking lot at Carnegie Mellon University. The system
runs in real time processing data from a live video feed or
a video tape. The tracker and the event generator run on an
175 MHz R10000 SGI O2 machine. The parser runs on an
200 MHz R4400 SGI Indy.

The tracker runs at approximately 12 fps on 160x120 im-
ages. It generally exhibited unbroken tracks except in cases
of occlusions and extreme lighting changes. The events
were mapped using a hand-coded, probabilistic classifier
for object type (e.g. car or person), which used the aspect
ratio of the object.

The parser requires the interaction structure described to
it in terms of Stochastic Context Free Grammar. A par-
tial listing of the grammar employed by our system for
the parking lot monitoring task is shown in figure 3. La-
bels in capitals are the non-terminals while the terminals,
or primitives, are written in small letters. Square brackets
enclose probabilities associated with each production rule.
These probabilities reflect the typicality of the correspond-
ing production rule and the sequence of primitives, which it
represents.

In our system high-level non-terminals (CAR-THROUGH,
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TRACK: CAR-TRACK [0.5]
| PERSON-TRACK [0.5]

CAR-TRACK: CAR-THROUGH [0.25]
| CAR-PICKUP [0.25]
| CAR-OUT [0.25]
| CAR-DROP [0.25]

CAR-PICKUP: ENTER-CAR-B CAR-STOP
PERSON-LOST B-CAR-EXIT [1.0]

ENTER-CAR-B: CAR-ENTER [0.5]
| CAR-ENTER CAR-HIDDEN [0.5]

CAR-HIDDEN: CAR-LOST CAR-FOUND [0.5]
| CAR-LOST CAR-FOUND

CAR-HIDDEN [0.5]

B-CAR-EXIT: CAR-EXIT [0.5]
| CAR-HIDDEN CAR-EXIT [0.5]

CAR-EXIT: car-exit [0.7]
| SKIP car-exit [0.3]

CAR-LOST: car-lost [0.7]
| SKIP car-lost [0.3]

CAR-STOP: car-stop [0.7]
| SKIP car-stop [0.3]

PERSON-LOST: person-lost [0.7]
| SKIP person-lost [0.3]

Figure 3. A CAR-PICKUP branch of a sim-
plified grammar describing interactions in a
parking lot.

PERSON-THROUGH, PERSON-IN, CAR-OUT,
CAR-PICK and DROP-OFF) have semantic action blocks
associated with them, which are not shown in the figure for
brevity. Each such action is a simple script which outputs
the corresponding label (such as DROP-OFF), and all the
available data related to the non-terminal (e.g. starting and
ending video frame or time- stamp). The semantic action
is invoked when the final state is reached and the result-
ing maximum probability parse includes the corresponding
non-terminal.

The production rule probabilities have been manually set
to plausible values for this domain. Learning these probabil-
ities is an interesting problem, which is planned for future
work. However, our observations showed that the gram-
matical and spatial consistency requirements eliminate the
majority of incorrect interpretations. This results in our sys-

tem being quite insensitive to the precise values of these
probabilities.

The test data consisted of approximately 15 minutes of
video, showing several high level events such as drop-off
and pick-up. The events were staged in the real environ-
ment, where the real traffic was present concurrently with
the staged events. The only reason for staging the events
was to have more examples within 15 minutes of video.
The drop-offs and pick-ups were performed by people un-
familiar with the system. The resulting parses were output
in the real time. In figures 5 a) - e) we show a sequence
of 5 consecutive detections of high level events. The se-
quence shown in the figure, demonstrates the capability of
the system to parse concurrent activities and interactions.
The main event in this sequence is the DROP-OFF. While
monitoring this activity, the system also detected unrelated
high level events: 2 instances of CAR-THROUGH and a
PERSON-THROUGH event. The figure 5 f) shows the tem-
poral extent of activities, shown iconically in figures 5 a)-e).
The figure also illustrates the selectivity of the parser granted
by the use of SKIP productions. Having found the inter-
pretation PERSON-THROUGH (figure 5 b)) consisting of
events shown in the second line of figure 5 f) (lines 5 and 9
of figure 4), the parser consumes the events car-enter,
person-found and car-exit (lines 6-8 of figure 4) by
the SKIP rule.

In the example grammar shown in figure 3, the non-
terminalCAR-HIDDEN covers the case when it is necessary
to join two partial tracks in order to produce a plausible
interpretation. The occurrence of such a break might be due
to an occlusion or a sudden lighting change. This feature
makes the tracker tolerant to occlusions when an object
completely disappears from the camera view for some period
of time.

All of these parses can be traced down to the primitives,
which hold the track data. Consequently, the complete track
can be reconstructed, as shown by white traces in figures 5
a) - e). In the longest segment of video,

the event generator produces between 150 and 200 events;
the exact count depends upon the reaction of the tracker to
video noise. After tuning the environment map used by the
event generator to convert tracks to events, all the high level
interactions were correctly detected.

5 Conclusions

In our future work we will address more accurate model-
ing of the environment. Currently, tracks are mapped onto
events with a non-probabilistic map of the environment.
This results in high sensitivity of the event generation to
subtle changes in timing of the tracker. The work presented
in [18] suggests that such maps can be learned automatically.

We are also planning on learning the rule probabilities,
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Event UID Avg. Size Class P x y t frame
ENTER 724 0.122553 0 0.5 0.450094 0.938069 917907137.8 1906
ENTER 665 0.046437 1 0.5 0.6107 0.94674 917907122.5 1799
PERSON-LEAVE 665 0.045869 1 0.997846 0.648089 0.98855 917907142.7 1938
STOPPED 724 0 0.995784 0.348569 0.345513 917907146.5 1964
ENTER 780 0.034293 1 0.5 0.74188 0.980292 917907151.3 1998
ENTER 790 0.069093 0 0.5 0.814565 0.032611 917907153.4 2012
FOUND 787 0.033573 1 0.5 0.297585 0.357887 917907153.1 2010
CAR-LEAVE 790 0.061263 0 0.997285 0.975971 0.211984 917907155.3 2025
PERSON-LEAVE 780 0.038616 1 0.999923 0.974494 0.865237 917907158.6 2047
PERSON-LEAVE 787 0.032045 1 0.999997 0.296519 0.183704 917907158.7 2048
ENTER 813 0.034776 1 0.5 0.012821 0.348379 917907160.9 2063
ENTER 816 0.093513 0 0.5 0.960425 0.793899 917907161.9 2070
CAR-LEAVE 724 0.097374 0 0.993211 0.972272 0.693728 917907165.2 2091
CAR-LEAVE 816 0.089424 0 0.99023 0.693699 0.990798 917907165.2 2091

D
R

O
P

-O
F

F
D

R
IV

E
-IN

Figure 4. Results of track mapping on one of the runs of the system. Two subsets of events, outlined
in the picture, correspond to DRIVE-IN and DROP-OFF. Interpretation of this data is shown in figure
5.

f)

a)

Car Passed Through
frames 2012-2025

car-enter SKIP car_exit

b)

Person Passed Through
frames 1998-2047

person-enter SKIP 
person-exit

e)

Car Passed Through
frames 2070-2091

car-enter SKIP car-exit

c)

Person Drove In
frames 1906-2048

car-enter SKIP 
car-stop SKIP 
person-found 
person-exit

d)

Person Drop Off
frames 1906-2091

car-enter SKIP 
car-stop SKIP 
person-found SKIP 
car-exit

Figure 5. a) A car passed through the scene, while DROP-OFF was performed. Corresponding track
is shown by a sequence of white pixels. b) Person passing through. c) A person left the car and
exited the scene. At this moment the system has enough information to emit the DRIVE-IN label. d)
The car leaves the scene. The conditions for DROP-OFF are now satisfied and the label is emitted.
e) Before the car performing the DROP-OFF exits the scene, it yields to another car passing through,
which is shown here. f) Temporal extent of the actions shown in a)-e). Actions related to people are
shown in white. Top line of the picture corresponds to the label a), the bottom one - e). Car primitives
are drawn in black. The figure clearly demonstrates concurrency of events. In this figure, primitive
events are abbreviated as follows: ce - car-enter, cs - car-stop, cx - car-exit, pe - person-enter,
pf - person-found, px - person-exit.
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observing the environment for extended period of time. This
will help more accurate modeling the traffic patterns as well
as performance of the tracker.

We are planning to better utilize object correspondences.
In the current implementation, partial tracks are joined only
based on the object’s position and velocity, as reflected by
the penalty function in equation 5. In the future, change in
object appearance will also be considered in computing this
penalty.
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