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Automatic License Plate Recognition
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Abstract—Automatic license plate recognition (LPR) plays
an important role in numerous applications and a number of
techniques have been proposed. However, most of them worked
under restricted conditions, such as fixed illumination, limited
vehicle speed, designated routes, and stationary backgrounds. In
this study, as few constraints as possible on the working environ-
ment are considered. The proposed LPR technique consists of
two main modules: a license plate locating module and a license
number identification module. The former characterized by fuzzy
disciplines attempts to extract license plates from an input image,
while the latter conceptualized in terms of neural subjects aims to
identify the number present in a license plate. Experiments have
been conducted for the respective modules. In the experiment on
locating license plates, 1088 images taken from various scenes
and under different conditions were employed. Of which, 23
images have been failed to locate the license plates present in
the images; the license plate location rate of success is 97.9%. In
the experiment on identifying license number, 1065 images, from
which license plates have been successfully located, were used.
Of which, 47 images have been failed to identify the numbers of
the license plates located in the images; the identification rate of
success is 95.6%. Combining the above two rates, the overall rate
of success for our LPR algorithm is 93.7%.

Index Terms—Color edge detector, fuzzification, license
number identification, license plate locating, license plate recog-
nition (LPR), self-organizing (SO) character recognition, spring
model, topological sorting, two-stage fuzzy aggregation.

1. INTRODUCTION

UTOMATIC license plate recognition (LPR) plays an im-
portant role in numerous applications such as unattended
parking lots [31], [35], security control of restricted areas [8],
traffic law enforcement [7], [33], congestion pricing [5], and
automatic toll collection [20]. Due to different working envi-
ronments, LPR techniques vary from application to application.
Most previous works have in some way restricted their working
conditions [9], such as limiting them to indoor scenes, stationary
backgrounds [30], fixed illumination [7], prescribed driveways
[22], [26], limited vehicle speeds [1], or designated ranges of
the distance between camera and vehicle [23]. The aim of this
study is to lessen many of these restrictions.
Of the various working conditions, outdoor scenes and non-
stationary backgrounds may be the two factors that most influ-
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ence the quality of scene images acquired and in turn the com-
plexity of the techniques needed. In an outdoor environment, il-
lumination not only changes slowly as daytime progresses, but
may change rapidly due to changing weather conditions and
passing objects (e.g., cars, airplanes, clouds, and overpasses).
In addition, pointable cameras create dynamic scenes when they
move, pan or zoom. A dynamic scene image may contain mul-
tiple license plates or no license plate at all. Moreover, when
they do appear in an image, license plates may have arbitrary
sizes, orientations and positions. And, if complex backgrounds
are involved, detecting license plates can become quite a chal-
lenge.

Typically, an LPR process consists of two main stages: 1)
locating license plates and 2) identifying license numbers. In the
first stage, license plate candidates are determined based on the
features of license plates. Features commonly employed have
been derived from the license plate format and the alphanumeric
characters constituting license numbers. The features regarding
license plate format include shape, symmetry [15], height-to-
width ratio [23], [25], color [17], [25], texture of grayness [2],
[25], spatial frequency [26], and variance of intensity values [8],
[10]. Character features include line [34], blob [13], the sign
transition of gradient magnitudes, the aspect ratio of characters
[12], the distribution of intervals between characters [28], and
the alignment of characters [32]. In reality, a small set of robust,
reliable, and easy-to-detect object features would be adequate.

The license plate candidates determined in the locating stage
are examined in the license number identification stage. There
are two major tasks involved in the identification stage, char-
acter separation and character recognition. Character separation
has in the past been accomplished by such techniques as projec-
tion [11], [30], morphology [2], [10], [28] relaxation labeling,
connected components [25], and blob coloring. Every technique
has its own advantages and disadvantages. Since the projection
method assumes the orientation of a license plate is known and
the morphology method requires knowing the sizes of charac-
ters, these two approaches are not appropriate for our applica-
tion because of their required assumptions. Relaxation labeling
is by nature iterative and often time consuming. In this study, a
hybrid of connected components and blob coloring techniques
is considered for character separation.

There have been a large number of character recognition tech-
niques reported. They include genetic algorithms [17], artifi-
cial neural networks [2], [16], [26], fuzzy c-means [25], support
vector machine [16], Markov processes [6], and finite automata
[1]. These methods can be broadly classified into iterative and
noniterative approaches. There is a tradeoff between these two
groups of approaches; iterative methods achieve better accuracy,
but at the cost of increased time complexity. In this study, we
pay more attention to accuracy than time complexity whenever
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TABLE 1

STYLES OF LICENSE PLATES UNDER CONSIDERATION
Vehicle category Plate color | Character color Example
Private automobile White Black E1e2345
Taxi White Red Ele234
Tour bus Red White E1e234
Truck Green White
Government vehicle White Green Ele234

a choice has to be made between them. For this, we developed
our own character recognition technique, which is based on the
disciplines of both artificial neural networks and mechanics.

The rest of this paper is organized as follows. In Section II,
the types of license plates to be considered are described, fol-
lowed by the fundamental idea of the proposed LPR technique.
The two primary stages of the proposed technique, license plate
location and license number identification, are discussed in de-
tail in Sections Il and IV, respectively. Experimental results are
presented in Section V. Concluding remarks and ideas for future
work are given in Section VL.

II. LPR

In this section, the styles of license plate that are considered
in this study are discussed, followed by a brief description of the
proposed LPR process. Table I shows assorted styles of license
plates found on vehicles in Taiwan. Each style is associated with
a particular class of vehicle. The classes include private auto-
mobile, taxi, tour bus, truck, and government vehicles. Other
categories of vehicles, such as diplomatic cars and military ve-
hicles, are not addressed since they are rarely seen. Styles of li-
cense plates can easily be distinguished based on two attributes:
1) the combination of colors used and 2) the compositional se-
mantics of license numbers.

As shown in Table I, each style has a different foreground
and/or background color. However, in all only four distinct
colors (white, black, red, and green) are utilized in these
license plates. We shall pay attention to these four colors
when searching for license plates in an input image. The com-
positional semantics of license numbers provides additional
information for differentiating styles of license plates. As can
be seen in Table I, every license number is composed of two
parts separated by a hyphen (e.g., E1-2345). The first part
consists of two characters, one of which must be an alphabetical
character (e.g., E1, 2F, and EF). The second part may contain
four (e.g., 2345) or three (e.g., 234) numerals, the former being
used only on private automobiles, and the latter being used on
the other vehicle classes.

Fig. 1 shows the proposed LPR process. We assume that the
process is incorporated in an event detection system, e.g., a ve-
hicle detector or a traffic law enforcement system. Once the
system detects an event, the camera along with the system is
activated. The image acquired by the camera is then sent to
the LPR process, in which potential license plates are extracted
from the image. If no license plate is found, the process returns
to await another input image. However, oftentimes multiple li-
cense plate candidates are detected. They are closely examined
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Fig. 1.

at the license number identification stage. There are two es-
sential tasks involved in this stage, character segmentation and
recognition. These two tasks are alternatively invoked in order
to achieve optimal results for both segmentation and recogni-
tion. The characters recovered from a license plate candidate at
this stage are next verified at the confirmation stage. The group
of characters will be deemed to form a valid license number if
it agrees with the compositional semantics of license numbers
mentioned earlier. Both the valid license number and the asso-
ciated vehicle class will be returned by the LPR process. The
identification and confirmation stages repeat for all of the li-
cense plate candidates. Afterwards, the process returns to await
another input image.

In Sections III and IV, we look at the details of the license
plate locating module and the license number identification
module.

III. LICENSE PLATE LOCATING MODULE
A. Basic Concepts

A flowchart for the license plate locating module is shown
in Fig. 2. The input to this module is an RGB color image. Re-
call that only four colors (white, black, red, and green) are uti-
lized in the license plates that we consider. Note also that there
are many edges, which are in close mutual proximity and are
dispersed in a repetitive manner, contained in a license plate.
The above observations motivates us to develop a color edge de-
tector. The edge detector is sensitive to only three kinds of edges,
black-white, red-white, and green-white (see the last column of
Table I). By ignoring other types of edges in an image, very few
edges due to objects other than license plates are detected, even
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Fig. 2. Flowchart for the license plate locating module.

when the image background is very cluttered. Let E denote the
edge map computed from the input image using the color edge
detector.

Next, the RGB space of the input color image is transformed
into the HST space. Let (R, G, B) and (H, S, I') denote the (red,
green, blue) and (hue, saturation, intensity) values of an image
pixel, respectively. The transform from (R, G, B) to (H, S, I)
[3] is

j_(r+g+b)
3
min{r, g, b}
:1— _—
S I

H:cosl{ r-g)+(r - 1/2} (1)
2[(r—g)*+ (r—b)(g —b)]

where r = R/255, g = G/255 and b = B/255. There are
a number of intriguing characteristics associated with the HSI
color model which are useful for our application, including the
invariance of hue to both illumination and shading, and the in-
variance of saturation to both viewing direction and surface ori-
entation. Let H, S, and I be the maps preserving the hue, satu-
ration, and intensity components of the transformed image, re-
spectively.

It is inevitable that maps E, H, S, and I are less than perfect
in view of noise, measurement error, and imperfect processing.
In order to compensate for this drawback, we appeal to the soft
computing techniques rooted in fuzzy (for license plate loca-
tion) and neural (for license number identification) disciplines.
Let ﬁ, g, i, and E be the fuzzy versions of H, S, I, and E. The

Candidate license plates

entries in the fuzzy maps represent the degrees of belonging to a
license plate. A two-stage fuzzy aggregator is introduced to inte-
grate the maps. In the first stage, fuzzy maps H, S, and I are in-
tegrated. The resulting map next combines with E in the second
stage leading to a single map, denoted M. The reason of using
the two-stage aggregator is because the intrinsic characteristics
(related to color) of I:I, g, and I are different from that (related to
edge magnitude) of E. Afterwards, based on map M, interesting
regions are located in the input image, which have locally max-
imal m values. License plate candidates are then determined to
be those interesting areas whose sizes are large enough.

B. Color Edge Detection

The color edge detector focuses on only three kinds of edges
(i.e., black-white, red-white and green-white edges). Consider a
black-white edge, and suppose that the input RGB color image
has been normalized into an rgb image. Ideally, the (r,g,b)
values of a white pixel and a black pixel should be (1,1,1)
and (0,0,0), respectively. Their differences (Ar, Ag, Ab) are
either (1,1,1) or (—1,—1,—1), so all the components of the
difference vector between a white and a black pixel will have
the same sign. This property is considerably stable under envi-
ronmental variations. A black-white edge pixel is then defined
based on this property as follows. An image pixel is regarded
as a black-white edge point if all of the signs of components of
the difference vector between the pixel and one of its neighbors
are the same, i.e., sign(Ar;) = sign(Ag;) = sign(Ab;), ieN,
where N is the set of neighbors of the image pixel. We also store
its edge magnitude defined as min{|Ar;|,|Ag;|, |Ab;|}. Edge
magnitudes will be exploited later to derive fuzzy edge maps.
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In a similar way, an image pixel is considered to be a
red-white edge point if its difference vector (Ar; Ag; Ab;)
for some :eN satisfies the following conditions: 1)
sign(Ar;) = sign(Ag;) = sign(Ab;) and 2) |Ar;| < |Ag;]
and |Ar;| < |Ab;|. The magnitude of the edge pixel is
defined as min{|Ag;|,|Ab;|}. Finally, an image pixel is
regarded to be a green-white edge pixel if for some eV, 1)
sign(Ar;) = sign(Ag;) = sign(Ab;) and 2) |Ag;| < |Ar]
and |Ag;| < [|Ab,|. Its edge magnitude is determined by
min{|Ar;|, |Ab;|}. Image pixels, which are not edge points,
are given zero edge magnitudes.

C. Fuzzy Maps

The basic idea of generating a fuzzy map from a given map
(e.g., H, S, I, or E) is as follows. Since every map encodes
some characteristic about the scene, the entry of any cell in the
map expresses the degree of the cell possessing the property.
In order to highlight the cells corresponding to the objects of
interest (e.g., license plates), we assign large entries to those
cells that are compatible with the known characteristics of the
objects. Such large entries indicate a high degree of existence of
an interesting object. We call the resultant map the characteristic
map of the original map.

Since the input data (both the given map and the object char-
acteristics) are not perfect, uncertainties should be taken into ac-
count during the computation of the characteristic map. Fuzzy
sets have been known to provide an elegant tool for modeling
uncertainties [14], [18], [27]. In this study, we introduce fuzzi-
nesses into the entries of the characteristic map and refer to the
result as the fuzzy map. There are several ways to realize fuzzi-
ness. We define a generalized fuzzy set, termed “like a license
plate,” on the respective sets of hue, saturation, intensity, and
edge magnitude. Each of the four sets serves as a universal set
of the fuzzy set.

1) H Map: Consider the universal set of hue values.
Suppose that the object of interest has a color C' whose cor-
responding hue value is h.. Given an entry in map H, say h,
the membership degree, u.., of the entry belonging to fuzzy set
“like the object” can be written

pie(h) = exp (=alh — h.|)

where a is a positive constant. If the given entry A is equal to
that of the interesting object h., then the degree of membership
is 1. As the difference between the hues increases, the degree of
membership decreases to an asymptotic value of 0. Recall that
there are four colors (black, white, red and green) utilized in the
license plates that are of interest. Let h,. and h, be the hue values
for red and green, respectively. Note that the hues of achromatic
colors (i.e., all levels of grey, including black and white) are not
defined since the denominator of the equation for hue in (1) is
zero. Therefore, we will highlight red and green, but not white
and black based on map H. The membership function of fuzzy
map H is finally defined as

pig(h) = (pr(h), pg(h)) @)

where u can be any fuzzy union operator (any ¢-conorm func-
tion).
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2) S Map: Since fuzzy map H can only express the colors
red and green, we need other means to handle black and white.
According to the S in (1), all achromatic colors have the same
saturation S. In addition, this value is smaller than that of any
chromatic color. Based on these two facts, we generate a fuzzy
map S from map S for distinguishing between chromatic and
achromatic colors. The membership function of S is defined as

pg(h) = exp(—as). 3)

This states that the smaller a given saturation value the more
likely that it comes from some achromatic color.

31 Map: While chromatic and achromatic colors can be
separated from each other based on their saturation values,
black and white have to be further differentiated from other
achromatic colors. For this, we count on the intensity map I.
Since the intensity values of black and white correspond to the
two extreme values on the intensity axis of the HSI coordinate
system, the following function emphasizes the colors with
intensity values close to the two extremes

f(i) =1 — exp[—a(i — 0.5)].

This assumes that the working environment has an average in-
tensity of 0.5. However, both black and white will be distorted
under some circumstances. For example, a white color may ap-
pear grey in a dark environment, as will a black color in a bright
environment. To compensate for such distortion, the constant
0.5 in the above equation may be replaced with the average
value, 7, of map I. We then define the membership function of
fuzzy map Ias

p(i) = 1 = exp(—a(i — 7)). 4)

4) E Map: Based on fuzzy maps H,S, and I image areas
with black, white, red, or green colors can be distinguished.
However, a large portion of these areas has nothing to do with
license plates. Edge maps play a crucial role in discriminating
against irrelevant regions. Since there are many close-by edges
in a license plate and distributed in a repetitive manner, an image
pixel whose neighbors possess large edge magnitudes will have
a high possibility that it belongs to a license plate. Hence, we
define the membership function of fuzzy edge map E as

pilep) = Z e exp(—adpy) 5)

keN,

where N, is the horizontal neighborhood of the image pixel p
under consideration, ey, is the edge magnitude of pixel k£ in N,,,
and d,, is the Euclidean distance between pixels p and k. In the
above function we do not care about the edge magnitude e;, of
pixel p itself.

D. Fuzzy Aggregation

Each fuzzy map provides information for locating license
plates in the input image. There are two ways to draw a conclu-
sion from a set of maps. In the first, intermediate decisions are
made on the basis of individual maps and a final conclusion is
drawn from the intermediate decisions. In the second, multiple
maps are first integrated into a single map, and a final conclusion
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is then drawn from the integrated map. Since the first method
involves both numerical computations and symbolic decisions,
we prefer the second approach, which includes only numerical
computatlons Following the second approach, fuzzy maps H,
S,I,and E are integrated into a single map, M, with decisions
belng made on the basis of M. A two- stage fuzzy aggregator is
introduced for this purpose.

In the first stage of the aggregator, fuzzy maps H, S, and I
are integrated cell by cell. Let B, 3, and 1 be the entries of the
corresponding cells in fuzzy maps H, S, and I. The aggregator
integrates the entries by

G = u(wph, wes, wi1) (6)

where v is a fuzzy union operator and wy, ws, and w; are
weights reflecting the relative degrees of importance among
fuzzy maps H, S, and I. The weights are described next.

Recall that in the definition of a fuzzy map a large entry in-
dicates a high degree of possibility that the entry belongs to
a license plate. However, if the majority of cells having small
variations in the entry (i.e., having nearly uniform distribution
of entries) are in a fuzzy map, the usefulness of the map for de-
tecting license plates deteriorates. To see this, consider a picture
taken in the evening or on a rainy day. On the whole, the picture
will look dim. The overall intensities of image pixels tend to be
small, which in turn leads to large saturation values throughout
the picture [see (1)]. Both the intensity and saturation maps con-
tribute little to locating license plates because entries are com-
parable. In all fuzzy maps, it is desirable that a relatively small
portion of a map possesses large entries, while the remaining
areas contain small values. Such a map will be given a large
weight to reflect a high degree of importance of the map. Let
A= [@i;] be any fuzzy map of size M by N. Its weight (or
degree of importance) is then determined by

M N
> 2 by
1=1j5=1 (7)
Wa MN
where
y _[1 ifag >t
7710, otherwise

in which threshold ¢ = (@max + @min)/2 and Gmax and iy, are
the maximum and minimum values in A

After combining fuzzy maps H, S, and I, at the second stage
the resulting map, say G, and fuzzy map E are linearly com-
bined into M = [n] by

it = Wy + Weé, (8)

where w, and w, are the weights of maps G and E, which are
determined similar to (7).

IV. LICENSE NUMBER IDENTIFICATION MODULE
A. Fundamental Idea

Fig. 3 gives the flowchart for the identification module.
There are two major components constituting the module,

Input candidate license plate

A

Preprocessing

Binarization
v
Connected component
v
Noise removal

Character <
segmentation

'

Character
recognition <

Structural constraints
of license plates

Candidate license number

Fig. 3. Flowchart for the license number identification module.

preprocessing and recognition. The preprocessing component
consists of three tasks, binarization, connected component
labelling, and noise removal, which are arranged in sequence.
The recognition component is composed of two main pro-
cedures, character segmentation and recognition. To obtain
optimal results for both the procedures, they are alternatively
invoked.

Since the camera may be rolled and/or pitched with respect
to license plates, it is desirable that their images be transformed
to a predefined size and orientation before performing license
number identification. However, without information about re-
lationships between the camera and working environments, the
transformations can only be conducted blindly or by trial-and-
error. In the proposed method since the transformation step is
omitted, it is inevitable that difficulties in the subsequent steps
will increase.

Considering a license plate candidate, it is first binarized.
Since some information will somehow be lost during binariza-
tion, a variable thresholding technique previously proposed by
Nakagawa and Rosenfeld [24] is employed. The technique de-
termines a local optimal threshold value for each image pixel
so0 as to avoid the problem originating from nonuniform illumi-
nation. Although variable thresholding cannot completely com-
pensate for the information loss mentioned above, it at least
preserves information that may be lost when using a constant
binarization method. There are two purposes for the binariza-
tion step: highlighting characters and suppressing background.
However, both desired (e.g., characters) and undesired (e.g.,
noise and borders of vehicle plates) image areas often appear
during binarization.
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In order to eliminate undesired image areas, a connected com-
ponent algorithm is first applied to the binarized plate candidate.
The aspect ratios of connected components are then calculated.
The components whose aspect ratios are outside a prescribed
range are deleted. Then an alignment of the remaining compo-
nents is derived by applying the Hough transform to the centers
of gravity of components. The components disagreeing with the
alignment are removed. If the number of remaining components
is still larger than a prescribed number (eight in practice), con-
nected components are deleted one at a time starting with the
smallest. Here, we choose eight as the prescribed number be-
cause a license number consists of five or six characters and
characters may be broken. The removal process continues until
either of two conditions is satisfied. Either the number of re-
maining components equals the prescribed number, or a dra-
matic change in size from the previously removed component
to the current one under consideration is encountered. We as-
sume that noise components are much smaller than characters.

The above procedure does not guarantee that each of the sur-
viving components will correspond to an individual character.
A component may be due to noise, an incomplete character, a
distorted character, or characters that appear to touch. To dis-
tinguish them, we utilize attributes of license plates, including
the aspect ratios of individual characters, the regular intervals
between characters, and the number of characters constituting
license numbers. We refer to these attributes collectively as the
structural constraints of license plates. We also introduce the op-
erators of delete, merge, split and recover into the character seg-
mentation procedure. Note that characters may be missed during
license plate location and binarization. The recover operator is
introduced to retrieve missing characters.

During processing the segmentation procedure applies the
first three operators (delete, merge, and split) to the set of sur-
viving components in an attempt to determine if a component
satisfies the structural constraints of license plates. If such a
component can be determined, the character recognition proce-
dure is invoked to identify a character from the component. The
above process repeats until no character can be extracted from
the set of surviving components. Thereafter, if the number of ex-
tracted characters is less than the number of characters in license
numbers, the recover operator starts at the outermost characters
of those detected and searches for characters along the align-
ment of the known characters. The search continues until no
character can be retrieved within an extent determined by the
average width of characters as well as intervals between char-
acters. Next, the collection of identified characters is verified in
the confirmation stage, where the compositional semantics of
license numbers plays an important role. The set of characters
will be deemed to form a valid license number if it agrees with
the compositional semantics.

B. Optical Character Recognition

In this subsection we discuss the character recognition pro-
cedure. Since, as already mentioned, license plates may be bent
and/or tilted with respect to the camera, characters extracted
from such license plates may be deformed. Furthermore, input
characters may be noisy, broken or incomplete. Character recog-
nition techniques should be able to tolerate these defects. In this

47

Fig. 4. Nodal types: (a) end-point, (b) three-way node, and (c) four-way node.

study, we develop our own character recognition approach to
suit our particular application. The proposed approach consists
of three steps: character categorization, topological sorting, and
self-organizing (SO) recognition. In the first step, the input char-
acter is distinguished as numerical or alphabetical. This is easily
accomplished by referring to the compositional semantics of li-
cense numbers. In the next step, the topological features of the
input character are computed and are compared with those of
prestored character templates. Compatible templates will form
a test set, in which the character template that best matches the
input character is determined. The template test is performed by
a SO character recognition procedure.

1) Topological Sorting: The topological features of charac-
ters utilized in this study include the number of holes, end-
points, three-way nodes, and four-way nodes (see Fig. 4 for their
definitions). These features are invariant to spatial transforma-
tions (including rotation, translation and scale change). More-
over, these features, which are qualitative in nature, can be easily
and reliably detected compared to quantitative features. How-
ever, input characters are usually imperfect; extra or missing
features may occur. The following rule is employed for topo-
logical sorting. A character template is compatible with a given
character whenever 1) their difference in the numbers of holes
is within the range [—1, 1] and 2) their difference between the
numbers of nodes of any type is within the range [—2, 2]. Here,
a smaller range is given to the hole feature because it is gener-
ally more reliable in detection than nodes. In our experiments
no more than three out of ten numerical character templates and
six out of 26 alphabetical character templates have passed topo-
logical sorting for any given character. This has greatly reduced
the number of templates in the test set and hence the time com-
plexity for character recognition.

2) Template Test: The templates in the test set are matched
against the input character and the best match is determined.
The template test is primarily accomplished using a SO char-
acter recognition approach, which is based on Kohonen’s SO
neural network [19]. The idea behind the proposed technique
is as follows. Given an unknown character and a character tem-
plate, the input character is encoded in terms of synaptic weights
in the between-layer links of the neural network. The character
template here serves as a stimulus, which repeatedly innervates
the neural network, causing the synaptic weights of the neural
network to gradually change. This process continues until the
weights stabilize. We sum up the changes of synaptic weights
during processing. The total change in weight in a sense reflects
the level of dissimilarity between the unknown character and the
character template.

Let C = {c1,...,cr} be the set of character templates sur-
viving from the topological sorting of an unknown input char-
acter. Let dy,...,dr denote the computed dissimilarities be-
tween the unknown character and the character templates. It is
natural that the character template having the smallest dissim-
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Fig. 5. Kohonen SO neural model.
ilarity with the unknown character is taken to be the class to
which the unknown character belongs.

a) SO Neural Model: 1In this subsection, we brief the key
components of the Kohonen SO neural model, which will be
used in the later practical implementation. Referring to Fig. 5,
the underlying configuration of the SO neural network consists
of two layers, an input layer and an SO layer.

Let w;; be the weight of the link between SO neuron
n; and input neuron n;. The weight vector for n; is
w; = (w1, Wo,..., W), where m is the number of
input neurons. Let v; = (v1,v3,...,v,,) denote an external
stimulus. The input to n; due to the stimulus is

IZS :WZV:Zkavk (9)
k=1

The lateral interaction among SO neurons is characterized by a
“Mexican-hat” function [21], denoted h(r), where r represents a
position vector. Let u;; be the weight of the connection between
SO neurons n; and ng located at r; and rg, respectively. The
input to n; due to lateral interaction is

Izl = Z akuikh(rk — I‘i) (10)
npeN,k#i
where N is the set of SO neurons and aj, = (nety,) is the

activation of ny, in which netj, to be defined is the net input to
ny and 1) is the output function defined by a sigmoid function.
A leakage term e¢(a), which dissipates activations of SO neu-
rons once a stimulus has been removed, is introduced for every
SO neuron. The net input to n; then sums the inputs from the
stimulus, lateral interaction, and leakage
net; = I + It + e(a;). (11)
During competition among SO neurons, the winner n.. is de-
termined by net. = maxi<i<n{net;}. Next, the winner to-
gether with its neighbors, say set N., engage in a group learning
process. During this process a neuron close to the winner will
gain a high rate of learning while a neuron located far from the
winner will have a low rate of learning. The rate of learning is
governed by the Gaussian function g. The learning rule for the
neurons in N, is then defined as
keN..

Awy = (v — wy)g(rg — re), (12)

Self-organizing layer

(a)

(b)

Fig. 6. SO layers: (a) 0-hole, (b) 1-hole, and (c) 2-hole SO layers.
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Fig. 7. Example of SO character recognition.

Finally, the updating equation for SO neuron 7y, is

with = wi + p(t)Awl,  keN. (13)
where p(t) is the step size, which decreases monotonically with
increasing t.

b) Practical Implementation: To begin, we group char-
acters into three categories, referred to as 0-hole, 1-hole, and
2-hole, according to the number of holes contained in the char-
acters. Each category has its own associated SO neural network,
which contains 40 SO neurons and two input neurons. The dif-
ference among the three neural networks is primarily in their
configurations of SO layer (see Fig. 6).

Referring to the example shown in Fig. 7, suppose that we are
given an unknown character (“C” in this example). The char-
acter is normalized in size (16 by 16 pixels) in order to be con-
sistent with the character templates. The number of holes in the
character is computed. Here, we always choose the neural net-
work according to the computed number regardless of whether
the computed number is the true number of holes for that char-
acter. Since the input character (“C”) has no hole, the neural net-
work with the 0-hole SO layer is chosen. Next, the contour and
its length of the unknown character are found. The length is di-
vided into 40 approximately equally spaced intervals. Starting
at any arbitrary point along the contour, the two dimensional
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Fig. 8. Spring model.

(2-D) position vectors, i.e., the (row, column) coordinates, of
the 40 interval boundaries are extracted. See the right side of
Fig. 7. We choose 40 points because they are about half the av-
erage number of contour points in the character templates. The
position vectors of the 40 contour points are then assigned, one
by one in the order of extraction, to the weight vectors of the
40 SO neurons of the chosen neural network. Note that since
all the configurations of SO layer of the three neural networks
are symmetrical which SO neuron should be assigned first is not
important.

Consider a 2-D space with axes corresponding to the two
components of weight vectors of SO neurons. The weight vector
of each SO neuron can be represented as a point in the space.
This space is referred to as the weight space of the neural net-
work. Since the weight vectors of SO neurons are set to the po-
sition vectors of contour points of the input character, the con-
tour will be recreated in the weight space when we represent the
weight vectors of SO neurons as points in the weight space. See
the picture on the right hand side of Fig. 7.

Suppose that a template (“L” in the example) chosen from the
test set for the input character is to be matched against the char-
acter. Rather than the entire template, just its contour serves as
the stimulating pattern, which repeatedly innervates the neural
network until its synaptic weights stabilize. In our implementa-
tion the contour points are fed into the input layer of neural net-
work one at a time. Consider an input contour stimulus point v.
The SO neurons of the network compete for the stimulus. The
winner n, is determined by n. = arg(maxi<i<so{W;-V}),
where w;’s are the weight vectors of the 40 SO neurons. The
winner and its first- and second-order neighbors, call them set
N, join in the following learning process

AWk = dkg(rk — I‘C) kENc. (14)

Note that (v — wy) in (12) has been replaced by dj in (14).
The dj is computed as follows. We use a model, called the
spring model, taken from [4], in which SO neurons are assumed
being connected with springs. The elastic spring coefficients
are simulated with synaptic weights between neurons. Refer-
ring to Fig. 8, we denote the SO neurons with their weight vec-
tors. Weight vectors wy_1, wy, and w1 represent SO neurons
Nkg—1, Nk, and nx41, respectively, where ny is any learner in
N, and ny_; and ng4; are the two first-order neighbors of ny.
The learner is connected to its two neighbors with the springs,
whose coefficients are uy_1 5 and uy, ;1. The point stimulus is
denoted v in the figure.
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(©)

Fig.9. Some intermediate results of shape transformation. (a) 1st iteration. (b)
5th iteration. (c) 10th iteration. (d) 42nd iteration.

The v here serves as an attractive source, which during the
learning process attempts to pull wy, toward it with force f,,.
However, the springs exerting forces fi,_; and f;1 on wy, try
to pull wy, toward its neighbors wj_; and wy1. In addition,
there is a damping force, f; (not shown in the figure), for dissi-
pating the energy in the spring model so that the entire system
will eventually converge to an equilibrium state with an external
force f., i.e.

fo+f 1+ +fa=1 (15)
where
B ke vV — Wy
T v = well +2)? v =
Who1 — W
froo1 =up—1 k0 (||Weo1 — Wil| = 1) NALES L
||ka1 —Wk||
Wi — Wiyl
£, = — Wy ) —
k1 = Uk ket 1 ([We — Wi || — 1) W = Weat]
£, + fo_1 + £
£ = —kallfo + fom1 + fpa ]| L (16)

Ifo + fr—1 + frpa]]

in which k, is the gravitational coefficient, k4 is the damping
coefficient, [ is the natural length of the springs, and ¢ is a small
value to prevent f,, from becoming infinite as wj, approaches v.
Substituting the forces in (16) into (15) for f., the displacement
of neuron ny, is
_ fe np2
dk = Vor + —Ate. (17)
m
For simplicity, we assume that the initial velocity of neuron ny,

Vok, 18 zero, the neural mass m is one, and the time interval At
is one. The result is

dp=f.=f, + i1 + i1+ £ (18)

Note that the calculated displacement dj, has to be modified by
the degree of learning of neuron ng, g(ry — r.), and a learning
step p(t). The actual displacement of neuron ny, in the weight
space is p(t)drg(rr — re).

Accumulating the displacements of all the neurons in NV, ac-
complishes the innervation of point stimulus v. Repeating the
above process for all point stimuli of the input stimulus pat-
tern completes one iteration for the pattern. Iterating continues
until no significant displacement of SO neuron is observed (i.e.,
stabilized). The total displacement of SO neurons serves as a
measure of dissimilarity between the unknown character and
the character template. Fig. 9 illustrates some intermediate re-
sults of shape transformation from “C” to “L” during iteration.
In this example the total displacement of neurons amounts to
147 pixels. Empirically, displacements have been distributed
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B880 D

Fig. 10. Distinguishing parts of ambiguous characters.

over the interval [23,67] when correct templates were chosen
for testing.

¢) Remarks: The proposed character recognition ap-
proach has difficulty distinguishing character pairs (8, B) and
(O, D) especially when they are distorted. To overcome this,
we predefine an ambiguity set containing the characters 0, 8, B
and D. For each character in the set, the nonambiguous parts
of the character are specified (see Fig. 10). During character
recognition, once an unknown character is classed as one of the
characters in the ambiguity set, an additional minor comparison
between the unknown character and the classed character is
performed. The comparison focuses on only the nonambiguous
parts of the character.

Our character recognition method gives different measure-
ments of dissimilarity for the same character with different tilt
angles with respect to the camera. Currently, this issue has not
troubled us because the characters extracted from the images of
license plates are all in a nearly upright position. But, we may
improve our algorithm to deal with this by introducing a nor-
malization step to transform license plates into a prescribed ori-
entation prior to license number identification.

V. EXPERIMENTAL RESULTS

Two groups of images have been collected for our experi-
ments. The first contains 639 images (640 by 480 pixels) taken
from 71 cars of different classes. For each car, nine images were
acquired from fixed viewpoints whose positions are illustrated
in Fig. 11(a). Fig. 11(b) shows two images of one car taken
from viewpoints a; and c3. The experimental results with the
first group of images are summarized in Table II. In this table
columns correspond to viewpoints, rows to the classes of vehicle
(or the types of license plate), and the entries are the number of
correctly located license plates. The percent of correctly located
license plates (the success rate) is given in the bottom row of
the table. The success rates for viewpoints al, a2, and a3 (i.e.,
straight on) are 100%, independent of the type of license plate
and viewing distance. However, as the viewing angle increases
the success rate declines. In the worst case, viewpoints cl, c2,
and 3, the success rates are 97.2%, 98.6%, and 95.8%, respec-
tively. The overall average success rate with the first group of
images is 98.8%.

The second group contains 449 images (768 by 512 pixels),
some of which are shown in Fig. 12. The images are taken
from (a) complex scenes, in which several objects look like
license plates, (b) various environments (street, roadside and
parking lot), (c) different illumination (dawn, sunshine, rain,
back lighting, shadow, and nighttime), and (d) damaged license
plates (such as being bent). In these images, all the license
plates were successfully located as shown by the bounding
boxes. Fig. 13 shows two images in which our locating module
failed to detect license plates. In the example on the left, the

N B Jicense plate
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Viewpoint ¢
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(b)
Fig. 11. (a) Nine different viewpoints for the first group of images. The length

of one step is about 60 cm. (b) Two images of a car taken from viewpoints ¢
and c¢3.

TABLE 1I
EXPERIMENTAL RESULTS WITH THE FIRST GROUP OF IMAGES

ypoint

#vehicles | a1 a | a3 | by | by | bs | ¢ ¢ | ¢
Vehicle class
Private automobile 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 29
Taxi 20 | 20 | 20 | 19 | 20 | 20 | 19 | 19 | 20
Tour bus 7 7 7 7 7 7 6 7 7
Truck 8 8 8 8 8 7 8 6
Government vehicle 6 6 6 6 6 6
Success rate(%) 100 | 100 | 100 | 98.6 | 100 | 98.6 | 97.2 | 98.6 | 95.8

Average success rate (%): 98.8

actual license plate is connected with the reflection of a license
plate-like image on the front of another car. The area that
includes the license plate and the reflection was not consistent
with the constraint on aspect ratio for license plates. In the
example on the right, the license plate is surrounded by a
region, which possesses features (including color and edges)
resembling those of actual license plates. The whole area
containing the license plate and the surrounding region was
regarded by the locating module as a potential license plate.
However, since the aspect ratio of the area was out of range,
the locating module rejected it. The above two examples are
actually unusual cases that are rarely encountered.

A common failure of the locating module is the failure to
detect the boundaries of license plates. This occurs when ve-
hicle bodies and their license plates have similar colors. For this,
boundaries of license numbers were often extracted instead of
the entire license plates. License plate images may be kept for
further testing if the computed aspect ratio of the rectangular
area containing the license numbers agrees with the constraint.
The location success rate achieved with the second group of im-
ages (449 images) is 96.7%. Combining this rate with the rate
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(d)

Fig. 12. Example images in the second group: (a) Complex scenes. (b) Various
environments. (c) Different illuminations. (d). Damaged license plates.

Fig. 13. Examples of failures to find license plates.

(98.8%) of the first group (639 images), the overall rate of suc-
cess for the license plate locating module is 97.6%.

The license plates (1061 plates in all), whose dimensions
range from (320 x 95) to (80 x 45) pixels, extracted in the
previous experiment were used in the experiment for license
number identification. The images of license plates are rarely
perfect (see Fig. 14); views may be skewed, or they may
be over-segmented or under-segmented. The first two cases
have not bothered the license number identification module.
However, a significant degradation in performance of the
module is due to under-segmentation [see the example shown
in Fig. 14(c)]. In this case, problems with incomplete and
missing characters may occur. On the other hand, as Fig. 15
demonstrates, even under-segmented plates can be correctly
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Fig. 14. Examples of imperfect license plate location: (a) skewed view, (b)
over-segmentation, and (c) under-segmentation.
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Fig. 15. Examples of successful license number identification: (a) located
license plates, (b) character segmentation, and (c) license number identification.
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Fig. 16. Examples of failed license number identification.
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recognized. The figure shows the extracted license plates, the
results of character segmentation, and the identified license
numbers.

Another problem which often caused trouble for the identifi-
cation module is the misidentification of numeral “1” as ““7” (see
Fig. 16). This is essentially caused by the fact that the module
recognizes characters based on their contours and that contours
preserve only partial information about object shapes. However,
the reverse of misidentifying “7” as “1” never occurred in the ex-
periment. We refer to these collectively as the “1&7 confusion.”
This is intrinsically different from an ambiguity mentioned ear-
lier and cannot be solved by means of the ambiguity set. How-
ever, it may be resolved based on the observation that both tem-
plates “1”” and “7” will be in the test set if the input character is
either “1” or “7.”

The success rate for identification with the set of 1061 license
plates is 95.6%. Combining this rate with the location success
rate (97.9%), the overall rate of success for our LPR algorithm
is 93.7%.

Currently, our LPR algorithm is running on a Pentium IV-1.6
GHz PC. The license plate location module takes about 0.4 sec-
onds to find all license plate candidates in an image. However,
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the license number identification module takes about two sec-
onds (primarily due to the neural-based OCR process running
on a sequential computer) to process one license plate candi-
date. If there are multiple plate candidates located in an image,
the total processing time may not be adequate for real-time ap-
plications. Several things may be considered to compensate for
the high time complexity. Firstly, since the proposed technique
assumes no prior information about license numbers, if such in-
formation is available (e.g., databases of license numbers), both
the processing time and the recognition rate will improve. Sec-
ondly, if parallel machines, such as transputers, n-cubes, or PC
clusters, can be used, multiple license plate candidates and char-
acter templates will be able to be processed in parallel. As a
consequence, the topological sorting step becomes unnecessary.
Finally, some firmware components of the algorithm could be
replaced by hardware.

VI. CONCLUDING REMARKS AND FUTURE WORK

Compared to most previous work that in some way restricted
their working conditions, the techniques presented in this paper
are much less restrictive. The proposed LPR algorithm consists
of two modules, one for locating license plates and one for iden-
tifying license numbers. Soft computing techniques rooted in
fuzzy (for license plate location) and neural (for license number
identification) disciplines were introduced to compensate for
uncertainties caused by noise, measurement error and imper-
fect processing. Although the proposed algorithm is concerned
with the license plates of one specific country, many parts in
the algorithm are readily extended to use with license plates of
other countries. Specifically, since color and edge are two fun-
damental features of license plates, the color edge detector in-
troduced in the locating module is readily adapted to other color
schemes by replacing the color parameters embedded in the de-
tector. Since numerals and Roman letters are commonly used to
form license numbers, the proposed SO OCR technique is ap-
plicable to any similarly constituted license plates.

It is well known that a mixture of top-down (expecta-
tion-driven) and bottom-up (data-driven) procedures often
perform better than either in isolation. Currently, the locating
and identification modules both perform in somewhat of a
hybrid top-down and bottom-up manner. Location determina-
tion is guided by both the color information of license plates
and the compositional semantics of license numbers, while
identification is based on prebuilt templates and the compo-
sitional semantics. A higher degree of combining top-down
with bottom-up processing may be used in some applications,
such as the control of restricted or secure areas, the detection
of stolen vehicles, and the management of car pools, where
license information of the cars of interest can be known a priori.

In our future work, techniques for deriving intrinsic images
(e.g., illumination, reflectance and depth images) from a scene
image or a number of input images are recommended. Intrinsic
images containing only one intrinsic characteristic of the scene
are viewpoint dependent and can be of great use for many visual
inferences, such as image segmentation, view-based template
matching, and object reconstruction. Recall that at the identi-
fication stage we have omitted a normalization step to trans-

form extracted license plates to a prescribed size and orienta-
tion. Adding this step would improve the performance of li-
cense number identification. However, normalization requires
knowing the boundaries of either license plates or license num-
bers. The former may be invisible if vehicle bodies and license
plates have similar colors, while detecting boundaries of license
numbers can be error-prone. We leave these issues to be consid-
ered in future study. Furthermore, the proposed neural approach
for character recognition is basically unsupervised. In general,
supervised methods can outperform unsupervised ones if rich
training sets are available. We may later investigate supervised
approaches.

A number of strategies have been introduced to reduce the
time complexity of the proposed LPR algorithm. The color
edge detector reduces the processing time by ignoring irrelevant
edges at an early stage; the topological sorter limits the set of
template candidates for character test at the identification stage.
Obviously, there are more things that can be done to improve
the processing time. However, in order to make our techniques
applicable to real-time applications in less restrictive working
conditions, the topics regarding replacing firmware components
with hard-wired ones and using parallel machines should be
studied.
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