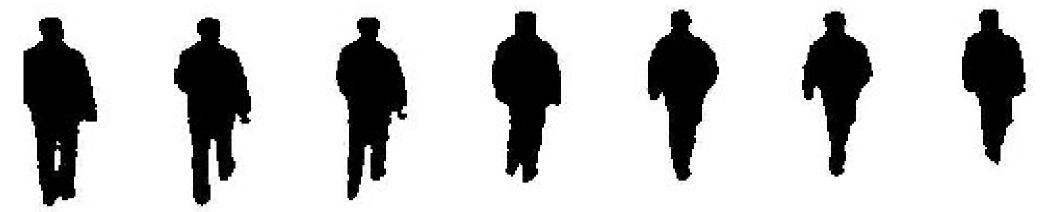
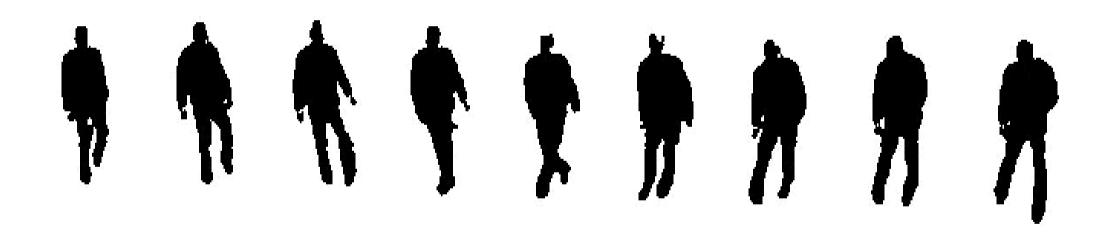
Detecting Abnormal Gait

Seminar Visuelle Überwachung SS 2006 Universität Bielefeld

Andre Lemme


14. Juni 2006

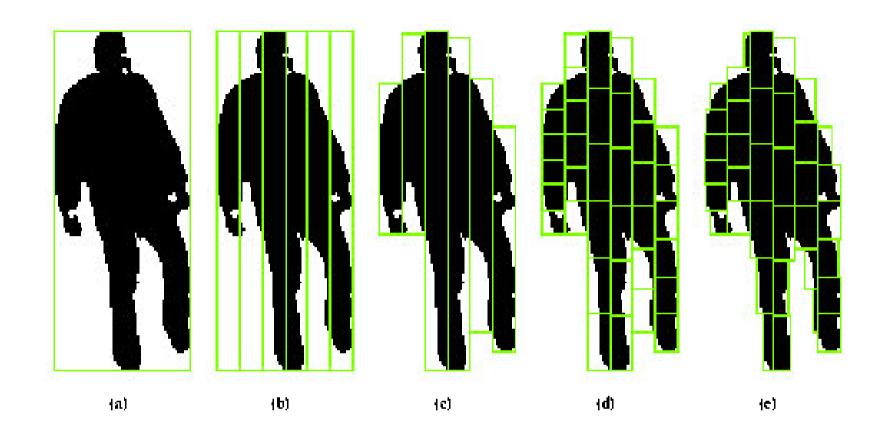
Übersicht


- Einführung
- Verfahren
- Experiment
- Zusammenfassung
- Diskussion

Einführung

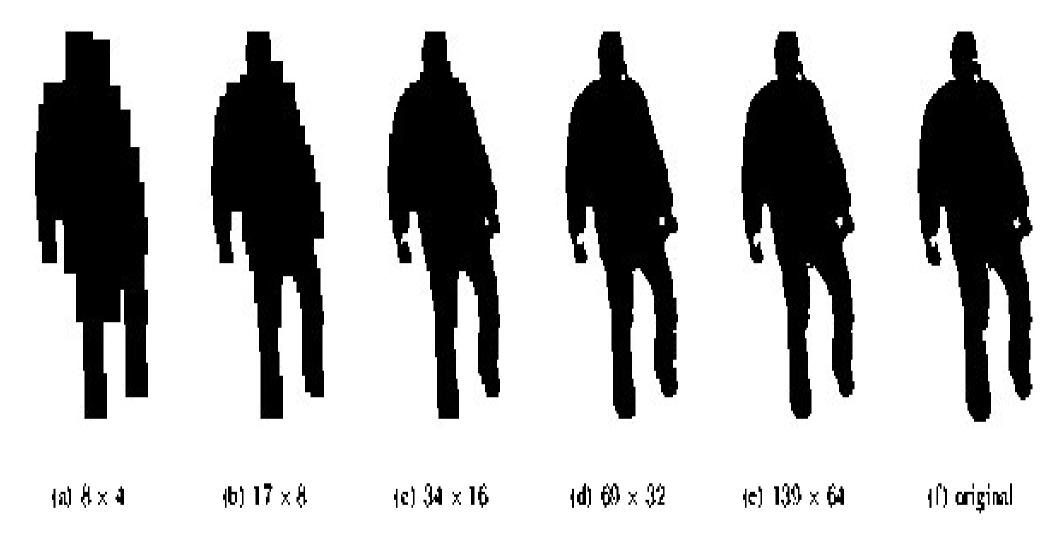
- Interpretation von Bewegung
- Erkennen von Personen
- Bewegungsarten der beobachteten Person (Schwingen, torkeln, tanzen, schleichen ...)

Eine Person läuft von der Kamera weg


Eine Person kommt taumelnd auf die Kamera zu

Verfahren

- Umrissanalyse zur Verfolgung der Bewegung
- 2 Klassen Problem
- Support-Vector-Maschinen (SVM) zur Klassifikation
 - robust gegen Rauschen, brauchen keinen großen Rechenaufwand
- Binärbild
- Segmentierung

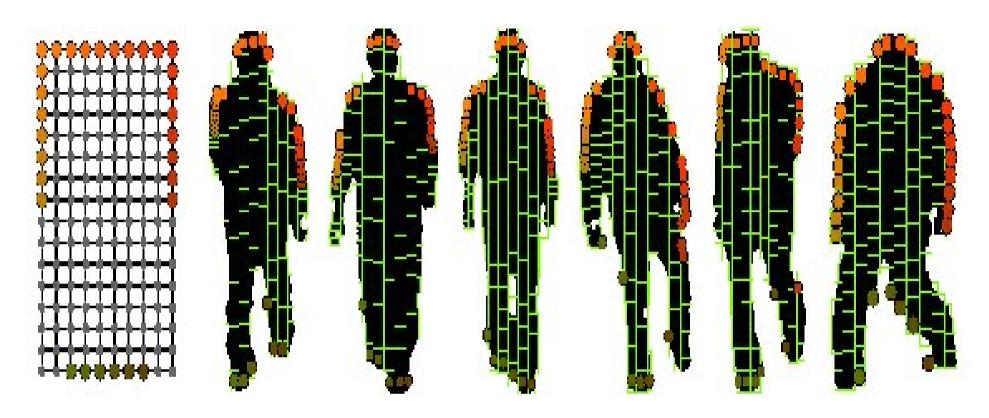

Vorgehen beim Segmentierungsprozess

- Box um die Silhouette
- Unterteilung in n Vertikalen
- Anpassen der Boxen an die Silhouette
- Unterteilung in m Horizontalen
- Anpassen der Boxen an die Silhouette

• anlegen eines 2D 6x6 Gitters

- robust gegen Skalierung
- nicht robust gegen Rotationen
- Komplexitätsanalyse O(m x n x p) (p = Pixel in einer Box)

 Annäherung der Gestallt an eine niedrigen Dimension des Vektors.


Klassifikatoren

• Gittergröße 16x10

• Kopf: 3

• Körper: 5

• Beine: 8

- Anlegen eines 2D 16x10 Gitters mit k=30 Punkten auf verschiedene Gestallten (die ersten drei bewegen sich normal)
- Farblich markierte Punkte bilden den Merkmalsvektor

Experiment

- im Labor mit 7 Personen
- homogener Hintergrund
- Zwei Bewegungsrichtungen möglich
- Winkel zur Kamera 0° 45°
- Drei Wiederholungen des Trainingsvorganges mit verschiedenen Zeitintervallen

Training

- 7 Videos von 5 Personen
- 4 Abnormale Bewegungen
- 3 Normale Bewegungen

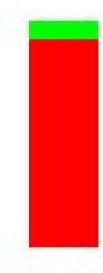
Δ	#frames normal	#frames abnormal	leave one out error
1	1359	1128	26.5%
10	1323	1101	11.6%
20	1283	1071	6.1%

Table 2. Training parameters and results.

Testen

- 7 Videos von 5 Personen
- 4 Abnormale Bewegungen
- 3 Normale Bewegungen

Δ	gait	#frames	accuracy
1	norma1	1227	73%
	abnormal	1413	61%
10	normal	1195	77%
	abnormal	1382	70%
20	normal	1157	72%
	abnormal	1350	82%


Table 3. Test parameters and results.

- Rot = abnormale Bewegung
- Grün = normale Bewegung

Zusammenfassung

- Robuste Bewegungsanalyse
- Verfolgen von K\u00f6rperteilen ohne sie als solche zu erkennen
- Ergebnisse der Support-Vector-Maschinen zufriedenstellend

Diskussion

- Experiment nur mit einer Person vor der Kamera
- rauschfreier Hintergrund
- eingeschränkte Bewegungsrichtungen für die Person
- beschränkte Anwendbarkeit

Danke für ihre Aufmerksammkeit!