
INTELLIGENT DISTRIBUTED SURVEILLANCE SYSTEMS

Towards automated wide area visual surveillance:
tracking objects between spatially–separated,
uncalibrated views

R. Bowden and P. KaewTraKulPong

Abstract: This paper presents a solution to the problem of tracking intermittent targets that can
overcome long-term occlusions, as well as movement between camera views. Unlike other
approaches, our system does not require topological knowledge of the site or labelled training
patterns during the learning period. The approach uses the statistical consistency of data obtained
automatically over an extended period of time rather than explicit geometric calibration to
automatically learn the salient reappearance periods for objects. This allows us to predict where
objects may reappear, and within how long. We demonstrate how these salient reappearance periods
can be used with a model of physical appearance to track objects between spatially separate regions in
single and separated views.

1 Introduction

Intelligent visual surveillance is an important application
area for computer vision. In situations where networks of
hundreds of cameras are used to cover a wide area, the
obvious limitation is the user’s ability to manage such vast
amounts of information. For this reason, automated tools
that can generalise about activities or track objects are an
important tool to the operator. Key to the user’s require-
ments is the ability to track objects across (spatially–
separated) camera scenes. However, extensive geometric
knowledge about the site and camera position is typically
required. Such an explicit mapping from camera to
placement is infeasible for large installations as it requires
that the operator know which camera to switch to when an
object disappears. To further compound the problem the
installation costs of CCTV systems outweigh those of the
hardware. This means that geometric constraints or any
form of calibration (such as that which might be used with
epipolar constraints) is simply not realistic for real world
installation. The algorithms cannot afford to dictate to the
installer. This work attempts to address this problem and
outlines a method to allow objects to be related and tracked
across cameras without any explicit calibration, be it either
geometric or colour.

Algorithms for tracking multiple objects through occlu-
sion normally perform well for relatively simple scenes
where occlusions by static objects and perspective effects
are not severe. For example, Fig. 1 shows a typical

surveillance camera view with two distinct regions A and
B formed by the presence of a static foreground object (tree)
that obscures the ground from view.

In this paper, regions or subregions are defined as
separated portions grouped spatially within an image.
A region can contain one or more paths that may cover an
arbitrary number of areas. Tracking an object across regions
in the scene, where the geometric relationship of the regions
cannot be assumed, poses similar challenges to tracking an
object across spatially–separated camera scenes (again
where the geometric relationship among the cameras are
unknown). In a single view, the simplest solution to this
problem is to increase the allowable number of consecutive
frames that a target persists with no observation before
tracking is terminated. This process is shown in Fig. 1 using
a Kalman filter as a linear estimator.

By delaying the tracking termination, both the determi-
nistic and the random components within the dynamics of
the Kalman filter propagate over time [1], increasing the
uncertainty of the predicted area in which the target may
reappear (as shown in Fig. 1c). This increases the chance of
matching targets undergoing long occlusions, but also inc-
reases the chance of false matches. In situations where linear
prediction cannot be assumed (for example, the pathway
changes direction behind large static objects), this will result
in a model mismatch and the kinematic model assumed in
most trackers will provide incorrect predictions. Further-
more, this type of approach cannot be extended to multiple
cameras without an explicit calibration of those cameras.

2 Previous work

An approach often used to tackle object tracking across
multiple cameras is to ensure that some overlap within the
field of view of the cameras is available. An example, is the
pilot military system [2, 3] where a bird’s-eye camera view
is used to provide a global map. The registration of a
number of ground-based cameras to the global map allows
tracking to be performed across spatially–separated camera
scenes. The self-calibrated multiple camera system demon-
strated in [4] assumes partially–overlapping cameras.
Epipolar geometry, landmarks, and a target’s visual
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appearance are used to facilitate the tracking of multiple
targets across cameras and to resolve occlusions.

Tracking across non-overlapping views has been of
recent interest to many researchers. Huang and Russell [5]
developed a system to track vehicles on a highway across
spatially–separated cameras. In their system, knowledge
about the entrance and exit of the vehicles into the camera
views must be provided along with transition probabilities.
Kettnaker and Zabih [6] presented a Bayesian framework
to track objects across camera views. The user supplies
topological knowledge of usual paths and transition
probabilities. Javed et al. [7] presented a more general
solution to the problem by providing an update of inter-
camera parameters and appearance probabilities. However,
their method assumes initial correspondences of those
parameters. Our method makes use of data obtained
automatically to discover such relationships between
camera views without user intervention.

In accumulating evidence of patterns over time we expect
to discover common activities. These patterns can be
modelled in a number of ways. They can be used to classify
sequences as well as individual instances of a sequence or to
discover common activities [8]. Howarth and Buxton [9]
introduced a spatial model in the form of a hierarchical
structure of small areas for event detection in traffic
surveillance. The model is constructed manually from
tracking data. Fernyhough et al. [10] used tracked data to

build a spatial model to represent areas, paths and regions
in space. The model is constructed using a frequency
distribution collected from a convex-hull binary image of
the objects. Thresholding of the frequency distribution,
filters out low distribution areas, i.e. noise. Johnson and
Hogg [11] used flow vectors, i.e. the 2–D position and
velocity, collected from an image sequence over an
extended period to build a probability distribution of the
targets moving in the image. A neural network with
competitive layers is used to quantise the data and represent
the distribution. Its use is to detect atypical events which
occurred in the scene. Makris and Ellis [12] used spline
representations to model common routes and the activity
of these routes. Entry and exit points and junctions are
identified as well as their frequencies. Nair and Clark [13]
used extended data to train two hidden markov models
(HMMs) to recognise people entering and exiting a room
in a corridor. Uncommon activity is identified as break-in
by calculating the likelihood of the trajectories of the
HMMs and comparing with a predefined threshold.
Stauffer [14] used online vector quantisation, described
in [11], to quantise all target information including
position, velocity, size, and binary object silhouette into
400 prototypes. They performed inference on the data to
obtain a probability distribution of the prototypes encoded
in a co-occurrence matrix. A normalised cut [15] is
then performed on the matrix which results in grouping

Fig. 1 Tracking reappearance targets

a Target is being tracked
b Target is occluded but the search continues
c Uncertainty propagation increases over time

Fig. 2 System overview
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similar targets in terms of the above features in a
hierarchical form.

3 Overview

Figure 2 gives a general overview of the system with the per
camera elements separated from those that correlate objects
between cameras and regions. Each camera is first fed to an
object detection module. Here a background scene model is
maintained and used to segment foreground objects on
the fly. This basic segmentation is then refined by
identifying areas of misclassification due to shadows using
the chromaticity of individual pixels. Following this, objects
are passed to the object tracking module where data
association attempts to provide consistent temporal label-
ling of objects as they move. This is done by maintaining
a library of currently–tracked objects that summarises all
measurements into the relevant motion and appearance
models. The output of this module are trajectories that
exhibit temporal and spatial consistency. Specific details on
these stages of tracking are presented in [16].

Following this, the resulting tracked objects in each
camera are passed to the distributed tracking module, which
attempts to connect seemingly unrelated trajectories (both
spatially and temporally) into consistent object labels across
regions and cameras. The first step is to extract main paths.
This involves an unsupervised clustering of trajectories;
grouping like trajectories, discarding spurious detections
and any trajectories which have insufficient supporting
evidence to provide reliable results. Following this, a model
library of salient reappearance periods is constructed
between all main paths and used in the data association
stage to link trajectories that are spatially and temporally
distinct from each other. The output of this module is the
consistent labelling of objects despite occlusions or
disappearances between cameras.

4 Relating possible reappearing targets

In order to identify the same target reappearing after a
long occlusion, features and=or characteristics of object
similarity must be identified. The properties of reappearing
targets are assumed as follows:

. a target should disappear from one area and reappear in
another within a certain length of time
. the reappearing target must occur only after that target has
disappeared. (There is no co-existence of the same target at
any instance. This is according to the spatially–separated
assumption. For overlapped camera views, this assumption
may not be applied.)
. frequently occurring disappearances or reappearances
will form consistent trends within the data

An example of plausible matching can be seen in Fig. 3.
In this Figure the black bar indicates the time line of the
target of interest. Grey bars are the targets that can make
possible matches to the target of interest whereas white
bars represent targets whose matching with the target of
interest are illegal owing to breaches of the above
assumptions.

If targets are moving at similar speeds along a path
occluded by large static objects (such as the tree in Fig. 1),
over a period of time, there should be a number of targets that
disappear from a specific area of region A and reappear in
another area of region B within a temporal window. This can
be called the salient reappearance period between the two
areas. Both areas can be considered to be elements of the
same path even though they are in different regions.
The reappearance periods of these targets should be similar
compared with random appearances of targets between other
elements.

We start by automatically collecting data from our
tracking algorithm in a single camera. The data consist of
tracking details of targets passing into the field of view of
the camera. The tracker is based upon modelling the
background colour distribution on a per pixel basis using a
Gaussian mixture model learnt using an online approxi-
mation to expectation maximisation using a similar frame-
work to that originally proposed by Stauffer and Grimson
[8]. This provides a binary segmentation of foreground and
background delineation. Colour is then used to remove
shadows by relaxing the model constraints upon intensity
but not chromaticity. Foreground objects are extracted via
connected component analysis and colour and shape used
with a Kalman filter to track objects as they move.
Occlusions are resolved using a stochastic sampling search

Fig. 3 An example timeline of plausible matching
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to match partial objects to previous histories. Full details of
the base tracking algorithm are given in [16].

Figure 4 shows trajectories of all objects collated. Notice
that, owing to the occlusion of the tree, two separate regions
are formed where no correspondence is known about the

relationship between them. The linear dynamics of the
tracker are insufficient to cope with the occlusion.

The goal is to learn some reappearance relationship in an
unsupervised fashion that allows objects that disappear to be
located and tracked successfully when they reappear. This
we call the salient reappearance period, and its construction
is divided into two steps:

1. Extracting dominant paths: trajectories in each subregion
are classified into a number of paths. Only ‘main’ paths that
consist of a large number of supporting trajectories are
extracted.
2. Extracting salient reappearance periods among dominant
paths: In this stage, a set of features common to reappearing
targets is introduced. The features allow possible reappear-
ance among pairs of paths to be calculated. A set of matches
that show outstanding reappearance periods are chosen to
train the matching models in the training phase.

4.1 Colour similarity

We chose to use a colour histogram approach to describe the
colour fingerprint of an object as it is simple and efficient to
compute. Through quantisation it also allows some
invariance to changes in colour appearance. A similarityFig. 4 Trajectory data of the training set

Fig. 5 Example colour descriptors for 2 objects over time
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metric based upon histogram intersection provides a crude
estimate of object similarity. Three colour spaces were
investigated; RGB, HSL, and consensus–colour conversion
of Munsell colour space (CCCM) as proposed by Sturges
et al. [17]. A series of simple tests looked at the colour
consistency of these methods for objects moving within a
single image and also across images. We also investigated
various levels of quantisation for both RGB and HSL. Our
tests showed RGB to provide consistent results within a
single image but poor performance (not unsurprisingly)
across cameras that are not colour calibrated. HSL using
8-8-4 quantisation (as suggested in [18]) performed well in
both tests but CCCM provides superior results intra–frame
while retaining comparable results to HSL inter–frame.
In-depth details of these tests are omitted owing to space
limitations. CCCM breaks down all colours into 11 basic
colours, the exact membership was determined experimen-
tally in a physiological study where human categorisation
was used to learn the membership. This coarse quantisation
provides consistent intra camera labelling without colour
calibration relying on the perceptual consistency of colour,
i.e. if a red object is perceived as red in both images CCCM
will provide a consistent label.

Figure 5 shows two images from a sequence, labelled
frame 1 and frame 2. These frames contain the same two
objects (A and B) at different times. Although spatially the
appearances of the objects differ, the CCCM colour
histograms are relatively consistent for each.

4.2 Path extraction

Paths can be represented effectively as a group of trajec-
tories between two areas. However, some trajectories may
begin and end in the same area. Paths of this type must be
divided into different groups. This is done using a normal-
ised cut [15] of the 4-D motion vectors formed through
the concatenation of position and velocity (x, y, dx, dy). All
paths that contain more than two percent of the total
trajectories are kept for further processing and are shown in

Fig. 6. Paths with a small number of supporting trajectories
are sensitive to noise and can produce erroneous trends.
They are therefore discarded. The Figure shows how the
normalised cut has broken trajectories down into groups of
like trajectories.

4.3 Linking paths

Paths are linked by building a fuzzy histogram of all
possible links among trajectories of a pair of main paths
from different regions within a period named the ‘allowable
reappearance period’. The bin tt of the histogram is
calculated from

tt ¼
X
8i; j

Hij; ðtend
i � tstart

j Þ< t ð1Þ

where tstart
j and tend

i are the time instances that target i starts
and ends respectively. Hij is the result from histogram
intersection between the colour histogram of target i and
that of target j.

Hij ¼
X11

k¼1

minðBik;BjkÞ ð2Þ

The colour appearance histograms, Bj¼fBj1;Bj2; . . . ;Bj11g;
are constructed by taking the constituent pixels of the object
and categorising each pixel as one of the 11 basic colours
using CCCM (as discussed previously), providing consist-
ent labelling of colour across cameras without the burden of
colour calibration. Hij is within the range of 0 to 1 with 1
corresponding to a perfect match.

An example of the fuzzy histogram of reappearance
periods within 60 seconds from sample path A to B (Fig. 7)
is shown in Fig. 8. The histogram bin size was set at one
second and the frequency of the bin was the summation of
colour similarity scores using CCCM. A full discussion of
the allowable reappearance period, fuzzy frequency and the
choice of parameters used is given in [19].

Using the linking scheme described previously on every
pair of main paths between two regions (with only main

Fig. 7 An example of a pair of possible paths to be matched

Fig. 6 Main paths in the first region
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paths from different regions permitted for the matches), a
number of possible matches produces salient reappearance
periods. Figure 9 shows the results. Two histograms for
every pair of paths are produced. The one with the
maximum peak is selected. To check the validity of the
outstanding peak it must exceed four times the noise floor
level. The noise floor level was found by taking the median
from non-empty bins of the histogram. Unimodality is
assumed. Therefore, a single peak is detected based on the
maximum area under the bins that pass the noise level. This
could, of course, be used in a particle filter framework
should unimodality not be sufficient. However, our work
thus far has not found it necessary. The histograms are
presented with the corresponding linked trajectories in Fig. 9
with white arrows showing the direction of motion. The
detected bins are shown with solid bars on each histogram,
the noise level is also plotted in each histogram.

With the data collected automatically from the last
process, a reappearing-target model can be formed for each
pair of detected main paths. A simple model is calculated

from the training data as follows. In each pair of detected
main paths, the reappearance periods fr1; r2; . . . rNg
between a pair of paths is represented compactly by their
mean mr and standard deviation sr:

5 Path-based target recognition

Based on the model obtained in the training phase, target
recognition can be performed. Target recognition is based
on the same linking scheme. The process can be
performed online using the same principle as multiple
hypothesis tracking which, select the best hypothesis
within the reappearance period, or offline after a batch
collection of trajectories within the allowable reappear-
ance period.

Similarity based on the salient reappearance periods is
calculated in the following manner. First, the standard
(zero mean and unity variance) normal random variable
of each reappearance period is calculated using z ¼ r�mr

sr
:

Then the standard normal cumulative probability in the

Fig. 8 Fuzzy histogram of reappearance periods from sample path A to B with an allowable reappearance period of 60 s

Fig. 9 Extracted salient reappearance periods among main paths between different regions
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right-hand tail PrðZ> zÞ is determined using a look-up
table. The similarity score is two times this value which
gives the score in the range of 0 to 1. Another way of
calculating this value is

2PrðZ> zÞ ¼ 1�
Z z

0
f ðxj1Þdx ð3Þ

where f ðx=vÞ is the chi-squared distribution with v degrees
of freedom.

f ðxjvÞ ¼ x
ðv�2Þ

2 e�
x
2

2
v
2G v

2

� � ð4Þ

where GðvÞ is the Gamma function. However, a no match
hypothesis or null hypothesis is also introduced, as it is

possible to have no link. Hypothesis testing for this null
hypothesis is required before any classification is performed.
A score of 0.001 was set for the null hypothesis which
corresponds to the standard value z of 3.09. Any candidates
which are not ‘null hypotheses’ are selected based on their
maximum score. Online recognition selects the best
candidate at each time instance within the allowable
reappearance period. This allows the tracker to change its
link each time a better hypothesis is introduced. Batch
recognition, alternatively, collects all trajectories within the
allowable reappearance period and performs the classifi-
cation based on the whole set.

In the first experiment, the training data was collected
automatically by our target tracking algorithm [16] over an
extended period of time constituting 1009 individual

Fig. 10 A example of recognising reappearing target between different regions and the associated time line
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trajectories. An unseen test set of 94 trajectories was
collected and hand labelled as ground truth. The recognition
process is performed off-line by collecting the whole set of
admissible targets according to the rules described in
Section 3. An example of the recognition with similarity
score and the corresponding time line chart is shown in
Fig. 10. The motion of the objects is highlighted on the Figs.
where white arrows denote implausible motions and black

arrows non null (plausible) hypotheses. The red line in the
time line is the target of interest, while the green lines are
the non null hypothesis candidates with plausible matches.
The arrows depict the ground truth. It can be seen that target
(b) was classified correctly to the ground truth as it obtained
the best score during the recognition process.

A summary of the recognition on the whole test set is
provided in Table 1. Since the model is based on the trend in
a pair of main paths, if the target uses uncommon paths that
have no trend in the data set, the target cannot be recognised.
This accounts for 2 out of the 6 misses. One of these misses
was caused by a person who changed his mind during his
disappearance and walked back to the same path in the same
area, while the other was a result of camouflage at the
beginning of the trajectory.

6 Learning and recognising trajectory patterns
across camera views

The target recognition presented can be extended also to
multiple cameras. The same process of trajectory data
collection from two scenes with time synchronisation was

Table 1: Matching results of an unseen data set in a
single camera view

Items Trajectories %

Total training set 1009

Total test set 94 100

Correct matches 84 89.36

Total incorrect matches 10 10.64

False detections 4 4.26

Misses 6 6.38

Misses (uncommon paths) 2 2.13

Fig. 11 Site map and camera layouts for recognising reappearing targets across camera views

Fig. 12 Examples of extracting salient reappearance periods between main paths in different regions across camera views
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performed. The set-up of cameras is shown in Fig. 11. 2020
individual trajectories consisting of 56391 data points were
collected for two cameras. An unseen test set of 133
trajectories was then hand labelled to provide ground truth.

Figure 12 shows some examples of the salient appearing
periods and trajectories extracted between camera pairs for
main paths. Note that both of the examples are valid
reappearing trends. However, the trend in the upper part of
Fig. 12 is not as high owing to a small sample set in
addition to an increased distance between the two main

paths. It should be noted if any two regions are physically
too distant, the prominence of the salient reappearance
period is reduced.

The results from pre-processing are then subjected to the
same process as before and classification performed in the
same way as for the single view. The test data were
collected and hand labelled. It consists of 133 targets. For an
example trajectory Fig. 13 shows all possible links to other
paths within the time window. The corresponding time line
chart is shown in Figure 14. Again, arrows assist in

Fig. 13 All possible links between paths in separate views

Fig. 14 Time line of an example of recognising reappearing target between different regions in spatially–separated cameras
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visualising the direction of motion and colour coding is used
to depict plausible (black) matches against null hypothosis
(white) matches. The two highest candidates are reiterated
in Fig. 15. In this example, candidate (b) is the best match
and is selected. The second best, candidate (g), is also valid;
however, it has a lower score owing to the flatter peak in its
training set. This higher variance is caused by the greater
distance between the two main paths that increases the effect
of variance of the target speed. It is interesting to note that
both of the highest matches are indeed correct as the current
object becomes (b) and then after disappearing for a second
time becomes (g). The approach naturally tries to predict as
far into the future as possible. However, in practice, once the
second disappearance has occurred a much stronger direct
match between (b) and (g) would be used to perform the
match. Matching results from the two scenes are shown in
Table 2. Again a high number of correct matches are
achieved, only slightly lower than the single camera results.
Most notable is that using colour alone to match targets
results in only around a 60% success rate but using colour to
look for statistical trends spatially can achieve over 87%:
More important is the number of false detections rather
than misses, in terms of human evaluation it is this that is
used to assess performance.

It can be seen from Tables 1 and 2 that the recognition
rate of the proposed technique is high. However, the
approach is still dependent on the assumption that the
separated regions in the same or different views are close to
each other. Future work will investigate the correlation
between accuracy and distance for this technique. Although
we demonstrate the approach here using two cameras, it is
obvious to see how the approach could be extended to larger
multiple camera installations and our future work will test
this scalability.

7 Summary and conclusions

In this paper, an approach to recognising targets after
occlusion is proposed. It is based on salient reappearance
periods discovered from long–term data. By detecting and
relating main paths from different regions and using a robust
estimate of noise, salient reappearance periods can be
detected with high signal-to-noise ratios. Offline recog-
nition is performed to demonstrate the use of this extracted
salient reappearance period and the appearance model to
associate and track targets between spatially–separated
regions. The demonstration is extended to regions between
spatially–separated views with minimal modifications. As
the underlying process of reappearance is not the salient
reappearance time but the average distance between paths,
the performance of this recognition process is degraded if
the average distance between paths is increased. These
issues need further investigation.
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