
Abstract: In this paper we describe ongoing
research that aims at the development of a ge-
neric demonstration platform for virtual proto-
type modeling by utilizing multimodal –
speech and gesture – interactions in Virtual
Reality. Particularly, we concentrate on two
aspects. First, a knowledge-based approach for
assembling CAD-based parts in VR is intro-
duced. This includes a system to generate
meta-information from geometric models as
well as accompanying task-level algorithms
for virtual assembly. Second, a framework for
modeling multimodal interaction using gesture
and speech is presented that facilitates its ge-
neric adaptation to scene-graph-based applica-
tions. The chosen decomposition of the re-
quired core modules is exemplified by an ex-
ample of a typical object rotation interaction.
Keywords: Virtual Reality, Virtual Assembly,
Multimodal Interaction, Interaction Decom-
position, Task-Level Interfaces

1 Introduction

The project “Virtuelle Werkstatt” aims to combine
and improve research results in multimodal human-
computer interaction and immersive CAD systems to
develop a generic demonstration platform for Virtual
Reality (VR) based prototyping. Multimodal interac-
tion is concerned with the processing of gesture and
speech based user input to drive the modifications of
a 3D-visualized scene. Immersive CAD is concerned
with the design, exploration and evaluation of virtual
prototypes. The intention of our project is to provide
a facility for a natural, mutimodal communication in
a virtual construction scenario, which is similar to
the way two humans would interact with speech and
gestures. To enable natural multimodal interaction in
virtual environments, results from different research
communities have to be considered: If speech recog-
nition as an already active research field is put aside,
multimodal interaction can be realized by combining
VR with the advances of Artificial Intelligence (AI).
The integration of multimodal interaction in existing
state-of-the-art VR-principles should hide the spe-
cific internal functional details and should provide a
form of reusable interface components.
The project is carried out in a newly built VR-system
consisting of a 3-sided Cave, projected by 6 D-ILA
projectors and using passive stereo via circular po-
larization filters. The gestures of the user are tracked

with a marker-based infrared camera system. For
precise hand-posture tracking we use two wireless
Data-Gloves. The sound set-up is an eight channel
system with loudspeakers in each corner of the cave.
The computer cluster for application and rendering is
an ‘Artabel Fleye 160’ Linux cluster, including 5
server nodes (double Pentium III-Class PCs) and 8
graphic nodes (single Pentium IV-Class PCs) with
NVIDIA GeForce 3 graphic boards. The nodes are
connected via a 2GBit/s Myrinet network for distrib-
uted OpenGL rendering.

Figure 1: A “Citymobile” vehicle in a VR-demo setting

The first part of this paper presents the notion of
port-concepts and connection properties of assembly
objects and how they can be extracted from purely
geometrical descriptions. It also shows the represen-
tation of these connection properties in a knowledge
base and task-level algorithms for assembling and
disassembling aggregates and adjusting existing
connections. The second part deals with a framework
for multimodal interaction that handles integration of
detected gesture and speech via a temporal aug-
mented transition network (tATN) integration
scheme and the application adaptation in form of
scene graph components.

2 Assembly Simulation for Interactive
Virtual Prototype Modeling

2.1 A Knowledge-Based Approach for Repre-
senting Connection Properties

To interact with and assemble components in virtual
reality, it is necessary to augment the plain CAD-
models with information about their connection
properties. A conceptual model of part matings has

Virtuelle Werkstatt: A Platform for Multimodal Assembly in VR

P.Biermann, B. Jung, M. Latoschik, I. Wachsmuth
Laboratory for Artificial Intelligence and Virtual Reality

University of Bielefeld
http://www.techfak.uni-bielefeld.de/ags/wbski/

been developed that involves connection-sensitive
part subvolumes or ports as well as constraints im-
posed by different kinds of connections [Jung98].
Supplementing conventional lower-level CAD de-
scriptions, port representations provide a more ab-
stract modeling means closer to the human concep-
tualization while still providing enough detail for
virtual reality simulation of various assembly-related
operations. Knowledge bases of predefined port and
connection concepts capture the most common mat-
ing properties of CAD-based parts, to facilitate the
reuse of once developed models.
The port knowledge base consists of a taxonomy of
port concepts which is organized around geometric
properties, which differentiate the port concepts at
the higher level and mechanical properties which
distinguish the concepts at the lower levels. At the
top-level, the taxonomy is divided in the following
concepts:
• Extrusion ports model connection properties of

object subvolumes with extrusion geometries.
For example, extrusion ports model connection
properties of objects involved in peg-in-hole
type assembly operations. In general, connec-
tions between Extrusion Ports afford one trans-
lational and one rotational degree of freedom.

• Plane ports model connection properties of
planar object surfaces. Connections between two
plane ports afford two translational and one ro-
tational degree of freedom.

• Point ports model point-like object connections
that induce no translational degrees and up to
three rotational degrees of freedom when objects
are connected.

Overall, the port taxonomy currently consists of over
20 concepts which have proven useful in several
applications. The connection knowledge base defines
a set of useful connection concepts such as ‘screw’,
‘insert’ or ‘glue’. The taxonomy of connections is
based on the work of Roth [Rot94] and uses a varia-
tion of his “Freiheitsmatrix” representation to model
the kinematic constraints that restrict the relative
movement of two connected parts.

<PortDef object="SCREW">
 <port type="OneSidedThreadedShaft"
name="shaft">
 <connectability type="screw"/>
 <capacity begin="8" end="-8"/>
 </port>
</PortDef>

Figure 2: Port definition for a CAD-based part.

The predefined port and connection concepts capture
stereotypical mating properties of CAD-based parts.
Specific CAD-based parts are annotated with de-
scriptions that reference the predefined port concepts
and, by inheritance, can access all kinds of knowl-
edge contained therein. Figure 2 illustrates a mini-
malistic annotated CAD model of a screw whose

shaft is modeled as an instance of OneSidedThread-
edShaft (a special kind of extrusion port). Optional
properties of port descriptions include hotspots,
which describe preferred positions and orientations
of a port when being connected to another port, more
detailed geometry descriptions, and scaling informa-
tion. The next section describes a method for auto-
matic generation of port descriptions from CAD-
objects of which only polygonal geometry models
are available.
The port representations contain sufficient informa-
tion to determine if two ports are connected to each
other in an assembly situation. To this end, formal
mating conditions are specified that define the legal
relative placements of two connected ports. As con-
nections between all port-types afford some degrees
of freedom on the relative positioning of the ports,
the mating conditions do not fully determine but
rather only constrain the relative placement of ports
in object connections. The mating conditions allow
the testing whether two parts are connected in the
virtual environment. During the simulation of as-
sembly processes they are also used to bring two
parts into a connected state.
Assembly simulation in virtual prototyping environ-
ments generally not only involves the two parts to be
connected but also third parts with which the two
parts being mated must not interfere. Non-
interference with other parts is a further requirement
which is dealt with by the simulation algorithms
described in section 2.3.

2.2 Extracting Port Knowledge from CAD-
Data

One way to author the port descriptions associated
with a CAD part is to model them by hand (sup-
ported by a visual editor). As a more comfortable
alternative, a method for automatic recognition of
port features has been developed [Bie00]. Since
there is no standard description of shapes (features)
in polygonal CAD-Models, the main information
about the model, which can be reliably obtained, is
the polygonal boundary representation in form of
single triangles. Since there is often no guarantee
that this polygonal shape forms a mathematical valid
boundary representation that holds the 2-manifold
property [Män88], robust heuristic methods were
developed to gain as much information as possible
about the shape of the components and their parts.
The main idea is to separate the object boundary in
several clusters, which contain adjacent triangles,
whereas their neighbors form an obtuse angle. This
simple approach generates clusters, which in most
instances match an intuitive division in generic
shapes. Figure 3 shows the clusters of a simple
screw. If this approach fails to generate the desired
division, the user can intervene to select special
clustering methods for cylinders or planes.

Figure 3: A screw from an inventor file, an exploded view
after the clustering, and a visualization of the voxelization.

Several features of these clusters are computed: the
dimensions and directions of the oriented bounding
box, the total area, the average of plane normals and
the average direction of cross products between
normals of adjacent triangles. These features can be
used to distinguish between several generic shapes.
Figure 4 shows a set of geometric primitives and
gives an overview of their specific attributes. A
second source of information is a volumetric repre-
sentation, which can be computed based on the clus-
ter data.

The representation is an extension to the Spatial-
Occupancy Enumeration [FDFH96], where the voxel
can take four different values: inside, outside, on the
boundary, and on the edge of two connected clusters.
This data is gained by moving a test-voxel through
all grid positions of the bounding box and test for a
collision with one (which results in a border-voxel)
or more (which results in an edge-voxel) clusters. In
the right part of Figure 3 a visualization of a voxel-
ized screw is shown (voxel on the edges are shown
in white). These voxels are used to verify the hy-
pothesis of shapes, which is gained from the feature
analysis, but also to gather further information, for
example, about the peculiarity of cylinders, which
could border a hole or a bolt, or to get information
about the accessibility of the detected ports.
In the example of the screw the system detects the
shaft as a cylindrical port (bolt), which is accessible
from one side. Furthermore the system recognizes

the head as a polygonal extrusion, the disk, and the
plane at the two ends of the screw.

This information is utilized to define the ports of the
component and it is possible to generate a construc-
tive solid geometry representation, which is needed
in order to scale parts of the object and for inhomo-
geneous scaling of complex objects. For example,
the user can scale the shaft of a screw instead of
scaling the whole screw or lengthen a ledge without
deforming its holes (see Section 2.4). It is also possi-
ble to generate linguistic terms such as “longish” or
“round” that describe the shape of objects or object
parts. This could help to resolve references to objects
or object parts in the instructions of the user.
All this information of object parts, colors, shapes,
linguistic descriptions, and scaling information is
stored, together with a polygonal representation, in a
hierarchical database which can be accessed from
semantic entity nodes in the scene graph (see Section
3).

2.3 Task-Level Algorithms for Assembly
Simulation

The preferred level of interaction with virtual envi-
ronments is the task-level [Zel91, ZG96]. Ideally,
there should be a 1:1 correspondence between the
tasks performed by a human in the real and in the
virtual world. Aiming at a task-level instructability
of virtual prototyping environments, a set of algo-
rithms has been developed for transforming high-
level specifications of various assembly-related tasks
into corresponding changes to the lower-level graph-
ics representations of the assembly scene. These
task-level algorithms implement the logical interac-
tion with the virtual prototyping environment, i.e.
they are inherently independent of particular user
interfaces, supporting both manipulation- and com-

Normals Area Cross products Geometry OBB Voxel data

∑ ⋅=
itriangles

all
ii ANN

:

~ r

∑=

itriangles
all

itotal AA

:

productscrossofnum

NN

Z

b

baplanes
adjacentall

a

...
~ ,:

_

×

=

∑

Plane Main length of OBB is eq.0 Edge voxel define shape
1

~
≈

totalA

N

Disk Main length eq. 0
Other lengths eq. 2 * r

All voxel on circle are edge
voxel 1

~
≈

totalA

N
2rAtotal ⋅=π

Rectangle Main length eq. 0
Other lengths eq. width(w),
and length(l)

All voxel on edge of OBB
are edge voxel 1

~
≈

totalA

N
lwAtotal ⋅=

Cylinder Main dir. || Axis
Main length eq. height (h)
Other eq. 2 * r

Border voxel on cylinder
hull; Information about
accessibility

0
~

≈
totalA

N
hrAtotal ⋅⋅⋅= π2

1
~

≈Z

Cone
(acute-angled)

Main dir. || Axis
Main length eq. length
Other eq. 2 * rmax

Border voxel on cone hull
 3.01.0

~
−≈

totalA

N
22 hrrAtotal ⋅⋅= π

(for pointed cones)
95.08.0~ −≈Z

NZ ~| |~

Sphere All lengths are equal Border voxel on hull 0
~

≈
totalA

N
hrAtotal ⋅⋅⋅= π2

0
~

≈Z

Figure 4: Some geome tric primitives and their features.

mand-based interaction styles.

For example, the task-level algorithm for connecting
two parts or aggregates in the virtual environment
performs the following steps:

1. The input descriptions of the parts to be mated
are refined by selecting connectable ports and
hotspots (that define the target position for
snapping) on each of the ports.

2. Preliminary mate: The parts are repositioned in
the graphics scene as suggested by the now fully
filled input descriptions. Already consumed ca-
pacities on the ports (resulting from already ex-
isting connections) are also accounted for,
which possibly require modification of the target
position for the mate.

3. Collision avoidance: The mated parts are tested
for (polygon-precision) collision with third
parts. If such collision occurs, the transformed
part’s position is altered in small increments un-
til no collision occurs.

4. Update of the port and connection representa-
tions: The resulting assembly is checked for new
connections resulting from the assembly step.
Typically, exactly one new connection is pro-
duced. It is however also possible that multiple
connections result from the assembly step, or
that – if in every position where the mating con-
ditions hold also a collision with third parts oc-
curs – no new connection can be established. In
the latter case the assembly operation has failed.
The port representations are updated such that
their capacity descriptions reflect the new con-
nections.

Similar task-level algorithms have been developed
for the disassembly of parts and assemblies as well
as adjustment operations that modify the relative
position or orientation of two parts of the same as-
sembly constrained by the remaining degrees of
freedom of their connection. Common features of all
task-level algorithms include:

• They exploit knowledge about ports, their con-
nections, and part geometry. They do not require
deep physical models of part behavior (although
such knowledge could be added if desired).

• They expect only high-level information as
input that can be extracted with reasonable ef-
fort from virtual reality interactions based on
speech, gesture, or direct manipulation.

• They incorporate various snapping strategies to
compensate for incomplete or vague input.

• They integrate collision detection and avoidance
to produce physically plausible assembly states.

• They are computationally inexpensive and thus
suitable for real-time virtual environments.

2.4 Parametric Parts and Scaling Operations

In the “Virtuelle Werkstatt”, we not only consider
virtual assemblies of rigid bodies, but also of para-
metric parts that allow an interactive scaling in the
virtual environment. Since most scaling operations
of complex objects cannot be expressed as a ho-
mogenous scaling of the whole object, the system
has to provide some information about how to scale
parts of an object.

<Part Name=”Screw” PolyRep=”screw.iv”
 Center="(0,0,0)" ScaleCenter="(0,0,0)" CSG="C+">
 <ScaleModes>
 Scale-Y -> Children-Y
 Scale-XZ -> Children-XZ
 </ScaleModes>
 <SubPart Name="Shaft" GenRep="<cylinder diam=2 len=8>"
 Center="(0,-4,0)" ScaleCenter="(0,0,0)" CSG="+">
 <ScaleModes>
 Parent-Y -> Scale-Y
 Parent-XZ -> Scale-XZ
 Scale-Y
 Scale-XZ
 </ScaleModes>
 <\SubPart>
 <SubPart Name="Head" PolyRep="head.iv"
 Center="(0,-4,0)" ScaleCenter="(0,0,0)" CSG="C+">
 <ScaleModes>
 Parent-Y -> None
 Scale-Y -> Children-Y
 Scale-XZ -> Children-XZ
 </ScaleModes>
 <SubPart Name="Body" GenRep="<cylinder diam=4 len=2>"
 Center="(0,1,0)" ScaleCenter="(0,0,0)" CSG="+">
 <ScaleModes>
 Parent-Y -> Scale-Y
 Parent-XZ -> Scale-XZ
 </ScaleModes>
 <\SubPart>
 <SubPart Name="Slot" GenRep="<box x=.5 y=.5 z=4>"
 Center="(0,1.75,0)" ScaleCenter="(0,2,0)" CSG="-">
 <ScaleModes>
 Parent-Y -> Move-Y
 Parent-XZ -> Scale-Z
 Scale-Y
 Scale-X
 </ScaleModes>
 </SubPart>
 </SubPart>
</Part>

Figure 5: XML-Description of scaling and CSG information of
a screw

For example if the user wants to lengthen a screw,
only the shaft of the screw should be scaled. There-
fore the scaling operation – scale in Y-direction –
cannot be performed on the geometry of the whole
screw, but the screw has to be divided in two indi-
vidually scaleable parts: the head and the shaft. The

scaling operation is forwarded to these subparts. The
shaft scales with a given factor, and the head in this
example does not scale at all. If the part contains
holes or depressions which must not be deformed
when scaling the object, the object has to be repre-
sented as a CSG-tree with complementary parts.
Also the user can select subparts of the object for
individual scaling, for example to broaden the slot of
the screw by scaling the complementary CSG-part
“slot” (see Figure 5) in X-direction. Figure 5 shows
an example of an XML-description which specifies
the dependencies of the scaling operations of the
parts of a screw. These dependencies are listed in the
<ScaleMode> section:
‘Scale-Y -> Children-Y’ means the scaling in Y-
direction is done by inhomogeneous scaling of the
child-parts that define their scaling behavior as ’Par-
ent-Y -> ….’ in this case. ‘Scale-Y’: scaling of the
whole part in Y-direction with respect to the scaling
centre.
‘Scale-XZ’: scaling of the whole part in X- and Z-
direction with the same factor.
‘Move-Y’: translate the part in Y-direction instead of
scaling it.
The move operation is needed if parts have to be
moved as result of a scaling operation of the parent-
part. For example if the cylinder which describes the
head of the screw is elongated, the slot has to be
moved in Y-direction to remain on top of the head.
The granularity of the partitioning into subparts
depends on the scaling operation. A scaling of the
shaft of the screw in our example only requires a
division into head and shaft, whereas the scaling of
the head requires also a division of the head into
body and slot.

For visualization of CSG components two different
techniques are used. During the interactive inhomo-
geneous scaling we need real-time rendering of the
changing CSG-tree representation. The computation
of the object surface for every step in the interaction
is not possible in real time, but a real-time visualiza-
tion can be archived by an OpenGL-implementation
of the Goldfeather-Algorithm [Goldf86]. This algo-
rithm generates the visual effect of CSG operations,
without generating the surface itself, by using the
OpenGL stencil buffer [Ake95] to mask out the parts
of the CSG primitives which are not visible.

At the end of the interaction a polygonal representa-
tion has to be computed to reduce the complexity of
multi-pass rendering using stencil buffer operations
and to enable collision detection, which depends on a
polygonal representation of the objects. We use the
ACIS modeler to compute a representation in form
of primitive triangles, which can be inserted as a
geometry-node in the scene graph in order to replace
the interactive scalable CSG-representation.

3 Multimodal Interaction

Interaction with and in large-screen virtual environ-
ments is an interesting research topic of its own. In
the work described here, we follow approaches from,
e.g., Cavazza et al [Cav95] and Lucente [Luc98] as
well as from our own projects, e.g., in [Wac97] and
[Lat98], that dealt with the incorporation of multi-
modal – speech and gesture – input as interaction
media for computer graphics and VR applications.
The goal is to overcome deficiencies related to
WIMP (windows, icons, menu, pointer) interfaces in
VR-setups. The main idea is that there should not be
any need for specialized input devices besides the
users’ natural modalities. Having a closer look at
multimodal interaction, we find that the related prob-
lems can be classified in the following four catego-
ries:
• Gesture detection and analysis
• Speech recognition and interpretation
• Speech and gesture integration
• Application adaptation
In this section we focus on the progress we have
made concerning the last two of the areas (including
the interpretation step), namely the integration
formalism currently under exploration and the
chosen scene graph oriented functional decomposi-
tion for the required real-time 3D application
adaptation, which is the virtual assembly scenario
described above. An extensive survey about the
gesture processing system can be found in [Lat01b].

3.1 Integration and Interaction Specification

There have been several approaches to multimodal
integration in computer graphics. The first project
usually referred to, is the famous “Put-that-there” by
Bolt [Bol80]. In this system, the time when a point-
ing gesture had to occur was predefined with respect
to specific words from speech. This type of speech-
driven approach was followed by several other re-
searchers but is nowadays neglected in favor of two
more general integration schemes. The earlier ones
of those can be categorized as frame-based, e.g., in
[Koo93] or [Vo96]. More recent work often utilizes
unification algorithms to handle the integration task,
Johnston [Joh98] being a prominent example of that.
Although the latter offers a clean declarative way to
predefine multimodal correlation, even Johnston
notices its computational complexity and recently
turned to a finite-state-based integration [Joh00].
This approach has some similarities to the temporal
ATN’s (augmented transition network) [Lat01a],
which builds the core of our own multimodal inte-
gration module; an example of a tATN branch cur-
rently used is depicted in Figure 6. What differenti-
ates a tATN from its counterpart – a common ATN –
will be clarified in the following section.
The nodes in Figure 6, e.g., (B1) or (R1), depict
the different states the tATN can reach during the

traversal. The connecting arcs are labeled with con-
straints implemented either by complex test func-
tions like in “(Rotate)” (B1>R1) or by tests for
lexical atoms like in “about” (R2>R31).The
complex test functions can be (1) sub-tATNs for
parsing reoccurring phrases, e.g. “(ObjDesc1)”
branches to a sub-tATN for parsing noun phrases, (2)
gesture test functions like “is?(rotating)” at
the traversal (R41>R42) or (3) test functions for
application internal states.

Figure 6: A fragment from one temporal ATN currently
employed. The lower branch parses combined gesture and
speech utterances for specifying desired object rotations.

A typical example for the latter – which is not exem-
plified in the above figure – is a test function for
querying if an object is currently selected. (R42) is
a special state that represents a switch to a pure ges-
ture driven application state. This special interaction
mode is called continuous interaction in contrast to
discrete interactions which is performed instantly
when reaching certain end states, denoted by the
nodes colored in light grey. The end states for con-
tinuous interactions are depicted in dark grey. For
example, if (R42) is active, the continuous mode
can only be left by stopping the previously started
rotation gesture to reach (R43). Typical ges-
ture/speech utterances handled by this tATN branch
are, e.g., “Rotate [pointing gesture] this thing about
30 degrees like [rotation gesture] this to the right” or
“Rotate the yellow wheel like [rotation gesture]
this”. Figure 7 shows an ongoing continuous rotation
interaction which is processed by the outlaid tATN
branch and initiated by the second utterance exam-
ple.

Figure 7: A sample continuous interaction. The tATN from
Figure 6 is at state (R41). The gesture processing takes over
the application control due to the negated is?(rotating) con-
straint at arc (R41>R42). The scene shows a snapshot from an
earlier prototype system running on a single large screen
display (wall) with an electromagnetic tracking system

The already introduced predicate “is?()” leads to
the difference between an ATN and its temporal
version. In addition to the former, the temporal ATN
enables and supports the processing of parallel oc-
curring events by labeling all states with time-
stamps. For each transition function there is a special
time-register called reach and an appropriate
reach.set function for the register value.
reach.set is currently predefined in the following
way: If a state (S2) is reached by an arc from state
(S1) that has a lexical constraint, S2.reach will
be set to the beginning of the lexical units utterance.
If (S2) is only reached by a test for an internal
application state, S2.reach will be set to
S1.reach. For example, is?(rotating) at
(R41>R42) checks if a rotation type gesture is
currently uttered at the time when state (R41) has
been reached. To clarify what happens if a gesture
test function leads to(S2), we will now explain how
the results of the gesture detection are represented
here at the integration level. Though the gesture
processing is latched into the rendering loop, e.g., to
determine spatial relationships between deictic ges-
tures and the displayed scene, its rate is independent
from the image generation by using parallel compu-
tation methods. This is to ensure undisturbed input
processing under varying frame rate conditions.
Synchronization between the gesture module and the
integration and application is done via so called
attribute sequences, containers which hold the time
stamped results of the underlying gesture detection
networks. For each frame, there can be an arbitrary
number of values in one specific attribute sequence,
depending on the ratio between the gesture process-
ing rate (currently 100Hz) and the actual frame rate.
Using this buffering scheme, the reach time stamps
at the different states allow testing for temporal rela-
tions with the time stamped values in the attribute
sequences. In contrast to approaches that handle
gestures as atomic events with a specific occurrence
in time, the attribute sequences enable a more gen-
eral view because they allow gestures to have an
interval type temporal progression. This is particu-
larly important regarding so-called mimetic or kine-
mimic gestures, gestures which are particularly use-
ful regarding continuous interactions. These gesture
types communicate or pantomime an action by exe-
cuting during a longer time period (see Figure 7).

3.2 Application Adaptation

To handle multimodal interaction in VR setups,
special care was taken about the functional decom-
position of needed modules. All components are
scene graph oriented and follow ideas from Open
Inventor, VRML and X3D to incorporate specialized
objects for input processing into the graph structure.
To allow a scene graph based application to make
use of a multimodal interaction interface, special
node types have been developed to handle (1) ges-

ture processing, (2) gesture analysis, (3) interaction
intermediation and (4) speech-gesture integration
and interpretation using the tATN. Regarding the
latter, it is important to emphasize that the interpreta-
tion step must access knowledge about the currently
rendered scene and the respective user position,
orientation and his/her view of the scene to under-
stand deictic utterances, e.g. “…the left wheel…”
and hence is naturally to be coupled into the hierar-
chical scene description. On the other hand, interpre-
tation of multimodal utterances profits from concepts
developed in the area of language understanding
which are often realized using artificial intelligence
(AI) methods. This resulting incorporation of AI and
VR principles greatly influenced the following ap-
proach. As an example for the chosen decomposi-
tion, a closer look at the implementation of the al-
ready introduced continuous interactions follows.
From the plain geometric view, human gestures are
rarely performed in a perfect manner. If a user wants
to describe, e.g., a desired object rotation by circling
his or her hand (see Figure 7), the resulting move-
ment will be imprecise regarding its trajectory. But
the desired object change should – in the general
case – reflect the perfect circle regarding its path and
it should move in appropriate speeds to allow fine
grain interaction control. To achieve this in a scene
graph oriented design, three specialized node-types
are introduced, starting with the so called actuators.
(see Figure 9). Actuators encapsulate movement data
which is significant for a user’s utterances, e.g., the
fingertips of the index fingers, the angle between
upper arm and forearm or certain directions like the
view direction, palm normal vectors or pointing
directions. As can be seen from Figure 8, the data
exchange from the actuators is done via the already
introduced attribute sequences (in Figure 9 labeled
FM(t)).

Figure 9: An actuator node as a special node type for
encaps ulating a user's movement data

Attribute sequences can be routed to other nodes
with appropriate input sequences just like normal
field connections in VRML and similar toolkits. By
linking actuators into the scene graph, an explicit
user representation – regarding the significant body
parts for the utterances – is inserted into the graph.
The respective matrices in Figure 9 allow an easy
modification of the body data, e.g., to adjust unsuit-
able sensor fixation points. Internally, the actuator
layer which supports the described node type per-
forms still some more actions. For example, it han-
dles and may integrate sensor data of more than one
source and it provides a common data rate even with
unsynchronized sensor streams.

In the context of a continuous interaction, an actuator
routes its data to a motion-modificator (mm) node
which then triggers a manipulator for the desired
object manipulation. Figure 8 depicts the resulting
setup which is called a binding for a continuous
interaction. Here, the motion-modificator acts as a
filter and controller. It receives the actuators data in
the world reference system, e.g., the trajectory of the
fingertip, and tests this data according to certain
trajectory constraints. If those are satisfied by the

A motion-modificator that maps the
imprecise user movements to
geometrically precise object
changes.

A manipulator receives the motion-
modificators output values once for
each frame and applies them to the
target node.

An actuator node that delivers, e.g., the
users index fingertip position of the hand
that currently performs a rotation gesture via
an attribute sequence.

scene object nodes binding group

attribute sequence binding

field connection

Figure 8: A binding between an actuator, a motion-modificator and a manipulator to establish a continuous
interaction, here the rotation of an object.

movement, the mm outputs new trigger values for
the desired manipulation. For example, for a rota-
tion, the mm will output a rotation normal (in world
space) and a rotation angular velocity. Both may
change during the interaction in predefined ranges to
allow a finer grained interaction control. To achieve
this in a reliable manner, the mm is instantiated with
certain raster values for each of its output values.
Regarding the rotation example, the mm has list of
possible rotation normal vectors – e.g., the list
((0,0,1), (0,1,0), (1,0,0)) would only allow rotations
around the main world axes – and rotation angular
velocities. This approach borrows its idea from the
grid concepts well known from typical 2D and 3D
graphics modeling programs to support precise ob-
ject manipulation. This method of pre-restricting
manipulations through an online parameter specifica-
tion is particularly important in the virtual assembly
scenario. Here, two objects can only be connected if
they both have matching port types at the connection
spots (see section 2.1). If such a connection can
successfully be established, only certain degrees of
freedom will still be available. Since the mm does
not make any assumption about the source of the
manipulation constraints, e.g., the list of possible
normal vectors, this concept seamlessly enables the
adaptation to different requirements. Before an mm
is instantiated, possible constraints caused by the
specific application, here the virtual assembly sce-
nario can alter the mm’s raster values to reflect a
proper simulation behavior. Finally, the manipulator
node takes the control. It applies the desired manipu-
lation – in the example the next rotation step - for
each frame according to the mm’s output data by
considering possible transformations between the
world and the objects reference frames. For a further
interaction control, it is noticeable that all of the
manipulation values can be altered during the ongo-
ing binding due to their implementation as connect-
able fields.
The presented example for a decomposition of func-
tional units has also been applied for several more
areas. This includes the whole gesture detection
process as well as the scene evaluation which is also
handled by specialized node types To allow a tra-
versal type access to scene graph structures during
an interpretation task, e.g., to find out which objects
that have been looked at by the user have the color
“green” or are of type “wheel”, nodes in the scene
graph can be augmented by another special type
called semantic entity (se). A se represents the con-
nection layer between an external of multimodal
utterances requires access to several types of knowl-
edge base that provides, e.g., conceptual and lexical
information about the objects – the AI. This includes
perceptual (colors, shapes, positions,…), conceptual
(types, functions, roles,…) as well as linguistic in-
formation. Some of this knowledge can not be stored
statically due to (a) its highly fluctuating quality,
e.g., utterances like “left of…” or “behind…” in a

head-tracked or dynamically changing environment
and hence is generated on the fly (again using spe-
cialized pre-evaluation node types) or (b) because it
is not linked to an actual visual representation. For
example, if we say “give me a red bolt” there cer-
tainly does not have to be one instantiated in the
scene already.

Still, the access to the remaining as well as to most
of the mentioned information sources should be
handled in a uniform manner to establish a common
query interface. To allow a traversal type access to
scene graph structures during an interpretation, e.g.,
to find out which objects that have been looked at by
the user have the color “green” or are of type
“wheel”, nodes in the scene graph can be augmented
by another special type called semantic entity (se).
A se encapsulates the connection layer –between the
different knowledge bases and the plain computer
graphics representation of the objects in the graph. If
a node of type se is visited during a traversal – which
might in one instance e.g. search for green and con-
nectable objects – the se enables the traverser to
query the nodes underlying knowledge base(s). The
most important supported functions to enable a ge-
neric data query via attribute query-value pairs are:
(1) isOfType(TYPE)
(2) getRefNode()
(3) hasAttribute?(ATTR), hasAttribute!(ATTR)
(4) getAttributeValue(ATTR), setAttribute-
Value(ATTR)

The first two are for the traversal management, (1) to
find out if the node is of type se and (2) to get the
according scene graph node whose semantic values
are represented by the specific se (currently that one
references just the se’s parent). (3) and (4) test or set
for an attribute and its value. A simple example for a
typical traversal is explained in the following pseudo
code algorithm (see Figure 10) which performs an
object-by-attribute-value search.
Begin proc Query (node, attr, value)
 Set ObjectList := NIL;
 If node.isOfType (GROUP) then
 ForEach child in node.children() do
 ObjectList.append
 (Query (child,attr,value));
 done
 If node.isOfType(SE) then
 If node.hasAttribute (attr) then
 If node.getAttributeValue (attr)
 = value then
 Return(node.getRefNode ());
 Return (ObjectList);
End proc

Figure 10: A typical traversal function to query objects by a
specific attribute-value tupel.

This se-approach does not force a specific format of
the knowledge base due to the simple query interface
specification. For example, the current implementa-
tion accesses a plain text database with stored attrib-
ute-value pairs for lexical and some ontological
information together with a semantic net which han-

dles more complex linguistic and conceptual rela-
tions about the construction task.

The given examples shall clarify our approach to
stick as close as possible to a scene graph oriented
design by a functional decomposition of needed
modules. One advantage of attaching se’s to scene
graph nodes instead of choosing another connection
scheme between AI-related knowledge bases and
VR-systems is, that it is reasonably simple to use
already existing scenes with the multimodal interac-
tion interface. There are, of course, several ways to
design and implement a reusable multimodal interac-
tion engine by breaking down the overall tasks and
problems into smaller modules which can be imple-
mented as node types. Though our choices work well
for our application domains, we are currently inves-
tigating even more general node types. These should
allow a concept reuse as well as a possible export
and exchange formalism using a common file format
and hence an easy adaptation to new applications.
Our current implementation is based on the
AVANGO toolkit [Tra99] of the IMK group at the
Fraunhofer Institute in Bonn and makes use of
OpenGL Performer’s scene graph. But since all new
node types are defined just by their clean in-
put/output behavior, it should be quite easy to port
them to different toolkits.

4 Summary and Outlook

Virtual environments raise the demand for an intui-
tive interaction with computer generated surround-
ings. The desktop-oriented input devices like key-
board and mouse etc. together with their related
interaction metaphors often do not seem to be ade-
quate with respect to the requirements and the user’s
mobility in large-screen immersive surroundings like
workbenches, walls or caves. Since ‘traditional’
input devices and the WIMP (Windows, Icons,
Menu, Pointer) style interaction is not suitable for
human-computer-interaction (HCI) in an immersive
virtual environment, more intuitive HCI has to be
developed. In the “Virtuelle Werkstatt” project, we
are interested in intuitive and natural ways of inter-
acting in virtual environments for virtual prototype
modeling. Generic concepts for multimodal integra-
tion using speech and gesture, enrichment of proba-
bly imprecise geometric models with information for
interaction and assembly, and a knowledge-based
approach for describing, establishing, and modifying
connections have been developed.

Our current work in the area of multimodal interac-
tion methods aims at an XML specification for de-
fining a tATN. This is done to tackle some problems
related to the somehow complex way of constructing
or modifying a tATN. Though all concepts are al-
ready specified using a scripting language
(SCHEME), side effects of a state or constraint
modification sometimes lead to quite unexpected
results. A plain declarative method would be prefer-

able. The goal is to specify an interaction in XML
using a simple text editor, and have this specification
compiled in the target structure, namely a tATN.

For the inhomogeneous scaling operations the map-
ping from the multimodal user input to the correct
scaling operation is currently developed. Particularly
this will consist of suitable motion-modificators for
the interactive part of the scaling operation and a
scene graph structure which allows the selection of
different divisions of an object in CSG-combined
subparts. Furthermore scaling interactions described
by two-handed gesture should be recognized and
processed and the scaling of already assembled parts
should be possible.
Future work will also include more advanced kine-
matic simulations , which will be used to test the
assembled mechanisms of the connected joints with
an integrated collision detection. For instance it
should be possible to simulate the effect of moving
the handle bar of the “Citymobile” on the movement
of its front wheels.

Acknowledgement
This work is partly supported by the Deutsche For-
schungsgemeinschaft (DFG) under grant Wa 815/2
and the Ministry of Science and Research of the
Federal State North-Rhine-Westphalia (MSWWF)
under the grant OZ IV A3-107 032 96.

Literature

[Ake95] Kurt Akeley. OpenGL reference man-

ual: the official reference document for
OpenGL. Addison Wesley, 1995

[Bie00] Peter Biermann. Interaktives VR-System
zur halbautomatischen Generierung von
Wissen über Verbindungsmerkmale
CAD-basierter Bauteil-Modelle.
Diplomarbeit, Universität Bielefeld,
2001.

[Bol80] R. A. Bolt. Voice and gesture at the
graphics interface. In ACM SIGGRAPH-
Computer Graphics, ACM Press, New
York, 1980.

[Cav95] M. Cavazza, X. Pouteau and D. Pernel.
Multimodal communication in virtual
environments. In Symbiosis of Human
and Artifact. Elsevier Science B. V.,
1995, pp. 597-604.

[FDFH96] James D. Foley, Andries van Dam, Ste-
ven Feiner and John F. Hughes. Com-
puter Graphics: Principles and Prac-
tice. 2nd edition in C, Adison Wesley
Publishing Company, 1996.

[Goldf86] J. Goldfeather, J. Hultquist, H. Fuchs.
Fast Constructive Solid Geometry in the
Pixel-Powers Graphics System, Com-
puter Graphics (SIGGRAPH ’86 Pro-
ceedings), ACM, Vol.20, No.4, pp. 107-
116, 1986.

[Joh98] M. Johnston. Unification-based multi-
modal parsing. In Proceedings of the
17th International Conference on Com-
putational Liguistics and the 36th Annual
Meeting of the Association for Computa-
tional Linguistics (COLING-ACL 98),
1998.

[Joh00] M. Johnston and S. Bangalore. Finite-
state Multimodal Parsing and Under-
standing. In Proceedings of COLING-
2000, 2000.

[Jung98] B. Jung, M. Latoschik, I. Wachsmuth:
Knowledge-Based Assembly Simulation
for Virtual Prototype Modeling.
IECON'98 - Proceedings of the 24th
Annual Conference of the IEEE Indus-
trial Electronics Society, Vol. 4, IEEE,
1998, 2152-2157.

[Koo93] D. B. Koons, C. J. Sparrel and K. R.
Thorisson. Integrating simultaneous in-
put from speech, gaze and hand ges-
tures. In Intelligent Multimedia Inter-
faces, AAAI Press, 1993.

[Lat98] M. E. Latoschik, M. Fröhlich, B. Jung
and I. Wachsmuth. Utilize Speech and
Gestures to Realize Natural Interaction
in a Virtual Environment. IECON'98 -
Proceedings of the 24th Annual Confer-
ence of the IEEE Industrial Electronics
Society, Vol. 4, IEEE, 1998, pp. 2028-
2033.

[Lat01a] M. E. Latoschik: Multimodale
Interaktion in Virtueller Realität am
Beispiel der virtuellen Konstruktion.
Phd thesis, Faculty of Technology,
University of Bielefeld, infix DISKI
volume 251, Akademische
Verlagsgesellschaft Aka GmbH, Berlin,
2001.

[Lat01b] M. E. Latoschik. A Gesture Processing
Framework for Multimodal Interaction
in Virtual Reality. In A. Chalmers and
V. Lalioti, editors, Afrigraph 2001, 1st
International Conference on Computer
Graphics, Virtual Reality and Visualiza-
tion in Africa, 5 - 7 November 2001,
New York, NY 10036, 2001, ACM
SIGGRAPH, pp. 95-100.

[Luc98] M. Lucente, G. Zwart and A. D. George.
Visualisation space: A testbed for de-
viceless multimodal user interfaces. In
Intelligent Environments Symposium,
American Assoc. for Artificial Intelli-
gence Spring Symposium Series, 1998.

[Män88] Martty Mäntylä. An introduction to
Solid Modelling. Computer Science
Press, Helsinki University of Technol-
ogy, 1988.

[Rot94] K. Roth. Konstruieren mit
Konstruktionskatalogen, volume I. Ber-
lin, Springer-Verlag, 2. edition, 1994.

[Tra99] H. Tramberend. A distributed virtual
reality framework. In Proceedings of the
Virtual Reality Conference 1999, 1999.

[Vo96] M. T. Vo and C. Wood. Building an
application framework for speech and
pen input integration in multimodal
learning interfaces. In Proceedings of
International Conference on Acoustics,
Speech and Signal Processing, Atlanta,
1993.

[Wac97] I. Wachsmuth, B. Lenzmann, T. Jörding,
B. Jung, M. Latoschik and M. Fröhlich:
A Virtual Interface Agent und its
Agency. Proceedings of the First Inter-
national Conference on Autonomous
Agents (pp. 516-517), 1997.

[Zel91] D. Zeltzer. Task level graphical simula-
tion: Abstraction, representation, and
control. In N. Badler, B. Barsky, and D.
Zeltzer, editors, Making Them Move.
Morgan Kaufmann, 1991.

[ZG96] D. Zeltzer and S. Gaffron. Task-level
interaction with virtual environments
and virtual actors. International Journal
of Human-Computer Interaction,
8(1):73-94, 1996.

