
Abstract: In this paper we describe ongoing 
research that aims at the development of a ge-
neric demonstration platform for virtual proto-
type modeling by utilizing multimodal – 
speech and gesture – interactions in Virtual 
Reality. Particularly, we concentrate on two 
aspects. First, a knowledge-based approach for 
assembling CAD-based parts in VR is intro-
duced. This includes a system to generate 
meta-information from geometric models as 
well as accompanying task-level algorithms 
for virtual assembly. Second, a framework for 
modeling multimodal interaction using gesture 
and speech is presented that facilitates its ge-
neric adaptation to scene-graph-based applica-
tions. The chosen decomposition of the re-
quired core modules is exemplified by an ex-
ample of a typical object rotation interaction. 
Keywords: Virtual Reality, Virtual Assembly, 
Multimodal Interaction, Interaction Decom-
position, Task-Level Interfaces 

1 Introduction 

The project “Virtuelle Werkstatt” aims to combine 
and improve research results in multimodal human-
computer interaction and immersive CAD systems to 
develop a generic demonstration platform for Virtual 
Reality (VR) based prototyping. Multimodal interac-
tion is concerned with the processing of gesture and 
speech based user input to drive the modifications of 
a 3D-visualized scene. Immersive CAD is concerned 
with the design, exploration and evaluation of virtual 
prototypes. The intention of our project is to provide 
a facility for a natural, mutimodal communication in 
a virtual construction scenario, which is similar to 
the way two humans would interact with speech and 
gestures. To enable natural multimodal interaction in 
virtual environments, results from different research 
communities have to be considered: If speech recog-
nition as an already active research field is put aside, 
multimodal interaction can be realized by combining 
VR with the advances of Artificial Intelligence (AI). 
The integration of multimodal interaction in existing 
state-of-the-art VR-principles should hide the spe-
cific internal functional details and should provide a 
form of reusable interface components.  
The project is carried out in a newly built VR-system 
consisting of a 3-sided Cave, projected by 6 D-ILA 
projectors and using passive stereo via circular po-
larization filters. The gestures of the user are tracked 

with a marker-based infrared camera system. For 
precise hand-posture tracking we use two wireless 
Data-Gloves. The sound set-up is an eight channel 
system with loudspeakers in each corner of the cave. 
The computer cluster for application and rendering is 
an ‘Artabel Fleye 160’ Linux cluster, including 5 
server nodes (double Pentium III-Class PCs) and 8 
graphic nodes (single Pentium IV-Class PCs) with 
NVIDIA GeForce 3 graphic boards. The nodes are 
connected via a 2GBit/s Myrinet network for distrib-
uted OpenGL rendering. 

 
Figure 1: A “Citymobile” vehicle in a VR-demo setting 

The first part of this paper presents the notion of 
port-concepts and connection properties of assembly 
objects and how they can be extracted from purely 
geometrical descriptions. It also shows the represen-
tation of these connection properties in a knowledge 
base and task-level algorithms for assembling and 
disassembling aggregates and adjusting existing 
connections. The second part deals with a framework 
for multimodal interaction that handles integration of 
detected gesture and speech via a temporal aug-
mented transition network (tATN) integration 
scheme and the application adaptation in form of 
scene graph components. 

2 Assembly Simulation for Interactive 
Virtual Prototype Modeling 

2.1 A Knowledge-Based Approach for Repre-
senting Connection Properties  

To interact with and assemble components in virtual 
reality, it is necessary to augment the plain CAD-
models with information about their connection 
properties. A conceptual model of part matings has 
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been developed that involves connection-sensitive 
part subvolumes or ports as well as constraints im-
posed by different kinds of connections [Jung98]. 
Supplementing conventional lower-level CAD de-
scriptions, port representations provide a more ab-
stract modeling means closer to the human concep-
tualization while still providing enough detail for 
virtual reality simulation of various assembly-related 
operations. Knowledge bases of predefined port and 
connection concepts capture the most common mat-
ing properties of CAD-based parts, to facilitate the 
reuse of once developed models.  
The port knowledge base consists of a taxonomy of 
port concepts which is organized around geometric 
properties, which differentiate the port concepts at 
the higher level and mechanical properties which 
distinguish the concepts at the lower levels. At the 
top-level, the taxonomy is divided in the following 
concepts: 
• Extrusion ports model connection properties of 

object subvolumes with extrusion geometries. 
For example, extrusion ports model connection 
properties of objects involved in peg-in-hole 
type assembly operations. In general, connec-
tions between Extrusion Ports afford one trans-
lational and one rotational degree of freedom. 

• Plane ports model connection properties of 
planar object surfaces. Connections between two 
plane ports afford two translational and one ro-
tational degree of freedom. 

• Point ports model point-like object connections 
that induce no translational degrees and up to 
three rotational degrees of freedom when objects 
are connected. 

Overall, the port taxonomy currently consists of over 
20 concepts which have proven useful in several 
applications. The connection knowledge base defines 
a set of useful connection concepts such as ‘screw’, 
‘insert’ or ‘glue’. The taxonomy of connections is 
based on the work of Roth [Rot94] and uses a varia-
tion of his “Freiheitsmatrix” representation to model 
the kinematic constraints that restrict the relative 
movement of two connected parts.  
 

<PortDef object="SCREW"> 
 <port type="OneSidedThreadedShaft" 
name="shaft"> 
  <connectability type="screw"/> 
  <capacity begin="8" end="-8"/> 
 </port> 
</PortDef> 

 

 

Figure 2: Port definition for a CAD-based part. 

The predefined port and connection concepts capture 
stereotypical mating properties of CAD-based parts. 
Specific CAD-based parts are annotated with de-
scriptions that reference the predefined port concepts 
and, by inheritance, can access all kinds of knowl-
edge contained therein. Figure 2 illustrates a mini-
malistic annotated CAD model of a screw whose 

shaft is modeled as an instance of OneSidedThread-
edShaft (a special kind of extrusion port). Optional 
properties of port descriptions include hotspots, 
which describe preferred positions and orientations 
of a port when being connected to another port, more 
detailed geometry descriptions, and scaling informa-
tion. The next section describes a method for auto-
matic generation of port descriptions from CAD-
objects of which only polygonal geometry models 
are available. 
The port representations contain sufficient informa-
tion to determine if two ports are connected to each 
other in an assembly situation. To this end, formal 
mating conditions are specified that define the legal 
relative placements of two connected ports. As con-
nections between all port-types afford some degrees 
of freedom on the relative positioning of the ports, 
the mating conditions do not fully determine but 
rather only constrain the relative placement of ports 
in object connections. The mating conditions allow 
the testing whether two parts are connected in the 
virtual environment. During the simulation of as-
sembly processes they are also used to bring two 
parts into a connected state. 
Assembly simulation in virtual prototyping environ-
ments generally not only involves the two parts to be 
connected but also third parts with which the two 
parts being mated must not interfere. Non-
interference with other parts is a further requirement 
which is dealt with by the simulation algorithms 
described in section 2.3. 

2.2 Extracting Port Knowledge from CAD-
Data  

One way to author the port descriptions associated 
with a CAD part is to model them by hand (sup-
ported by a visual editor). As a more comfortable 
alternative, a method for automatic recognition of 
port features has been developed [Bie00]. Since 
there is no standard description of shapes (features) 
in polygonal CAD-Models, the main information 
about the model, which can be reliably obtained, is 
the polygonal boundary representation in form of 
single triangles. Since there is often no guarantee 
that this polygonal shape forms a mathematical valid 
boundary representation that holds the 2-manifold 
property [Män88], robust heuristic methods were 
developed to gain as much information as possible 
about the shape of the components and their parts. 
The main idea is to separate the object boundary in 
several clusters, which contain adjacent triangles, 
whereas their neighbors form an obtuse angle. This 
simple approach generates clusters, which in most 
instances match an intuitive division in generic 
shapes. Figure 3 shows the clusters of a simple 
screw. If this approach fails to generate the desired 
division, the user can intervene to select special 
clustering methods for cylinders or planes.  



 
Figure 3: A screw from an inventor file, an exploded view 
after the clustering, and a visualization of the voxelization. 

Several features of these clusters are computed: the 
dimensions and directions of the oriented bounding 
box, the total area, the average of plane normals and 
the average direction of cross products between 
normals of adjacent triangles. These features can be 
used to distinguish between several generic shapes. 
Figure 4 shows a set of geometric primitives and 
gives an overview of their specific attributes. A 
second source of information is a volumetric repre-
sentation, which can be computed based on the clus-
ter data. 

The representation is an extension to the Spatial-
Occupancy Enumeration [FDFH96], where the voxel 
can take four different values: inside, outside, on the 
boundary, and on the edge of two connected clusters. 
This data is gained by moving a test-voxel through 
all grid positions of the bounding box and test for a 
collision with one (which results in a border-voxel) 
or more (which results in an edge-voxel) clusters. In 
the right part of Figure 3 a visualization of a voxel-
ized screw is shown (voxel on the edges are shown 
in white). These voxels are used to verify the hy-
pothesis of shapes, which is gained from the feature 
analysis, but also to gather further information, for 
example, about the peculiarity of cylinders, which 
could border a hole or a bolt, or to get information 
about the accessibility of the detected ports. 
In the example of the screw the system detects the 
shaft as a cylindrical port (bolt), which is accessible 
from one side. Furthermore the system recognizes 

the head as a polygonal extrusion, the disk, and the 
plane at the two ends of the screw.  

This information is utilized to define the ports of the 
component and it is possible to generate a construc-
tive solid geometry representation, which is needed 
in order to scale parts of the object and for inhomo-
geneous scaling of complex objects. For example, 
the user can scale the shaft of a screw instead of 
scaling the whole screw or lengthen a ledge without 
deforming its holes (see Section 2.4). It is also possi-
ble to generate linguistic terms such as “longish” or 
“round” that describe the shape of objects or object 
parts. This could help to resolve references to objects 
or object parts in the instructions of the user. 
All this information of object parts, colors, shapes, 
linguistic descriptions, and scaling information is 
stored, together with a polygonal representation, in a 
hierarchical database which can be accessed from 
semantic entity nodes in the scene graph (see Section 
3). 

2.3 Task-Level Algorithms for Assembly 
Simulation 

The preferred level of interaction with virtual envi-
ronments is the task-level [Zel91, ZG96]. Ideally, 
there should be a 1:1 correspondence between the 
tasks performed by a human in the real and in the 
virtual world. Aiming at a task-level instructability 
of virtual prototyping environments, a set of algo-
rithms has been developed for transforming high-
level specifications of various assembly-related tasks 
into corresponding changes to the lower-level graph-
ics representations of the assembly scene. These 
task-level algorithms implement the logical interac-
tion with the virtual prototyping environment, i.e. 
they are inherently independent of particular user 
interfaces, supporting both manipulation- and com-
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mand-based interaction styles.  

For example, the task-level algorithm for connecting 
two parts or aggregates in the virtual environment 
performs the following steps: 

1. The input descriptions of the parts to be mated 
are refined by selecting connectable ports and 
hotspots (that define the target position for 
snapping) on each of the ports. 

2. Preliminary mate: The parts are repositioned in 
the graphics scene as suggested by the now fully 
filled input descriptions. Already consumed ca-
pacities on the ports (resulting from already ex-
isting connections) are also accounted for, 
which possibly require modification of the target 
position for the mate. 

3. Collision avoidance: The mated parts are tested 
for (polygon-precision) collision with third 
parts. If such collision occurs, the transformed 
part’s position is altered in small increments un-
til no collision occurs. 

4. Update of the port and connection representa-
tions: The resulting assembly is checked for new 
connections resulting from the assembly step. 
Typically, exactly one new connection is pro-
duced. It is however also possible that multiple 
connections result from the assembly step, or 
that – if in every position where the mating con-
ditions hold also a collision with third parts oc-
curs – no new connection can be established. In 
the latter case the assembly operation has failed. 
The port representations are updated such that 
their capacity descriptions reflect the new con-
nections. 

Similar task-level algorithms have been developed 
for the disassembly of parts and assemblies as well 
as adjustment operations that modify the relative 
position or orientation of two parts of the same as-
sembly constrained by the remaining degrees of 
freedom of their connection. Common features of all 
task-level algorithms include: 

• They exploit knowledge about ports, their con-
nections, and part geometry. They do not require 
deep physical models of part behavior (although 
such knowledge could be added if desired). 

• They expect only high-level information as 
input that can be extracted with reasonable ef-
fort from virtual reality interactions based on 
speech, gesture, or direct manipulation. 

• They incorporate various snapping strategies to 
compensate for incomplete or vague input. 

• They integrate collision detection and avoidance 
to produce physically plausible assembly states. 

• They are computationally inexpensive and thus 
suitable for real-time virtual environments. 

2.4 Parametric Parts and Scaling Operations 

In the “Virtuelle Werkstatt”, we not only consider 
virtual assemblies of rigid bodies, but also of para-
metric parts that allow an interactive scaling in the 
virtual environment. Since most scaling operations 
of complex objects cannot be expressed as a ho-
mogenous scaling of the whole object, the system 
has to provide some information about how to scale 
parts of an object. 

 
<Part Name=”Screw” PolyRep=”screw.iv” 
  Center="(0,0,0)" ScaleCenter="(0,0,0)" CSG="C+"> 
 <ScaleModes>  
  Scale-Y -> Children-Y 
  Scale-XZ -> Children-XZ 
 </ScaleModes> 
 <SubPart Name="Shaft" GenRep="<cylinder diam=2 len=8>"  
   Center="(0,-4,0)" ScaleCenter="(0,0,0)" CSG="+"> 
  <ScaleModes>  
   Parent-Y -> Scale-Y 
   Parent-XZ -> Scale-XZ 
   Scale-Y 
   Scale-XZ 
  </ScaleModes> 
 <\SubPart> 
 <SubPart Name="Head" PolyRep="head.iv" 
   Center="(0,-4,0)" ScaleCenter="(0,0,0)" CSG="C+"> 
  <ScaleModes>  
   Parent-Y -> None 
   Scale-Y -> Children-Y 
   Scale-XZ -> Children-XZ 
  </ScaleModes> 
  <SubPart Name="Body" GenRep="<cylinder diam=4 len=2>" 
    Center="(0,1,0)" ScaleCenter="(0,0,0)" CSG="+"> 
   <ScaleModes> 
    Parent-Y -> Scale-Y 
    Parent-XZ -> Scale-XZ 
   </ScaleModes> 
  <\SubPart> 
  <SubPart Name="Slot" GenRep="<box x=.5 y=.5 z=4>" 
    Center="(0,1.75,0)" ScaleCenter="(0,2,0)" CSG="-"> 
   <ScaleModes> 
    Parent-Y -> Move-Y 
    Parent-XZ -> Scale-Z 
    Scale-Y 
    Scale-X 
   </ScaleModes> 
  </SubPart>   
 </SubPart> 
</Part> 

Figure 5: XML-Description of scaling and CSG information of 
a screw 

For example if the user wants to lengthen a screw, 
only the shaft of the screw should be scaled. There-
fore the scaling operation – scale in Y-direction – 
cannot be performed on the geometry of the whole 
screw, but the screw has to be divided in two indi-
vidually scaleable parts: the head and the shaft. The 



scaling operation is forwarded to these subparts. The 
shaft scales with a given factor, and the head in this 
example does not scale at all. If the part contains 
holes or depressions which must not be deformed 
when scaling the object, the object has to be repre-
sented as a CSG-tree with complementary parts.  
Also the user can select subparts of the object for 
individual scaling, for example to broaden the slot of 
the screw by scaling the complementary CSG-part 
“slot” (see Figure 5) in X-direction. Figure 5 shows 
an example of an XML-description which specifies 
the dependencies of the scaling operations of the 
parts of a screw. These dependencies are listed in the 
<ScaleMode> section: 
‘Scale-Y -> Children-Y’ means the scaling in Y-
direction is done by inhomogeneous scaling of the 
child-parts that define their scaling behavior as ’Par-
ent-Y -> ….’ in this case. ‘Scale-Y’: scaling of the 
whole part in Y-direction with respect to the scaling 
centre.  
‘Scale-XZ’: scaling of the whole part in X- and Z-
direction with the same factor.  
‘Move-Y’: translate the part in Y-direction instead of 
scaling it. 
The move operation is needed if parts have to be 
moved as result of a scaling operation of the parent-
part. For example if the cylinder which describes the 
head of the screw is elongated, the slot has to be 
moved in Y-direction to remain on top of the head. 
The granularity of the partitioning into subparts 
depends on the scaling operation. A scaling of the 
shaft of the screw in our example only requires a 
division into head and shaft, whereas the scaling of 
the head requires also a division of the head into 
body and slot. 

For visualization of CSG components two different 
techniques are used. During the interactive inhomo-
geneous scaling we need real-time rendering of the 
changing CSG-tree representation. The computation 
of the object surface for every step in the interaction 
is not possible in real time, but a real-time visualiza-
tion can be archived by an OpenGL-implementation 
of the Goldfeather-Algorithm [Goldf86]. This algo-
rithm generates the visual effect of CSG operations, 
without generating the surface itself, by using the 
OpenGL stencil buffer [Ake95] to mask out the parts 
of the CSG primitives which are not visible.  

At the end of the interaction a polygonal representa-
tion has to be computed to reduce the complexity of 
multi-pass rendering using stencil buffer operations 
and to enable collision detection, which depends on a 
polygonal representation of the objects. We use the 
ACIS modeler to compute a representation in form 
of primitive triangles, which can be inserted as a 
geometry-node in the scene graph in order to replace 
the interactive scalable CSG-representation. 

3 Multimodal Interaction 

Interaction with and in large-screen virtual environ-
ments is an interesting research topic of its own. In 
the work described here, we follow approaches from, 
e.g., Cavazza et al [Cav95] and Lucente [Luc98] as 
well as from our own projects, e.g., in [Wac97] and 
[Lat98], that dealt with the incorporation of multi-
modal – speech and gesture – input as interaction 
media for computer graphics and VR applications. 
The goal is to overcome deficiencies related to 
WIMP (windows, icons, menu, pointer) interfaces in 
VR-setups. The main idea is that there should not be 
any need for specialized input devices besides the 
users’ natural modalities. Having a closer look at 
multimodal interaction, we find that the related prob-
lems can be classified in the following four catego-
ries: 
• Gesture detection and analysis 
• Speech recognition and interpretation 
• Speech and gesture integration   
• Application adaptation 
In this section we focus on the progress we have 
made concerning the last two of the areas (including 
the interpretation step), namely the integration 
formalism currently under exploration and the 
chosen scene graph oriented functional decomposi-
tion for the required real-time 3D application 
adaptation, which is the virtual assembly scenario 
described above. An extensive survey about the 
gesture processing system can be found in [Lat01b].  

3.1 Integration and Interaction Specification 

There have been several approaches to multimodal 
integration in computer graphics. The first project 
usually referred to, is the famous “Put-that-there” by 
Bolt [Bol80]. In this system, the time when a point-
ing gesture had to occur was predefined with respect 
to specific words from speech. This type of speech-
driven approach was followed by several other re-
searchers but is nowadays neglected in favor of two 
more general integration schemes. The earlier ones 
of those can be categorized as frame-based, e.g., in 
[Koo93] or [Vo96]. More recent work often utilizes 
unification algorithms to handle the integration task, 
Johnston [Joh98] being a prominent example of that. 
Although the latter offers a clean declarative way to 
predefine multimodal correlation, even Johnston 
notices its computational complexity and recently 
turned to a finite-state-based integration [Joh00]. 
This approach has some similarities to the temporal 
ATN’s (augmented transition network) [Lat01a], 
which builds the core of our own multimodal inte-
gration module; an example of a tATN branch cur-
rently used is depicted in Figure 6. What differenti-
ates a tATN from its counterpart – a common ATN – 
will be clarified in the following section. 
The nodes in Figure 6, e.g., (B1) or (R1), depict 
the different states the tATN can reach during the 



traversal. The connecting arcs are labeled with con-
straints implemented either by complex test func-
tions like in “(Rotate)” (B1>R1) or by tests for 
lexical atoms like in “about” (R2>R31).The 
complex test functions can be (1) sub-tATNs for 
parsing reoccurring phrases, e.g. “(ObjDesc1)” 
branches to a sub-tATN for parsing noun phrases, (2) 
gesture test functions like “is?(rotating)” at 
the traversal (R41>R42) or (3) test functions for 
application internal states. 
 

 

Figure 6: A fragment from one temporal ATN currently 
employed. The lower branch parses combined gesture and 
speech utterances for specifying desired object rotations.   

A typical example for the latter – which is not exem-
plified in the above figure – is a test function for 
querying if an object is currently selected. (R42) is 
a special state that represents a switch to a pure ges-
ture driven application state. This special interaction 
mode is called continuous interaction in contrast to 
discrete interactions  which is performed instantly 
when reaching certain end states, denoted by the 
nodes colored in light grey. The end states for con-
tinuous interactions are depicted in dark grey. For 
example, if (R42) is active, the continuous mode 
can only be left by stopping the previously started 
rotation gesture to reach (R43). Typical ges-
ture/speech utterances handled by this tATN branch 
are, e.g., “Rotate [pointing gesture] this thing about 
30 degrees like [rotation gesture] this to the right” or 
“Rotate the yellow wheel like [rotation gesture] 
this”. Figure 7 shows an ongoing continuous rotation 
interaction which is processed by the outlaid tATN 
branch and initiated by the second utterance exam-
ple. 

 
Figure 7: A sample continuous interaction. The tATN from 
Figure 6 is at state (R41). The gesture processing takes over 
the application control due to the negated is?(rotating) con-
straint at arc (R41>R42). The scene shows a snapshot from an 
earlier prototype system running on a single large screen 
display (wall) with an electromagnetic tracking system 

The already introduced predicate “is?()” leads to 
the difference between an ATN and its temporal 
version. In addition to the former, the temporal ATN 
enables and supports the processing of parallel oc-
curring events by labeling all states with time-
stamps. For each transition function there is a special 
time-register called reach and an appropriate 
reach.set function for the register value. 
reach.set is currently predefined in the following 
way: If a state (S2) is reached by an arc from state 
(S1) that has a lexical constraint,  S2.reach will 
be set to the beginning of the lexical units utterance. 
If (S2) is only reached by a test for an internal 
application state, S2.reach will be set to 
S1.reach. For example, is?(rotating) at 
(R41>R42) checks if a rotation type gesture is 
currently uttered at the time when state (R41) has 
been reached. To clarify what happens if a gesture 
test function leads to(S2), we will now explain how 
the results of the gesture detection are represented 
here at the integration level. Though the gesture 
processing is latched into the rendering loop, e.g., to 
determine spatial relationships between deictic ges-
tures and the displayed scene, its rate is independent 
from the image generation by using parallel compu-
tation methods. This is to ensure undisturbed input 
processing under varying frame rate conditions.  
Synchronization between the gesture module and the 
integration and application is done via so called 
attribute sequences, containers which hold the time 
stamped results of the underlying gesture detection 
networks. For each frame, there can be an arbitrary 
number of values in one specific attribute sequence, 
depending on the ratio between the gesture process-
ing rate (currently 100Hz) and the actual frame rate. 
Using this buffering scheme, the reach time stamps 
at the different states allow testing for temporal rela-
tions with the time stamped values in the attribute 
sequences. In contrast to approaches that handle 
gestures as atomic events with a specific occurrence 
in time, the attribute sequences enable a more gen-
eral view because they allow gestures to have an 
interval type temporal progression.  This is particu-
larly important regarding so-called mimetic or kine-
mimic gestures, gestures which are particularly use-
ful regarding continuous interactions. These gesture 
types communicate or pantomime an action by exe-
cuting during a longer time period (see Figure 7). 

3.2 Application Adaptation 

To handle multimodal interaction in VR setups, 
special care was taken about the functional decom-
position of needed modules. All components are 
scene graph oriented and follow ideas from Open 
Inventor, VRML and X3D to incorporate specialized 
objects for input processing into the graph structure. 
To allow a scene graph based application to make 
use of a multimodal interaction interface, special 
node types have been developed to handle (1) ges-



ture processing, (2) gesture analysis, (3) interaction 
intermediation and (4) speech-gesture integration 
and interpretation using the tATN. Regarding the 
latter, it is important to emphasize that the interpreta-
tion step must access knowledge about the currently 
rendered scene and the respective user position, 
orientation and his/her view of the scene to under-
stand deictic utterances, e.g. “…the left wheel…” 
and hence is naturally to be coupled into the hierar-
chical scene description. On the other hand, interpre-
tation of multimodal utterances profits from concepts 
developed in the area of language understanding 
which are often realized using artificial intelligence 
(AI) methods. This resulting incorporation of AI and 
VR principles greatly influenced the following ap-
proach. As an example for the chosen decomposi-
tion, a closer look at the implementation of the al-
ready introduced continuous interactions follows. 
From the plain geometric view, human gestures are 
rarely performed in a perfect manner. If a user wants 
to describe, e.g., a desired object rotation by circling 
his or her hand (see Figure 7), the resulting move-
ment will be imprecise regarding its trajectory. But 
the desired object change should – in the general 
case – reflect the perfect circle regarding its path and 
it should move in appropriate speeds to allow fine 
grain interaction control. To achieve this in a scene 
graph oriented design, three specialized node-types 
are introduced, starting with the so called actuators. 
(see Figure 9). Actuators encapsulate movement data 
which is significant for a user’s utterances, e.g., the 
fingertips of the index fingers, the angle between 
upper arm and forearm or certain directions like the 
view direction, palm normal vectors or pointing 
directions. As can be seen from Figure 8, the data 
exchange from the actuators is done via the already 
introduced attribute sequences (in Figure 9 labeled 
FM(t)). 

 
Figure 9: An actuator node as a special node type for 
encaps ulating a user's movement data 

Attribute sequences can be routed to other nodes 
with appropriate input sequences just like normal 
field connections in VRML and similar toolkits. By 
linking actuators into the scene graph, an explicit 
user representation – regarding the significant body 
parts for the utterances – is inserted into the graph. 
The respective matrices in Figure 9 allow an easy 
modification of the body data, e.g., to adjust unsuit-
able sensor fixation points. Internally, the actuator 
layer which supports the described node type per-
forms still some more actions. For example, it han-
dles and may integrate sensor data of more than one 
source and it provides a common data rate even with 
unsynchronized sensor streams. 

In the context of a continuous interaction, an actuator 
routes its data to a motion-modificator (mm) node 
which then triggers a manipulator for the desired 
object manipulation. Figure 8 depicts the resulting 
setup which is called a binding for a continuous 
interaction. Here, the motion-modificator acts as a 
filter and controller. It receives the actuators data in 
the world reference system, e.g., the trajectory of the 
fingertip, and tests this data according to certain 
trajectory constraints. If those are satisfied by the 

 

A motion-modificator  that maps the 
imprecise user movements to 
geometrically precise object 
changes.  

A manipulator  receives the motion-
modificators output values once for 
each frame and applies them to the 
target node. 

An actuator  node that delivers, e.g., the 
users index fingertip position of the hand 
that currently performs a rotation gesture via 
an attribute sequence. 

scene object nodes binding group 

attribute sequence binding 

field connection 
 

Figure 8: A binding between an actuator, a motion-modificator and a manipulator to establish a continuous 
interaction, here the rotation of an object. 



movement, the mm outputs new trigger values for 
the desired manipulation. For example, for a rota-
tion, the mm will output a rotation normal (in world 
space) and a rotation angular velocity. Both may 
change during the interaction in predefined ranges to 
allow a finer grained interaction control. To achieve 
this in a reliable manner, the mm is instantiated with 
certain raster values for each of its output values. 
Regarding the rotation example, the mm has list of 
possible rotation normal vectors – e.g., the list 
((0,0,1), (0,1,0), (1,0,0)) would only allow rotations 
around the main world axes – and rotation angular 
velocities. This approach borrows its idea from the 
grid concepts well known from typical 2D and 3D 
graphics modeling programs to support precise ob-
ject manipulation. This method of pre-restricting 
manipulations through an online parameter specifica-
tion is particularly important in the virtual assembly 
scenario. Here, two objects can only be connected if 
they both have matching port types at the connection 
spots (see section 2.1). If such a connection can 
successfully be established, only certain degrees of 
freedom will still be available. Since the mm does 
not make any assumption about the source of the 
manipulation constraints, e.g., the list of possible 
normal vectors, this concept seamlessly enables the 
adaptation to different requirements. Before an mm 
is instantiated, possible constraints caused by the 
specific application, here the virtual assembly sce-
nario can alter the mm’s raster values to reflect a 
proper simulation behavior.  Finally, the manipulator 
node takes the control. It applies the desired manipu-
lation – in the example the next rotation step - for 
each frame according to the mm’s output data by 
considering possible transformations between the 
world and the objects reference frames. For a further 
interaction control, it is noticeable that all of the 
manipulation values can be altered during the ongo-
ing binding due to their implementation as connect-
able fields.  
The presented example for a decomposition of func-
tional units has also been applied for several more 
areas. This includes the whole gesture detection 
process as well as the scene evaluation which is also 
handled by specialized node types To allow a tra-
versal type access to scene graph structures during 
an interpretation task, e.g., to find out which objects 
that have been looked at by the user have the color 
“green” or are of type “wheel”, nodes in the scene 
graph can be augmented by another special type 
called semantic entity (se). A se represents the con-
nection layer between an external  of multimodal 
utterances requires access to several types of knowl-
edge base that provides, e.g., conceptual and lexical 
information about the objects – the AI. This includes 
perceptual (colors, shapes, positions,…), conceptual 
(types, functions, roles,…) as well as linguistic in-
formation. Some of this knowledge can not be stored 
statically due to (a) its highly fluctuating quality, 
e.g., utterances like “left of…” or “behind…” in a 

head-tracked or dynamically changing  environment 
and hence is generated on the fly (again using spe-
cialized pre-evaluation node types) or (b) because it 
is not linked to an actual visual representation. For 
example, if we say “give me a red bolt” there cer-
tainly does not have to be one instantiated in the 
scene already.  

Still, the access to the remaining as well as to most 
of the mentioned information sources should be 
handled in a uniform manner to establish a common 
query interface. To allow a traversal type access to 
scene graph structures during an interpretation, e.g., 
to find out which objects that have been looked at by 
the user have the color “green” or are of type 
“wheel”, nodes in the scene graph can be augmented 
by another special type called semantic entity (se). 
A se encapsulates the connection layer –between the 
different knowledge bases and the plain computer 
graphics representation of the objects in the graph. If 
a node of type se is visited during a traversal – which 
might in one instance e.g. search for green and con-
nectable objects – the se enables the traverser to 
query the nodes underlying knowledge base(s). The 
most important supported functions to enable a ge-
neric data query via attribute query-value pairs are: 
(1) isOfType(TYPE) 
(2) getRefNode() 
(3) hasAttribute?(ATTR), hasAttribute!(ATTR) 
(4) getAttributeValue(ATTR), setAttribute-
Value(ATTR)  

The first two are for the traversal management, (1) to 
find out if the node is of type se and (2) to get the 
according scene graph node whose semantic values 
are represented by the specific se (currently that one 
references just the se’s parent). (3) and (4) test or set 
for an attribute and its value. A simple example for a 
typical traversal is explained in the following pseudo 
code algorithm (see Figure 10) which performs an 
object-by-attribute-value search.  
Begin proc Query (node, attr, value) 
 Set ObjectList := NIL; 
 If  node.isOfType (GROUP) then 
  ForEach child in node.children() do 
   ObjectList.append  
     (Query (child,attr,value)); 
  done 
 If node.isOfType(SE) then 
  If node.hasAttribute (attr) then 
   If node.getAttributeValue (attr) 
          = value then 
    Return(node.getRefNode ()); 
 Return (ObjectList); 
End proc 

Figure 10: A typical traversal function to query objects by a 
specific attribute-value tupel. 

This se-approach does not force a specific format of 
the knowledge base due to the simple query interface 
specification. For example, the current implementa-
tion accesses a plain text database with stored attrib-
ute-value pairs for lexical and some ontological 
information together with a semantic net which han-



dles more complex linguistic and conceptual rela-
tions about the construction task.  

The given examples shall clarify our approach to 
stick as close as possible to a scene graph oriented 
design by a functional decomposition of needed 
modules. One advantage of attaching se’s to scene 
graph nodes instead of choosing another connection 
scheme between AI-related knowledge bases and 
VR-systems is, that it is reasonably simple to use 
already existing scenes with the multimodal interac-
tion interface. There are, of course, several ways to 
design and implement a reusable multimodal interac-
tion engine by breaking down the overall tasks and 
problems into smaller modules which can be imple-
mented as node types. Though our choices work well 
for our application domains, we are currently inves-
tigating even more general node types. These should 
allow a concept reuse as well as a possible export 
and exchange formalism using a common file format 
and hence an easy adaptation to new applications. 
Our current implementation is based on the 
AVANGO toolkit [Tra99] of the IMK group at the 
Fraunhofer Institute in Bonn and makes use of 
OpenGL Performer’s scene graph. But since all new 
node types are defined just by their clean in-
put/output behavior, it should be quite easy to port 
them to different toolkits. 

4 Summary and Outlook 

Virtual environments raise the demand for an intui-
tive interaction with computer generated surround-
ings. The desktop-oriented input devices like key-
board and mouse etc. together with their related 
interaction metaphors often do not seem to be ade-
quate with respect to the requirements and the user’s 
mobility in large-screen immersive surroundings like 
workbenches, walls or caves. Since ‘traditional’ 
input devices and the WIMP (Windows, Icons, 
Menu, Pointer) style interaction is not suitable for 
human-computer-interaction (HCI) in an immersive 
virtual environment, more intuitive HCI has to be 
developed. In the “Virtuelle Werkstatt” project, we 
are interested in intuitive and natural ways of inter-
acting in virtual environments for virtual prototype 
modeling. Generic concepts for multimodal  integra-
tion using speech and gesture, enrichment of proba-
bly imprecise geometric models with information for 
interaction and assembly, and a knowledge-based 
approach for describing, establishing, and modifying 
connections have been developed.  

Our current work in the area of multimodal interac-
tion methods aims at an XML specification for de-
fining a tATN. This is done to tackle some problems 
related to the somehow complex way of constructing 
or modifying a tATN. Though all concepts are al-
ready specified using a scripting language 
(SCHEME), side effects of a state or constraint 
modification sometimes lead to quite unexpected 
results. A plain declarative method would be prefer-

able. The goal is to specify an interaction in XML 
using a simple text editor, and have this specification 
compiled in the target structure, namely a tATN.  

For the inhomogeneous scaling operations the map-
ping from the multimodal user input to the correct 
scaling operation is currently developed. Particularly 
this will consist of suitable motion-modificators for 
the interactive part of the scaling operation and a 
scene graph structure which allows the selection of 
different divisions of an object in CSG-combined 
subparts. Furthermore scaling interactions described 
by two-handed gesture should be recognized and 
processed and the scaling of already assembled parts 
should be possible. 
Future work will also include more advanced kine-
matic simulations , which will be used to test the 
assembled mechanisms of the connected joints with 
an integrated collision detection. For instance it 
should be possible to simulate the effect of moving 
the handle bar of the “Citymobile” on the movement 
of its front wheels. 
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