
Universität Bielefeld

Technische Fakultät
Abteilung Informationstechnik
Forschungsberichte

Persistent Objects with O2DBI

Jörn Clausen

Report 2002-01



Impressum: Herausgeber:
Robert Giegerich, Ralf Hofestädt, Franz Kummert,
Peter Ladkin, Ralf Möller, Helge Ritter,
Gerhard Sagerer, Jens Stoye, Ipke Wachsmuth

Technische Fakultät der Universität Bielefeld,
Abteilung Informationstechnik, Postfach 10 01 31,
33501 Bielefeld, Germany

ISSN 0946-7831



Persistent Objects with O2DBI

Jörn Clausen∗

Faculty of Technology†

University of Bielefeld, Germany

May 14, 2002

∗joern@TechFak.Uni-Bielefeld.DE
†This work was carried out while the author was working at the Center for Genome Re-

search, Bielefeld





Contents

1 Introduction 4

2 The Beauty of Objects 5
2.1 Methods versus Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Object-Oriented Programming with Perl . . . . . . . . . . . . . . . . . 7

3 Persistent Objects and Relational Databases 9
3.1 Two Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Mapping Objects to Tables . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Accessing Relational Databases with Perl . . . . . . . . . . . . . . . . . 11

4 Code generation with O2DBI 14
4.1 A simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Using O2DBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Modules generated by O2DBI . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Using the modules generated by O2DBI . . . . . . . . . . . . . . . . . 19

5 Current limitations and future enhancements 21
5.1 Things missing from the implementation . . . . . . . . . . . . . . . . 21

5.2 Plans for the future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3



1 Introduction

This document describes O2DBI. This Perl module enables simultaneous use of

object-oriented programming and relational databases. O2DBI allows to define a

set of objects, which are then transparently stored in a database. Thus objects are

made persistent, and can be accessed from different locations.

We assume that the reader has some basic knowledge about object-oriented pro-

gramming in Perl[10] and relational databases[5]. To keep the examples simple, all

code fragments are shown without declaration of classes or error handling.

O2DBI is available from the author’s home pages at

http://www.TechFak.Uni-Bielefeld.DE/˜joern/dev/perl/o2dbi/

Although the current implementation of O2DBI lacks some of the described fea-

tures, it has been successfully used in several projects at the Genetics Department

and the Center of Genome Research at the University of Bielefeld[6, 7, 9, 11, 3].

4



2 The Beauty of Objects

2.1 Methods versus Procedures

Object-oriented programming, OO for short, has become very popular during the

last ten years. Some widely used languages were created by augmenting successful

languages with objects, e.g. C++ and Perl5. Others were designed right from the

start with OO technologies in mind, like Python.

OO-capable languages usually come with some more advanced methods, like over-

loading or exception handling (which are not directly OO-related), and inheritance

and information hiding. One purely syntactical feature, which for itself already

may advocate using an OO approach, is the enhanced readability of programs
written in an object-oriented language.

Table 2.1 shows a comparison of two small code fragments. They demonstrate

how to store and access data about some persons, which are identified uniquely

by their IDs. In the imperative version on the left hand side, the name of the

person is extracted by the function id2name. In the OO version, the person is

represented as an object, which is instantiated by the method init. The name

can be queried by applying the method name to the object. Two more functions

and methods are available to extract the address of the person and the appropriate

zipcode. But the object-oriented version is more elegant, as it introduces a new

class for addresses. Note that an anonymous object is created twice, by calling
the method address on $person. Then appropriate methods are used on this

anonymous address object.

$personid = 1234;
$name = id2name($personid);
$address = id2address($personid);
$zipcode = extract_zipcode($address);

$person = person->init(1234);
$name = $person->name;
$address = $person->address->printable;
$zipcode = $person->address->zipcode;

Table 2.1: A comparison of imperative and OO programming

5



$ctitle = cd_id2title($cdid);
$btitle = book_id2title($bookid);

sell_cd($personid, $cdid);
sell_book($personid, $bookid);

$ctitle = $cd->title;
$btitle = $book->title;

$book->sell($person);
$cd->sell($person);

Table 2.2: Name clashes, and avoiding them

One common annoyance in imperative programming is, that the programmer is

not prevented form creating name clashes. As an example, we consider an ap-

plication dealing with books and CDs. Both are again identified by unique but

unrelated IDs (i.e. a book and a CD can have the same ID). If one wants to know

the title of a book and the title of a CD, a simple function id2title is not suffi-

cient, as the function cannot know if it received the ID of a book or a CD. Usually,

one ends up with the solution shown in Table 2.2. As a result, the program will be

cluttered with long and complicated function names. In OO world, this problem

does not exist. The programmer has two methods title, and depending on what

object this method is applied, the Right Thing is done. Each object “knows” which

method it has to use, as it is the method defined in its own class. Table 2.2 assumes
that appropriate objects already have been instantiated. But if only the title of a

CD is required, one can even do

cd->init($cdid)->title

and forget the object immediately afterwards.

Another benefit of OO notation is a better detection of common programming

glitches. In Table 2.3, some functions and methods are shown to sell books and

CDs to persons. The functions deal only with numerical IDs, so the programmer

has to pay attention to pass a book ID as parameter to sell_book. One can easily

mix things up, e.g. confusing the order of the parameters. Even in stronger typed

languages than Perl such problems would go unnoticed. Using the OO version,

such errors are usually prevented and are more easily to detect. It’s a matter of

taste, if a method sell is defined inside the book and CD classes, or a method

buy inside the person class. In the latter case, this method can be called both with

book and CD objects. Either the method can determine what is currently sold,

or both classes define a set of common methods, so that the buy method doesn’t
have to know if it sells a book or a CD. Confusing the order of parameters is less

probable. In the last example, a person is bought by a book. On the one hand,

this will throw an error when executing the code, as the book class does not have

a method buy. On the other hand, carefully reading this code should make the

programmer suspicious. This type of error can be found without looking at the

declaration of the method.

6



sell_book($personid, $bookid);
sell_cd($personid, $cdid);
sell_book($bookid, $personid);

$book->sell($person);
$person->buy($cd);
$book->buy($person);

Table 2.3: Passing parameters, type checking

2.2 Object-Oriented Programming with Perl

Defining classes in Perl is quite easy. A class is just a Perl module, and an object

is a reference to a variable that “knows” from which class it was instantiated. The

class contains constructors, destructors and methods, which are just ordinary sub-

routines defined in the module. Data encapsulation usually forbids direct access
to the attributes of an object. Instead, methods have to be used to store, read or

modify data inside an object.

As an example, consider another person class. The module has a constructor new
and two methods name and dob to get or set the name of the person and the date

of birth, respectively. Part of the module is shown in Table 2.4. The package
statement tells Perl that the following code defines a class person. The method

new can be used to create new person objects. It takes as arguments the name of

the person and the date of birth:

$person = person->new(’Joe User’, ’1.1.1970’);

Inside the method, the data is stored in a hash. A reference to this hash is blessed,

i.e. turned into an object. The reference is then returned to the caller of the con-

structor. Now each method applied to this object is looked up in the same module

as the constructor.

package person;

sub new {
my ($class, $name, $dob) = @_;

my $person = { name => $name,
dob => $dob,
... };

bless($person, $class);
return($person);

}

Table 2.4: The constructor of the person class

7



sub name {
my ($self, $name) = @_;
if (defined($name)) {

$self->{name} = $name;
}
return($self->{name});

}

Table 2.5: Getting or setting an attribute

One of these methods is name, which can be used to get or set the name of the

person. When used without an argument, the name of the person is returned:

$name = $person->name;

When called with an argument, it is stored as the new name:

$newname = $person->name(’Joe N. User’);

In addition, to check for errors, the newly set name is returned. Table 2.5 shows
the implementation of this method. Other methods accessing the basic attributes

of an object are very similar.

8



3 Persistent Objects and Relational
Databases

3.1 Two Worlds

Objects are short-lived things. When the application terminates, all currently in-

stantiated objects are discarded, and their contents are lost. In larger applications,

that deal with massive amounts of data, this is usually not desired. When data is

stored inside an object, this data has to be “remembered”, so that the same object

can be reused later. Objects need some kind of persistence.

Databases are used to store large amounts of data. There are different types of

databases, the most widespread ones are relational databases. The basic idea of an
RDBMS (Relational Database Management System) is to store data inside tables.

The virtue of creating a database schema is to design appropriate tables for an

application. The programmer tries to model a view of the real world, which has to

be correct, sufficient and non-redundant.

So, how do objects and databases can be combined? At first glance, these are two

different worlds, with very different concepts. In OO-land, an object represents

an entity, which is clearly separated from all other objects. In an RDBMS, data

concerning a single “thing” can be spread across several tables. A single table

contains data of all the other “things” as well. So the same information can have

two very different representations, when stored inside objects or inside a database.

Perhaps surprisingly, this dilemma can be solved easily. Objects can be mapped to

tables, so a relational database can be used to store the data contained in objects.

The interesting fact is, that this mapping process can be fully automated. When

designing an application, the developer can think in terms of objects, and some

tool derives the database schema to store these objects in an RDBMS.

9



book

title string

author string

pages int

isbn string

book

oid title author pages isbn

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Table 3.1: Mapping a class to a table

3.2 Mapping Objects to Tables

The process of transforming a class description into a database schema is straight

forward. For simple objects, that contain only atomic member variables, the class

is represented by a table with one column for each attribute. Each object is then

stored as one row in the table. In addition, each row, i.e. each object, gets an

additional field called object identifier. This is a numerical value, which identifies

each object uniquely in the table. In other words: It is the primary key of this table.

This OID will be used later to reference objects. Table 3.1 shows a class description

and the corresponding table.

As one book may have several authors, the object shown in Table 3.2 is more

realistic. Instead of one author, an array of authors is associated with each book.

The corresponding description of such a one-to-many relation within a database is a

seperate author table, which is connected to the book table via keys. The column

book_oid contains the object identifier of the corresponding book. To reconstruct a

book object from the database, one row from the book table and all rows from the

author table containing the appropriate book identifier have to be read.

As one author may have written several books, an even more realistic description

book

title string

authors array of string

pages int

isbn string

book

oid title pages isbn

. . . . . . . . . . . .

. . . . . . . . . . . .

author

book_oid author

. . . . . .

. . . . . .

Table 3.2: Mapping arrays to external tables

10



book

title string

authors array of author

pages int

isbn string

author

name string

country string

DOB date

DOD date

book

oid title pages isbn

. . . . . . . . . . . .

. . . . . . . . . . . .

book_author

book_oid author_oid

. . . . . .

. . . . . .

author

oid name country DOB DOD

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Table 3.3: Describing many-to-many relations

is the one shown in Table 3.3. The authors are modeled as a seperate class, with

some additional information. The book object now contains an array of author

objects instead of strings. This allows one object to be used in several books, which

also reduces the redundancy of the stored data. To describe such a many-to-many

relation in a database, three tables are necessary. Again, the objects (books and

authors) and their atomic attributes are transformed to tables. An additional table

connects books and authors by matching book OIDs with author OIDs.

3.3 Accessing Relational Databases with Perl

The methods from Section 2.2 are easily extended to communicate with a rela-

tional database. Instead of a simple constructor new, two new methods are in-

troduced to instantiate objects. Two cases have to be covered: Creating a new

object from scratch and creating a new object based on data already stored in the

database.

To create a brand-new object, a method create is used. It is similar to the new
constructor shown above, but as a side effect, the data is written to the database.

To uniquely distinguish the object, a new object identifier has to be assigned. The

createmethod from the person class is shown in Table 3.4. This and all following

examples assume, that a global DBI handle $dbh is available, i.e. the connection

to the database has already been established.

11



sub create {
my ($class, $name, $dob) = @_;

# fetch a new object identifier
my $id = newid(’person’);

# store the data inside the database
$dbh->do(qq {

INSERT INTO person (id, name, dob) VALUES ($id, $name, $dob)
});

# create the object
$person = { id => $id,

name => $name,
dob => $dob };

bless($person, $class);
return($person);

}

Table 3.4: Creating and storing a new object

To reconstruct an object from data already in the database, the method init is

used. Its usage was shown very briefly in Section 2.1. This constructor takes as

argument the object identifier that was assigned to the object when it was created

by the create method. Table 3.5 shows the implementation. More constructors

are possible and usually necessary. Sometimes it is handy to instantiate a person

object based on the name of the person instead of its OID.

The methods for accessing the attributes are extended, too. In Table 3.6, the

method name now writes a new name directly back to the database. In this ap-

proach, the data is read once from the database and written back immediately,

every time an attribute is updated. Other methods are possible:

• The data can be read every time, when it is accessed. Instead of storing

the attributes inside the object, each call of a method like name queries the

database. This will decrease the performance, but can ensure correct data,
when concurrent applications access the database.

• Writing back the data can be defered until the object is destroyed. The

destructor of the object is responsible for storing all attributes inside the

RDBMS. This may increase the performance, depending on how often data

is changed within one single object. But changes may get lost, e.g. if the

application crashes and the destructor is not executed.

12



sub init {
my ($class, $id) = @_;

# fetch all data associated with the given ID
$sth = $dbh->prepare(qq {

SELECT name, dob FROM person WHERE id=$id
});
$sth->execute;
($name, $dob) = $sth->fetchrow_array;
$sth->finish;

# create the object
$person = { id => $id,

name => $name,
dob => $dob };

bless($person, $class);
return($person);

}

Table 3.5: Reconstructing an object from the database

sub name {
my ($self, $name) = @_;
if (defined($name)) {

$id = $self->id;
$sth = $dbh->prepare(qq {

UPDATE person SET name=? WHERE id=$id
});
$sth->execute($name);
$sth->finish;
$self->{name} = $name;

}
return($self->{name});

}

Table 3.6: Database aware access to an attribute

13



4 Code generation with O2DBI

4.1 A simple Example

Using the methods shown in the two previous chapters, it is easy to create a set

of persistent objects. This will yield a collection of modules that share a lot of

common or similar code. All the modules contain the same types of constructors
and methods to access their member variables. Obviously, generating this code

automatically would be a great benefit. This would save the programmer from a

lot of tedious and error prone typing.

O2DBI is a tool to generate code from an abstract specification. The object schema

is given as a Perl program, which generates all modules and the necessary SQL

commands to initialize the database. Table 4.1 shows the description of the author

class from Table 3.3.

When executing this script, O2DBI generates several files:

• For each class, a module with the shown standard methods is generated. In

the example above, one file called author.pm is created. It is placed inside

a directory simpleDB, which is the name of the project, as given in the last

line of the script. It can be included in Perl programs with

use simpleDB::author;

• For each class, a second file is generated by prepending _add to the name of

the class. In this example it is called author_add.pm. Initially, this file is

empty, except for a few comment lines. The developer can use this file to add

more methods to the class. These methods cannot be described in an abstract

way, so they have to be “hand coded”. author.pm reads author_add.pm,

so all methods defined in this file are members of the class.

When the O2DBI script is executed again, all the main class modules are

overwritten, to reflect changes in the object schema. But none of the addi-

tional modules are regenerated, if they already exist. The developer may only

change code inside the _add.pm modules, not the base modules.

14



use O2DBI;

%schema = ( ’author’ => {
members => {

’name’ => ’CHAR(40)’,
’country’ => ’CHAR(40)’,
’dob’ => ’DATE’,
’dod’ => ’DATE’
},

creator => [ ’name’, ’country’, ’dob’ ],
constructors => [

[ ’name’ ]
]

}
);

O2DBI->deploy(\%schema, ’simpleDB’, ’postgres’);

Table 4.1: The author class in O2DBI

• A file DBMS.pm is placed inside the project directory. This file opens a con-

nection to the database and provides a DBI database handle. It is used by the

class modules internally, it must not be used inside any application directly.

• A file with the necessary SQL statements to initialize the database is gener-

ated. In this example, it is called simpleDB.sql. It creates all the necessary

tables and defines indexes where appropriate. The database administrator has

to create a database simpleDB and execute these statements.

4.2 Using O2DBI

To describe the object schema for O2DBI, all class definitions are collected inside a

hash. The keys of this hash are the names of the classes. Table 4.2 shows this part

of the code to describe a more complex schema.

The value for each key is a hash reference, denoted by the curly braces. Each of

these hashes contains three keys: members, creator and constructors. The

contents of these keys define the member variables, the parameters of the create
method, and the available constructors to instantiate objects based on data inside

the database.

15



%schema = ( ’author’ => {
...

},
’book’ => {

...
},
’cd’ => {

...
}

);

Table 4.2: Defining several classes

The value of the members key is another hash reference. Each key in this hash

is a member variable of the class. The value is the type of the variable. It has

to be a valid SQL type, that will be used later for the appropriate CREATE TABLE
statement. Two special entries for keys and values are allowed:

• The member name may be prefixed with an @. Instead of an atomic variable,
this denotes a list (or array, hence the perlish “at” sign) of the given type.

O2DBI then creates an additional table, as shown in Table 3.2.

• Instead of an SQL type, the value may be “ref on”, followed by the name of

an object. This describes a reference to another object.

Both extensions may be mixed, i.e. one can have a list of references to objects.
Table 4.3 shows all possible combinations. The fourth entry is used to describe the

situation shown in Table 3.3.

The value of the creator key is a list reference. This list consists of those at-

tributes, that are passed to the create method. The attributes are usually those

%schema = ( ’book’ => {
members => {

’title’ => ’CHAR(40)’,
’@keyword’ => ’CHAR(40)’,
’publisher’ => ’ref on publisher’,
’@author’ => ’ref on author’

}
);

Table 4.3: Types of members

16



known at creation time of the object. Certain other attributes, e.g. “date of death”,

are not necessarily known when the object is created. Instead of passing an empty

or null value, they are not passed to the constructor.

The value of the constructors key is a reference to a list of lists (i.e. a list of
references on lists). Each list defines a constructor, similar to the init-method

shown in Table 3.5. But instead of the object identifier, the constructor expects the

attributes given in the list. In the example in Table 4.2, a method initby_name
would be generated, that returns the appropriate author object to a given name.

This implies that the name has to be unique. This is enforced by creating a unique

index on the corresponding table.

To convert the object schema into real code, O2DBI’s only method is used, deploy.

It is called with a reference to the hash, a project name and the type of database.

All modules are written to a directory with the same name as the project. If this

directory does not exist, it is created. O2DBI currently supports “postgres” and
“mysql” as types of database.

4.3 Modules generated by O2DBI

Each module generated by O2DBI has the same structure. In the following descrip-

tion, these symbolic names are used:

BaseName The base name of the project, i.e. the name of the database and the

name of the directory, to which all modules are written.

class The name of the class.

$obj An instance of an object from that class.

$arg An argument passed to a method.

attr The name of an attribute.

Each module contains these methods:

$object = BaseName::class->create($arg1, $arg2, $arg3)
A new object is created and inserted into the database. The arguments are

those specified by the create directive in the description file.

$object = BaseName::class->init_id($id)
A new object is instantiated, based on data read from the database. The object

is identified by the OID $id.

17



$hashref = BaseName::class->fetchallby_id
All objects of the class are instantiated and returned as a hash reference. The

key to the hash is the object identifier, the value is the corresponding object.

$object = BaseName::class->init_attr($arg)
$object = BaseName::class->init_attr1_attr2($arg1, $arg2)

An object is instantiated, based on the passed attributes. For each element of

the creator list, an appropriate method is generated. If a list contains more

than one attribute, their names are concatenated by underscores.

$hashref = BaseName::class->fetchallby_attr
$hashref = BaseName::class->fetchallby_attr1_attr2

Similar to fetchallby_id, for each constructor a method is generated, that

returns a hash reference with all objects. The keys to this hash are the values

of the attributes, concatenated by commas.

$listref = BaseName::class->fetchall
All objects are instantiated and returned, but this time as a list reference. If
the order of the objects is not relevant, this method may be used instead of

one of the fetchallby_ methods.

$listref = BaseName::class->fetchbySQL($whereclause)
In a lot of cases, a set of objects is needed, based on certain selection criteria.
This can be done by using this method. As argument, a fragment of SQL code
is expected, that is a legal WHERE clause in a SELECT statement. For example

$listref = simpleDB::person->fetchbySQL(’age>=20 AND age<=45’);

selects all persons with an age between 20 and 45 years, assuming that the

person class has an attribute age. The SQL code has to be valid, otherwise

the DBMS will return an error. Only values from the corresponding table

(person in this case) can be tested in the clause.

$object->delete
The data associated with the object is deleted from the database and the

object is destroyed.

$id = $object->id
The object identifier of the object is returned.

$value = $object->attr
$retvalue = $object->attr($newvalue)

For each attribute, a corresponding method is generated. The method can

be used to read or write the value of the attribute. If the method is called

without an argument, the current value is returned. If an argument is given,

the attribute is set to this new value. The database is updated immediately.

To check for possible errors, either the new value or an error code is returned.

18



$retvalue = $object->mset({ attr1 => $value1, attr2 => $value2})
Each time the value of an attribute is changed, the database is updated. If sev-

eral attributes of the same object are changed at the same time, this results in

a number of subsequent connections to the database. To reduce the number

of connections, these method calls can be accumulated with this method. It

expects a hash reference as argument, with the attributes as keys, pointing to

the new values.

4.4 Using the modules generated by O2DBI

Table 4.4 shows a short Perl script that uses the author class from Table 4.1. Af-

ter including the module with the use statement, all methods from the class are

available. First, a new object is created and written to the database. The object

identifier that was assigned to this object is printed. Next, the object with the OID

1234 is reinstantiated from the database and the name of that author is shown.

Next, all authors are fetched from the database, and the stored data is printed.

Most of the methods return the value “-1” to indicate an error. Table 4.5 shows the

recommended code to check if e.g. the init method succeeded. The programmer

should always check if the constructors returned an object or an error code.

19



use simpleDB::author;

$joe = simpleDB::author->create(’Joe User’,
’Germany’,
’1.1.1970’);

print "Joe User was assigned id ".$joe->id."\n";

$someone = simpleDB::author->init_id(1234);
print "fetched author 1234, which is ".$someone->name."\n";

foreach $author (@{simpleDB::author->fetchall}) {
$name = $author->name;
$country = $author->country;
$dob = $author->dob;
$dod = $autor->dod;
print "$name from $country, born $dob, deceased $dod\n";

}

Table 4.4: Usage of the author class

$joe = simpleDB::author->init_id(1234);
if ($joe < 0) {

die "can’t initialize author object for oid 1234\n";
}
$name = $joe->name;

Table 4.5: Checking the return value of a method

20



5 Current limitations and future
enhancements

In the current version of O2DBI, several features described in this paper are not

present or not fully working. O2DBI is useful for creating prototypes of software

very fast, but some aspects of the current design limit its useabilty for large, real

world applications. Of course the author intends to overcome these limitations

and make O2DBI suitable for more complex problems. Feedback concerning this,

and every other aspect of O2DBI is always welcome.

5.1 Things missing from the implementation

Some of the datatypes described in Section 4.2 are not implemented. Currently,

O2DBI only supports atomic types. Neither lists of values nor references to other

objects are available. O2DBI can parse the shown notation, and the generated ta-

bles are correct (including necessary normalization steps), but the associated meth-

ods are not working yet. Part of this problem can be solved rather easily: Instead of

using “ref on object”, use “INT”. Instead of an object, the associated method

then expects the object identifier of the referenced object. So, instead of writing

$publisher1 = $book1->publisher;
$book2->publisher($publisher2);

one can use the following statements:

$publisher1 = simpleDB::publisher->init_id($book1->publisher);
$book2->publisher($publisher2->id);

This is a slightly more verbose, and the error checking should be improved, but it

works.

21



’cd’ => [
members => {

’title’ => ’CHAR(40)’,
’@songs’ => {

’title’ => ’CHAR(40)’,
’index’ => ’INT’,
’length’ => ’INT’

}
}

Table 5.1: A struct-like data type

Lists are not working at all. Currently, O2DBI understands another notation, but

again, the generated methods do not support it. One can define struct-like fields,

as shown in Table 5.1. These can even be nested. O2DBI performs all the required

normalizations, but it is not possible to access these tables with the generated

methods.

Access to the database should be nearly invisible to the application programmer

and the user. The DBMS.pm module provides a database handle, that is used by
all class modules. No additional login information or passwords may be used to

create this handle. In certain situations, e.g. when dealing with sensible data, this

may be impossible due to security regulations.

5.2 Plans for the future

Of course, all current limitations should be removed within the next releases of

O2DBI. Other enhancements are possible and desirable:

• Caching of objects. Once an object is inited from the database, further

initializations should use it instead of rereading the data from the database.

• Better support for more databases. Currently, PostgreSQL and MySQL are sup-

ported. The generated SQL code can be made more portable among different

RDBMSs.

• Supporting other languages. Although the object schema is currently defined

as a Perl script, this does not limit the generated code to be Perl. Modules or

classes for other languages can be generated, e.g. Java or Python.

22



• Defining the object schema language independantly from the programming

language. In the very early stages of O2DBI, the schema was defined by an

XML document. This was dropped in order to concentrate on the real func-

tion of O2DBI, and not to be distracted by the parser. Once the syntax for

the object schema has settled, describing it in XML again will be an easy
transition.

23



Bibliography

[1] Scott W. Ambler. The Design of a Robust Persistence Layer for Relational
Databases. White paper, AmbySoft Inc., 2000.

http://www.ambysoft.com/persistenceLayer.html

[2] Scott W. Ambler. Mapping Objects To Relational Databases. White paper, Am-

bySoft Inc., 2000.

http://www.AmbySoft.com/mappingObjects.html

[3] Daniela Bartels. DNAControl – Entwicklung einer Management-Software für den

DNA-Sequenzierservice der Universität Bielefeld. Master’s thesis, University of

Bielefeld, 2002.

[4] Chris J. Date. An Introduction to Database Systems. Addison-Wesley, 4th edi-

tion, 1987.

[5] Alexander Goesmann and Martin Bennemann. PathFinder – Ein integriertes

System zur Rekonstruktion und Analyse von Stoffwechselwegen auf der Grundlage

von Sequenzannotationsdaten. Master’s thesis, University of Bielefeld, 2000.

[6] Alexander Goesmann, Martin Haubrock, Folker Meyer, Jörn Kalinowski and

Robert Giegerich. PathFinder: reconstruction and dynamic visualization of

metabolic pathways. Bioinformatics, 18:124–129, 2002.

[7] Wolfgang Keller. Mapping Objects to Tables - A Pattern Language. In Frank

Buschmann and Dirk Riehle, editors, Proceedings of the 1997 European Pattern

Languages of Programming Conference. 1997.

http://www.objectarchitects.de/arcus/publicat/mapo2t.ps.gz

[8] Folker Meyer. GENDB – A second generation genome annotation system. Ph.D.

thesis, University of Bielefeld, 2002.

[9] Larry Wall, Tom Christiansen and Jon Orwant. Programming Perl. O’Reilly, 3rd

edition, 2000.

[10] Andreas Wilke. Datenmanagement für Massenspektrometrie-Experimente. Mas-

ter’s thesis, University of Bielefeld, 2002.

24



Bisher erschienene Reports an der Technischen Fakultät
Stand: 2002

94-01 Modular Properties of Composable Term Rewriting Systems
(Enno Ohlebusch)

94-02 Analysis and Applications of the Direct Cascade Architecture
(Enno Littmann, Helge Ritter)

94-03 From Ukkonen to McCreight and Weiner: A Unifying View of Linear-Time Suffix
Tree Construction
(Robert Giegerich, Stefan Kurtz)

94-04 Die Verwendung unscharfer Maße zur Korrespondenzanalyse in Stereo
Farbbildern
(André Wolfram, Alois Knoll)

94-05 Searching Correspondences in Colour Stereo Images – Recent Results Using the
Fuzzy Integral
(André Wolfram, Alois Knoll)

94-06 A Basic Semantics for Computer Arithmetic
(Markus Freericks, A. Fauth, Alois Knoll)

94-07 Reverse Restructuring: Another Method of Solving Algebraic Equations
(Bernd Bütow, Stephan Thesing)

95-01 PaNaMa User Manual V1.3
(Bernd Bütow, Stephan Thesing)

95-02 Computer Based Training-Software: ein interaktiver Sequenzierkurs
(Frank Meier, Garrit Skrock, Robert Giegerich)

95-03 Fundamental Algorithms for a Declarative Pattern Matching System
(Stefan Kurtz)

95-04 On the Equivalence of E-Pattern Languages
(Enno Ohlebusch, Esko Ukkonen)

96-01 Static and Dynamic Filtering Methods for Approximate String Matching
(Robert Giegerich, Frank Hischke, Stefan Kurtz, Enno Ohlebusch)

96-02 Instructing Cooperating Assembly Robots through Situated Dialogues in Natural
Language
(Alois Knoll, Bernd Hildebrand, Jianwei Zhang)

96-03 Correctness in System Engineering
(Peter Ladkin)



96-04 An Algebraic Approach to General Boolean Constraint Problems
(Hans-Werner Güsgen, Peter Ladkin)

96-05 Future University Computing Resources
(Peter Ladkin)

96-06 Lazy Cache Implements Complete Cache
(Peter Ladkin)

96-07 Formal but Lively Buffers in TLA+
(Peter Ladkin)

96-08 The X-31 and A320 Warsaw Crashes: Whodunnit?
(Peter Ladkin)

96-09 Reasons and Causes
(Peter Ladkin)

96-10 Comments on Confusing Conversation at Cali
(Dafydd Gibbon, Peter Ladkin)

96-11 On Needing Models
(Peter Ladkin)

96-12 Formalism Helps in Describing Accidents
(Peter Ladkin)

96-13 Explaining Failure with Tense Logic
(Peter Ladkin)

96-14 Some Dubious Theses in the Tense Logic of Accidents
(Peter Ladkin)

96-15 A Note on a Note on a Lemma of Ladkin
(Peter Ladkin)

96-16 News and Comment on the AeroPeru B757 Accident
(Peter Ladkin)

97-01 Analysing the Cali Accident With a WB-Graph
(Peter Ladkin)

97-02 Divide-and-Conquer Multiple Sequence Alignment
(Jens Stoye)

97-03 A System for the Content-Based Retrieval of Textual and Non-Textual
Documents Based on Natural Language Queries
(Alois Knoll, Ingo Glöckner, Hermann Helbig, Sven Hartrumpf)



97-04 Rose: Generating Sequence Families
(Jens Stoye, Dirk Evers, Folker Meyer)

97-05 Fuzzy Quantifiers for Processing Natural Language Queries in Content-Based
Multimedia Retrieval Systems
(Ingo Glöckner, Alois Knoll)

97-06 DFS – An Axiomatic Approach to Fuzzy Quantification
(Ingo Glöckner)

98-01 Kognitive Aspekte bei der Realisierung eines robusten Robotersystems für
Konstruktionsaufgaben
(Alois Knoll, Bernd Hildebrandt)

98-02 A Declarative Approach to the Development of Dynamic Programming
Algorithms, applied to RNA Folding
(Robert Giegerich)

98-03 Reducing the Space Requirement of Suffix Trees
(Stefan Kurtz)

99-01 Entscheidungskalküle
(Axel Saalbach, Christian Lange, Sascha Wendt, Mathias Katzer, Guillaume
Dubois, Michael Höhl, Oliver Kuhn, Sven Wachsmuth, Gerhard Sagerer)

99-02 Transforming Conditional Rewrite Systems with Extra Variables into
Unconditional Systems
(Enno Ohlebusch)

99-03 A Framework for Evaluating Approaches to Fuzzy Quantification
(Ingo Glöckner)

99-04 Towards Evaluation of Docking Hypotheses using elastic Matching
(Steffen Neumann, Stefan Posch, Gerhard Sagerer)

99-05 A Systematic Approach to Dynamic Programming in Bioinformatics. Part 1 and
2: Sequence Comparison and RNA Folding
(Robert Giegerich)

99-06 Autonomie für situierte Robotersysteme – Stand und Entwicklungslinien
(Alois Knoll)

2000-01 Advances in DFS Theory
(Ingo Glöckner)

2000-02 A Broad Class of DFS Models
(Ingo Glöckner)



2000-03 An Axiomatic Theory of Fuzzy Quantifiers in Natural Languages
(Ingo Glöckner)

2000-04 Affix Trees
(Jens Stoye)

2000-05 Computergestützte Auswertung von Spektren organischer Verbindungen
(Annika Büscher, Michaela Hohenner, Sascha Wendt, Markus Wiesecke, Frank
Zöllner, Arne Wegener, Frank Bettenworth, Thorsten Twellmann, Jan
Kleinlützum, Mathias Katzer, Sven Wachsmuth, Gerhard Sagerer)

2000-06 The Syntax and Semantics of a Language for Describing Complex Patterns in
Biological Sequences
(Dirk Strothmann, Stefan Kurtz, Stefan Gräf, Gerhard Steger)

2000-07 Systematic Dynamic Programming in Bioinformatics (ISMB 2000 Tutorial Notes)
(Dirk J. Evers, Robert Giegerich)

2000-08 Difficulties when Aligning Structure Based RNAs with the Standard Edit Distance
Method
(Christian Büschking)

2001-01 Standard Models of Fuzzy Quantification
(Ingo Glöckner)

2001-02 Causal System Analysis
(Peter B. Ladkin)

2001-03 A Rotamer Library for Protein-Protein Docking Using Energy Calculations and
Statistics
(Kerstin Koch, Frank Zöllner, Gerhard Sagerer)

2001-04 Eine asynchrone Implementierung eines Microprozessors auf einem FPGA
(Marco Balke, Thomas Dettbarn, Robert Homann, Sebastian Jaenicke, Tim
Köhler, Henning Mersch, Holger Weiss)

2001-05 Hierarchical Termination Revisited
(Enno Ohlebusch)


