
Recognition of Multi-agent Interaction in Video Surveillance

Y. A. Ivanov A. F. Bobick

MIT Media Laboratory
Cambridge, MA 02139, USA

Abstract
This paper describes a probabilistic syntactic approach

to the detection and recognition of temporally extended ac-
tivities and interactions between multiple agents. A com-
plete system consisting of an adaptive tracker, an event
generator, and the parser performs segmentation and la-
beling of a surveillance video of a parking lot; the sys-
tem correctly identifies activities such as pick-up and
drop-off, which involve person-vehicle interactions.

The main contributions of this paper are extending
the parsing algorithm to handle multi-agent interactions
within a single parser, providing a general mechanism for
consistency-based pruning, and developing an efficient in-
cremental parsing algorithm.

1 Introduction
Research in the area of visual surveillance is quickly ap-

proaching the area of complex activities, which are framed
by extended context. As more and more methods of iden-
tifying simple movements become available, the more the
importance of the contextual methods increases. In these
systems, activities and movements are not only recognized
as they are detected, but their meaning is affected by the
temporally extended interpretation. (e.g., see [2]). When
such global context is recovered for the complete sequence,
the beliefs about each component are influenced by the in-
terpretation. For example, the class of an object may be
uncertain when viewed in isolation, but if when participat-
ing in an interaction the object “plays the part” of a car then
belief about its class label (e.g. car) is reinforced.

This paper describes a probabilistic syntactic approach
to the detection and recognition of temporally extended ac-
tivities and of interactions between multiple agents. The
first technical contribution of this paper is the extension
of previous results in the stochastic parsing of activities
[2] to handle parallel input streams and to enforce class-
interleaved consistency. Stochastic parsing handles noisy
and uncertain classifications of the primitive events by in-
tegrating them into a coherent interpretation. Parallel in-
put streams and consistency checking allows us to detect

high level interactions between multiple objects. The sec-
ond significant component is the development of a gen-
eral consistency-based pruning mechanism that eliminates
syntactically valid but domain-inconsistent interpretations.
This is the mechanisnm that enforces, for example, tempo-
ral consistency between the events in an interpretation, or
for the domain shown here, the constraint as to how far a
car can move between the time when a tracker loses track
of a vehicle and the time when some “new” vehicle is ac-
quired.

We demonstrate the utility of these capabilities (and that
of the stochastic parsing of activities in general) by show-
ing results from an end-to-end, real-time surveillance sys-
tem; even when multiple activities are taking place simul-
taneously, the system correctly identifies activities such as
PICK-UP and DROP-OFF, which involve person-vehicle
interactions.

1.1 Related Work
Research in the area of recognition of long term com-

plex activities is relatively new. Courtney ([6]) developed
a system, for detecting activities in a closed environment.
The activities include person leaving an object in a room,
or taking it out of the room. Brand ([3]) showed the re-
sults of detecting manipulations in video using a deter-
ministic context-free grammar. Both techniques are non-
probabilistic and required relatively high quality low-level
detectors.

Oliver and Rosario ([10]) developed a system for detect-
ing people interactions, which modeled interactions using
Coupled Hidden Markov Model ([4]) . In the course of the
latter research, a multi-agent simulation was used to pro-
duce synthetic training data to train the CHMM modeling
the interaction. The relation to our work is that their rep-
resentation of the multi-agent simulation can be viewed as
a structured, stochastic grammar-like description of the in-
teractions.

There has been much research done in the area of syn-
tactic pattern recognition, which was the foundation upon
which our work is built. Earley ([7]) developed the efficient

1

parsing mechanism, which was given a probabilistic form
by Stolcke([11]). Aho and Peterson ([1]) described the ba-
sis of syntactic error correction. The multi-valued string
parsing was the main topic of the work by Bunke([5]).

In earlier work ([2]), we demonstrated SCFGs success-
fully parsing gestural input from musical conducting. A
potential objection to that work was that not many domains
would have grammatical structure; one goal of this paper is
to show that relatively complex activities can be described
compactly by such a grammar.

2 Probabilistic Parsing of Interactions
Visual surveillance requires the tracking and analysis of

multiple objects that co-exist in the scene. Labeling their
interactions entails formulating a model for their interac-
tions in either object-centered or a scene-centered setting.

As a solution to this challenging problem we chose an
SCFG parsing approach. Using syntactic pattern recog-
nition in the area of activity detection is motivated by
the inherent sequentiality of the domain. This is the fact
which also made hidden Markov Models (HMMs) a pop-
ular solution for gesture recognition tasks. Relation be-
tween HMMs and SCFGs can be simply derived from re-
lations between Finite State Machines and Context Free
parsers. Generative capabilities of an FSM, extending to
the set of regular languages, are superseeded by Context-
Free Grammars and the Context-Free languages they gen-
erate. A similar relation exists between Probabilistic Finite
State Machines (HMMs) and SCFGs. The descriptive and
generative advantage comes, of course, with a computa-
tional cost.

However, we argue that it is not the computational
complexity or the generative power that is of importance.
Rather, it is the idea that our approach presumes some
structure a priori: the component states of the activties
are defined and their recovery is part of the interpretation
task. In our work we address the recognition of activities
of which we have the explicit knowledge which we can
simply encode as a (typically stochastic) grammar. The
advantage of such encoding is that it makes possible the
recovery of intermediate action structures. For example, a
DROP-OFF contains a component state of the car to com-
ing to a stop. Our method of detecting a DROP-OFF is
guaranteed to label some event as CAR-STOP.

The general idea of our approach, which we are
presently describing is as follows:

1. we observe the scene and track moving blobs, al-
lowing the tracker to make probabilistic conclusions
about object identities; This labeling is performed
based on object’s appearance and properties of its
track;

2. we probabilistically map these tracks onto a set of pre-
determined events;

3. every time an event occurs, we attempt to explain this
event in context of others by tracking several concur-
rent hypotheses until one of them is confirmed with
higher probability than the others.

In this list, (1) is performed by a tracker. Full resposnsi-
bility for the track labeling is delegated to the tracker since
all the data necessary to analyze object trajectories and ap-
pearance is readily available at that level.

(2) is implemented as an event generator which takes an
object track and produces a (generally multi-valued) pair
of events, corresponding to the track’s end points. These
events can be both concurrent and uncertain (see section
3.2).

The SCFG parser performs the task described by (3).
It accepts events and parses them in accordance with the
provided SCFG. The grammar encodes rules describing the
expected structure of the activities.
2.1 Parsing Algorithm

Before we proceed with the discussion of the contribu-
tion of this work, let us briefly review the parsing algorithm
used here. The general intuition for the algorithm can be
developed by considering the following: before reading a
symbol from the input, the parser generates a set of hy-
potheses for the next possible symbol (prediction step). Af-
ter the symbol is read (scanning), some of the hypotheses
get confirmed, but the others get discarded (completion).
The process repeats until some final condition is met.

The remainder of this section, as well as section 2.2 is
a re-iteration of the algorithm available elsewhere and can
be skipped by the reader familiar with the algorithm ([11])
and our earlier work ([2]).

For each input symbol, the parser keeps a set of states
that collectively describe the current pending derivations.
A state is a production rule, augmented with two additional
markers i and k.

Marker k indicates the starting position in the input
string where the rule is currently applied, and marker i
shows the current position of the parser in the string. The
position of the parser inside the rule that corresponds to i
is shown by the symbol ”.” We denote a state as:

i : Xk → λ.Y µ [α, γ] (1)

where X and Y are non-terminals and and are arbitrary
sequences of terminals and non-terminals. In the SCFG
parsing algorithm ([11]), each state also carries forward
and inner probabilities denoted in by α and γ, respectively.
α, also called a prefix probability, is the probability of the
parsed string up to position i, and γ is a probability of the
sub-string starting at k and ending at i.

2

Parsing begins with initializing the first state set with an
initial state, which is generated from the root production
rule of the garmmar.

2.1.1 Prediction

The prediction step is used to hypothesize the possible con-
tinuation of the input based on current position in the parse:
Given the state i : Xk → λ.Zµ and a production rule
Y → ν, such that Y and Z are in Left Corner relationship
(i.e. there exists a rule Z → Y η1), prediction produces the
state:{

i : Xk → λ.Zµ [α, γ]
Y → ν

⇒ i : Yi → .ν [α′, γ′]

where α′ and γ ′ are computed as:

α′ =
∑
∀λ,µ

α(i : Xk → λ.Zµ)Rl(Z, Y)P (Y → ν)

γ′ = P (Y → ν)

where Rl(Z, Y) is a Reflexive Transitive Closure matrix of
the left corner relation between Y andZ . Complete details
can be found in [11] and [9].

2.1.2 Scanning

The scanning step reads an input symbol and matches it
against all pending states for the next iteration. If the next
input symbol is a then the pending derivations that expect
a are advanced to the next state set:

i : Xk → λ.aµ [α, γ] ⇒ i + 1 : Xk → λa.µ [α, γ]

Those that do not expect a are eliminated.

2.1.3 Completion

Given the set of scanned states, completion updates the
parser positions in all the pending derivations:{

j : Xk → λ.Zµ [α, γ]
i : Yj → ν. [α′′, γ′′]

⇒ i : Xk → λZ.µ [α′, γ′]

where α′ and γ ′ are computed as:

α′ =
∑
∀ν

α(i : Xk → λ.Zµ)Ru(Z, Y)γ′′(i : Yj → ν.)

γ′ =
∑
∀ν

γ(i : Xk → λ.Zµ)Ru(Z, Y)γ′′(i : Yj → ν.)

and Ru(Z, Y) is a Reflective Transitive Closure matrix of
the Unit Production relation.([9], [11]).

1To be precise, Y has to be reachable from Z by a chain of such rules.

2.2 Handling Uncertainty
Uncertainty in the input stream is handled by the parser

in the manner described in [2]. An input symbol is pre-
sented as a group of events, each posted with its likelihood.
At the scanning step, for each event in the group of events,
and its likelihood P (a), we produce the new state:

i : Xk → λ.aµ [α, γ] ⇒ i + 1 : Xk → λa.µ [α′, γ′]

The likelihoods are incorporated in the parse by multi-
plying forward and inner probabilities of the corresponding
states

α′ = α(i : Xk → λ.aµ)P (a)
γ′ = γ(i : Xk → λ.aµ)P (a)

After the final state of the parse is reached, Viterbi max-
imization will retreive only one event of the group which
had yielded the maximum likelihood parse. As will be
decsribed, when an object enters the scene both car-
enter and person-enter events are generated simul-
taneously. After the parse is completed, the one which was
found to be part of the most likely parse will be selected.
If the object behaved as a car, the car-enter event will
be selected.

Note that the above technique successfully handles sub-
stitution errors. In order to account for deletion and
insertion errors, we transform the SCFG into a robust
form, which can be done automatically. First, every ter-
minal in the grammar is replaced with a pre-terminal,
which is a production rule rewriting a pre-terminal with
the terminal or a terminal preceeded by noise: A →
a | SKIP a. Next, a “noise” rule is introduced, which ac-
counts for any terminal which is “out of place”: SKIP →
a | b | . . . | SKIP a | These rules effectively “ig-
nore” any syntactic noise in the input while preserving the
symbols in the stream.

2.3 Enforcing Track Consistency
Associated with each event is a track representing the

temporally consecutive detections of an object in the scene.
For a parse to be valid, not only does the sequence of events
need to be grammatical, but also the tracks associated with
those events must be temporally and spatially consistent.

The consistency of the sequence of tracks contained in
a given parse is determined by the compatibility of their
endpoints. Track inconsistency incrementally prunes many
incorrect yet grammatical sequences.

The temporal consistency algorithm described in [2]
presents a convenient pruning mechanism. Following that
approach, we introduce two consistency attributes, which
contain all tracking data pertinent to the beginning and end-
ing samples of a parser state S i

k (kth and ith events of the
input) .

3

l =




fl

tl
xl

yl

dxl

dyl


 h =




fh

th
xh

yh

dxh

dyh




where l is a ”low mark” attribute group and h is the ”high
mark” group. The attributes contain the frame number, the
time-stamp, the position of the object in the image, and its
velocity.

Each event in the input stream contains tracking data
associated with it since the moment this object was first
found. Its low mark is the start of that track; the high mark,
the end.

l and h are propagated within prediction scanning and
completion as shown below.

2.3.1 Prediction

Prediction simply marks the expected beginning of the sub-
string with the initial values St :{

i : Xk → λ.Y µ [l,h]
Y → ν

⇒ i : Y → .ν [St,St]

2.3.2 Scanning

Scanning reads a terminal from the input stream and sets
high marks of scanned states to the high mark of the ter-
minal, expanding the range of the state. In addition, for all
the predicted states expecting this terminal, it sets the low
mark to the low mark of the scanned terminal:

i : Xk → λ.aµ [l,h] ⇒{
i + 1 : Xk → λa.µ [la,ha], if λ = ε
i + 1 : Xk → λa.µ [l,ha], otherwise

where la and ha are low and high mark attributes of the
terminal, respectively.

2.3.3 Completion

The completion step advances the high mark of the com-
pleted state to that of the completing state, thereby extend-
ing the range of the completed non-terminal:{

j : Xk → λ.Y µ [l1,h1]
i : Yj → ν. [l2,h2]

⇒ i : Xk → λY.µ [l1,h2]

The completion is performed for all complete states i :
Yj → ν., subject to consistency constrains enforced within
the filtering routine.

2.3.4 Filtering

The completion step presents an opportunity to check the
tracks for consistency. This check is implemented as a fil-
tering routine that takes a completing state and the one it
completes, and evaluates the cost of this operation. The
cost is computed in the form of multiplicative penalty func-
tion. This computation extrapolates the position of the ob-
ject, rp , using a constant velocity model based on the h
attribute of the state being completed and the l attribute of
the completing state:

rp = r1 + dr1(t2 − t1) (2)

where r1 = (x1, y1)T and dr1 = (dx1, dy1)T - position
and velocity at the end of the first track, t1 the time at the
end of the first track, and t2, the time at the start of the
second.

The multiplicative penalty function is then computed,
based on the distance between the projected position, rp,
and the position of the object in the low mark of the com-
pleting state, r2:

f(rp, r2) =

{
0, if (t2 − t1) < 0
exp

(
(r2−rp)T (r2−rp)

θ

)
, o/w

(3)

Temporal consistency is also enforced here by reject-
ing the states that have the time-stamp, t1, greater than the
time- stamp of the completing state, t2. The scale parame-
ter, θ, was found experimentally.

The penalty function is incorporated into computation
of forward and inner probabilities as follows:

α′ = f(rp, r2)
∑
∀ν

α(i : Xk → λ.Zµ)Ru(Z, Y)γ′′(i : Yj → ν.)

γ′ = f(rp, r2)
∑
∀ν

γ(i : Xk → λ.Zµ)Ru(Z, Y)γ′′(i : Yj → ν.)

where Ru is the Unit Production Relation closure matrix
([11]).
2.4 Concurrency in a Sequential Machine

In the approach above there are three sources of concur-
rency for which the parser has to account:

1. Concurrent events, which are due to probabilistic na-
ture of the event labels.

2. Concurrent parses, which occur while tracing the
derivations of unrelated object tracks.

3. Concurrent tracks, which are a part of an interaction
between multiple objects.

The parsing mechanism described in [2] already handles
the first two points. Indeed, concurrent events are handled
in the usual manner as a multi-valued input string. This

4

Figure 1: Performing an interleaved consistency check on the
serialized events. The predecessor of the same class as the new
sample is found and the check is performed on the predecessor.
The dashed lines show the inter-track consistency check. Events
connected by the solid lines are joined by the object identity.

problem was addressed in [5] and implemented in our ear-
lier work ([2]). Concurrent parses are traced as an added
benefit of the error correction with the robust grammar
([1]).

New to our framework are Concurrent tracks; these oc-
cur in the derivation when the grammar describes interac-
tion between two or more objects. In our case, we need
to describe interactions between cars and people. The dif-
ficulty here is presented by the fact that the events in the
input stream correspond to two different entities. The en-
tities should have consistent tracks, but since the events,
related to both objects in the input stream are interleaved,
the consistency check should account for that also. To ac-
complish that, we modify the parser in two ways:

1. Assign a class label to each production rule of the
grammar. For instance, a production for CAR-TRACK
will have a car class label2.

2. Implement a simple search in the filtering routine
(section 2.3.4), which would search the state being
completed for the last child state having the class at-
tribute the same as the completing state. The high
mark is extracted from the child state and the penalty
function is computed based on that attribute, instead
of the high mark of the state itself. Figure 1 shows
how the interleaved consistency check is performed
on a string of the serialized events.

2It should be noted that the rule class should not be confused with the
object class. The rule class is not necessarily related to the object class,
although in our case it is. For instance, if one needs to handle person-
person interactions with the same mechanism, different class labels
should be attached to the rules corresponding to each participant.

2.5 Run-Time Incremental Parsing
At run time, the parser is presented with a potentially

infinite input stream. It limits the computational complex-
ity (O(n3)) by pruning the states which have probabilities
falling below certain limit and only keeping a parsing chart
of a fixed but sufficient length.

To account for the fact that the string can start at any
place in the input stream, we simply seed each state set
with an initial state(see section 2.1). Whenever the final
state is achieved, the Viterbi parse will automatically yield
the starting position of the string having the maximum like-
lihood.

The parser chart does not need to be re-parsed for each
sample. In fact, the algorithm can be conveniently sped
up by performing the parse incrementally. At every step,
the current state of the parser encodes all the history by the
seed states within the window. The task is now to just per-
form a next iteration with the new sample, discarding the
first state set of the chart. This procedure effectively prunes
derivations, which are longer than the length of the chosen
window. This also means that an additional condition has
to be added to the filtering routine - all the states S i

k, hav-
ing k < I1, where I1 is the index of the first state set of the
chart, are rejected from completion3.

3 Recognition System
The recognition system described here consists of three

main components, a tracker, a tracking event generator and
a parser. The system is easily distributed and has been
tested on SGI Indy R4000 running the parser and the event
generator, and an SGI O2 R10000 running the tracker.
The system assures real-time performance, processing data
from a video camera or a VCR.

3.1 Tracker
The tracker used in the recognition system was devel-

oped by Chris Stauffer of MIT AI Lab. The description of
the tracker can be found in [8]. The tracker implements
an adaptive background model, which is tolerant to slow
lighting changes. The tracker detects objects in the scene
by presence of motion in the camera view. If this motion
persists for more then some small predetermined number
of frames, the object is detected and a new track container
is created for it to accumulate the tracking data, related to
this object. The tracker assigns a unique ID to each newly
found object and tracks changes in the objects appearance,
position and velocity, reporting them to the tracking event
generator. Based on appearance and trajectory properties,
the tracker probabilistically assigns to each object a class
label (a car or a person).

3Note, that the length of the chart is indexed by events, not time. In
our system, the value of the pruning threshold and the chart size are
chosen such that cutting the chart almost never prunes active states.

5

3.2 Tracking Event Generator
We formulate the interactions between objects in terms

of tracker states, rather than object trajectories, as de-
scribed below. The tracker can “loose” an object and then
“find” it again later, but it need not reason about the iden-
tity of the newly found object. This set of primitive tracker
states, such as object-lost, object-found, forms
the alphabet of the interaction, presented to the parser in
form of a grammar. In this formulation, preserving the
identity of an object throughout the scene is not important
to the parser. The identity is preserved by the tracker where
it is simple for it to do so, such as inside the consistent
tracks. Then, the task of associating the disjoint pieces of
the tracks falls onto the parser.

The event generator performs a simple mapping of the
tracks onto a set of events, which are passed to the parser.
The events are generated based on a simple environment
model in the following way:

1. If the track began in an area where objects tend to
enter the scene, car-enter and person-enter
events are generated. The events are marked with
the corresponding likelihoods to account for errors in
classification. For instance if a beginning of a person
track is reported by the tracker and the likelihood of
that event is 0.7, a person-enter event with like-
lihood 0.7 is posted to the parser. Along with it, a
complementary event car-enter is posted in the
same time slot, with the likelihood of 0.3.

2. If the track did not begin in one of the ”entry” areas,
car-found and person-found events are gener-
ated.

3. If the track ended in one of the ”exit” areas, car-
exit and person-exit events are produced.

4. If the track did not end in one of the ”exit” areas,
car-lost and person-lost events are posted.

5. If an object’s velocity dropped below a certain thresh-
old, a stop event is generated.

Note that each track’s endpoint is represented by a pair
of concurrent events, which accounts for classification er-
rors. The parser will select on or the other, depending
on which one results in the overall parse with maximum
probability. Typically, at the beginning of each track, the
tracker has not observed the object long enough to be cer-
tain about its class membership. Therefore, x-enter and
x-found events have likelihoods close to 0.5. In contrast,
by the time the object disappears or is lost, there is enough
data to make more accurate classification decision. Conse-
quently, class likelihoods of x-exit and x-lost events

TRACK: CAR-TRACK [.5]
| PERSON-TRACK [.5]

CAR-TRACK: CAR-THROUGH [.25]
| CAR-PICKUP [.25]
| CAR-OUT [.25]
| CAR-DROP [.25]

CAR-PICKUP: ENTER-CAR-B CAR-STOP PERSON-
LOST

B-CAR-EXIT [1.0]
ENTER-CAR-B: CAR-ENTER [.5]

| CAR-ENTER CAR-HIDDEN [.5]
CAR-HIDDEN: CAR-LOST CAR-
FOUND [.5]

| CAR-LOST CAR-FOUND CAR-
HIDDEN [.5]
B-CAR-EXIT: CAR-EXIT [.5]

| CAR-HIDDEN CAR-EXIT [.5]
CAR-EXIT: car-exit [.7]

| SKIP car-exit [.3]
CAR-LOST: car-lost [.7]

| SKIP car-lost [.3]
CAR-STOP: car-stop [.7]

| SKIP car-stop [.3]
PERSON-LOST: person-lost [.7]

| SKIP person-lost [.3]

Figure 2: A DROP-OFF branch of a simplified grammar describ-
ing interactions in a parking lot.

are typically more committal than those of x-enter and
x-found.

4 Experimental Results
Here we show results of the system run on a data col-

lected on a parking lot at Carnegie Mellon University. The
system runs in real time processing data from a live video
feed or a video tape. The tracker and the event generator
run on an 175 MHz R10000 SGI O2 machine. The parser
runs on an 200 MHz R4400 SGI Indy.

The tracker runs at approximately 12 fps on 160x120
images. It generally exhibited unbroken tracks except in
cases of occlusions and extreme lighting changes. The
events were mapped using a hand-coded, probabilistic
classifier for object type (e.g. car or person), which used
the aspect ratio of the object.

The parser requires the interaction structure described
to it in terms of Stochastic Context Free Grammar. A par-
tial listing of the grammar employed by our system for the
parking lot monitoring task is shown in figure 2. Labels in
capitals are the non-terminals while the terminals, or prim-
itives, are written in small letters. Square brackets enclose
probabilities associated with each production rule. These
probabilities reflect the typicality of the corresponding pro-
duction rule and the sequence of primitives, which it rep-
resents.

6

The high-level non-terminals (CAR-THROUGH,
PERSON-THROUGH, PERSON-IN, CAR-OUT, CAR-
PICK and DROP-OFF) have semantic action blocks
associated with them, which are not shown in the figure
for brevity. Each such action is a simple script which
outputs the corresponding label (such as DROP-OFF),
and all the available data, related to the non-terminal (e.g.
starting and ending video frame or time- stamp). The
semantic action is invoked when the final state is reached
and the resulting maximum probability parse includes the
corresponding non-terminal.

The production rule probabilities have been manually
set to plausible values for this domain. Learning these
probabilities is an interesting problem, which is planned
for future work. However, our observations showed
that the grammatical and spatial consistency requirements
eliminate the majority of incorrect interpretations. This re-
sults in our system being quite insensitive to the precise
values of these probabilities.

The test data consisted of approximately 15 minutes of
video, showing several high level events such as drop-
off and pick-up. The events were staged in the real en-
vironment, where the real traffic was present concurrently
with the staged events. The only reason for staging the
events was to have more examples within 15 minutes of
video. The drop-offs and pick-ups were performed by peo-
ple unfamiliar with the system. The resulting parses were
output in the real time. In figures 4 a) - e) we show a se-
quence of 5 consecutive detections of high level events.
The sequence shown in the figure, demonstrates the capa-
bility of the system to parse concurrent activities and in-
teractions. The main event in this sequence is the DROP-
OFF. While monitoring this activity, the system also de-
tected unrelated high level events: 2 instances of CAR-
THROUGH and a PERSON-THROUGH event. The figure 4
f) shows the temporal extent of activities, shown iconically
in figures 4 a)-e).

All of these parses can be traced down to the primitives,
which hold the track data. Consequently, the complete
track can be reconstructed, as shown by white traces in fig-
ures 4 a) - e). In the longest segment of video, the event
generator produces between 150 and 200 events; the ex-
act count depends upon the reaction of the tracker to video
noise. After tuning the environment map used by the event
generator to convert tracks to events, all the high level in-
teractions were correctly detected.

5 Conclusions and Future Work
In this paper we showed our approach to labeling high-

level activities with a stochastic context-free parser. Main
contributions of this work include:

1. extending parsing algorithm to handle concurrent

events within a single parser;

2. implementing a more efficient incremental parsing
scheme;

3. providing a general mechanism for consistency-based
pruning;

4. demonstration of the results on the real surveillance
data.

One of the issues that we will address in our future work
is more accurate modeling of the environment. Currently,
tracks are mapped onto events with a non-probabilistic map
of the environment. This results in a high sensitivity of the
event generation to subtle changes in timing of the tracker.
We are also planning on learning the rule probabilities, ob-
serving the environment for extended period of time. This
will help more accurate modeling the traffic patterns as
well as performance of the tracker.

References
[1] A. V. Aho and T. G. Peterson. A minimum distance error-

correcting parser for context-free languages. SIAM Journal
of Computing, 1, 1972.

[2] A. Bobick and Y. Ivanov. Action recognition using proba-
bilistic parsing. In Proc. Comp. Vis. and Pattern Rec., pages
196–202, Santa Barbara, CA, 1998.

[3] M. Brand. Understanding manipulation in video. In
AFGR96, pages 94–99. 1996.

[4] M. Brand and N. Oliver. Coupled hidden markov models
for complex action recognition. In CVPR, pages 994–999,
Puerto Rico, 1996. IEEE.

[5] H. Bunke and D. Pasche. Parsing multivalued strings and its
application to image and waveform recognition. Structural
Pattern Analisys, 1990.

[6] J. D. Courtney. Automatic video indexing via object motion
analysis. PR, 30(4):607–625, 1997.

[7] Jay Clark Earley. An Efficient Context-Free Parsing Algo-
rithm. Ph.d., Carnegie-Mellon University, 1968.

[8] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Us-
ing adaptive tracking to classify and monitor activities. In
Comp. Vis. and Pattern Rec., pages 22–29, Santa Barabara,
CA, 1998. IEEE.

[9] Y. A. Ivanov and A. F. Bobick. Probabilistic parsing in
action recognition. Technical Report TR 450, MIT Media
Lab, Vision and Modeling Group, 1997.

[10] Nuria Oliver, Barbara Rosario, and Alex Pentland. Statis-
tical modeling of human interactions. In CVPR, The Inter-
pretation of Visual Motion Workshop, pages 39–46, Santa
Barbara, CA, 1998. IEEE.

[11] A. Stolcke. An efficient probabilistic context-free pars-
ing algorithm that computes prefix probabilities. Compu-
tational Linguistics, 21(2), 1995.

7

Event UID Avg. Size Class P x y t frame
ENTER 724 0.122553 0 0.5 0.450094 0.938069 917907137.8 1906
ENTER 665 0.046437 1 0.5 0.6107 0.94674 917907122.5 1799
PERSON-LEAVE 665 0.045869 1 0.997846 0.648089 0.98855 917907142.7 1938
STOPPED 724 0 0.995784 0.348569 0.345513 917907146.5 1964
ENTER 780 0.034293 1 0.5 0.74188 0.980292 917907151.3 1998
ENTER 790 0.069093 0 0.5 0.814565 0.032611 917907153.4 2012
FOUND 787 0.033573 1 0.5 0.297585 0.357887 917907153.1 2010
CAR-LEAVE 790 0.061263 0 0.997285 0.975971 0.211984 917907155.3 2025
PERSON-LEAVE 780 0.038616 1 0.999923 0.974494 0.865237 917907158.6 2047
PERSON-LEAVE 787 0.032045 1 0.999997 0.296519 0.183704 917907158.7 2048
ENTER 813 0.034776 1 0.5 0.012821 0.348379 917907160.9 2063
ENTER 816 0.093513 0 0.5 0.960425 0.793899 917907161.9 2070
CAR-LEAVE 724 0.097374 0 0.993211 0.972272 0.693728 917907165.2 2091
CAR-LEAVE 816 0.089424 0 0.99023 0.693699 0.990798 917907165.2 2091

D
R

O
P

-O
F

F
D

R
IV

E
-IN

Figure 3: Results of track mapping on one of the runs of the system. Two subsets of events, outlined in the picture, correspond to
DRIVE-IN and DROP-OFF. Interpretation of this data is shown in figure 4.

f)

a)

Car Passed Through
frames 2012-2025

car-enter SKIP car_exit

b)

Person Passed Through
frames 1998-2047

person-enter SKIP
person-exit

e)

Car Passed Through
frames 2070-2091

car-enter SKIP car-exit

c)

Person Drove In
frames 1906-2048

car-enter SKIP
car-stop SKIP
person-found
person-exit

d)

Person Drop Off
frames 1906-2091

car-enter SKIP
car-stop SKIP
person-found SKIP
car-exit

Figure 4: a) A car passed through the scene, while DROP-OFF was performed. Corresponding track is shown by a sequence of white
pixels. b) Person passing through. c) A person left the car and exited the scene. At this moment the system has enough information to
emit the DRIVE-IN label. d) The car leaves the scene. The conditions for DROP-OFF are now satisfied and the label is emitted. e)
Before the car performing the DROP-OFF exits the scene, it yields to another car passing through, which is shown here. f) Temporal
extent of the actions shown in a)-e). Actions related to people are shown in white. Top line of the picture corresponds to the label a), the
bottom one - e). Car primitives are drawn in black. The figure clearly demonstrates concurrency of events. In this figure, primitive events
are abbreviated as follows: ce - car-enter, cs - car-stop, cx - car-exit, pe - person-enter, pf - person-found, px -
person-exit.

8

