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Abstract— In this paper we investigate how intrinsic cam-
era calibration and hand-eye calibration can be performed
on a robot vision system using the simplest possible motions
and a planar calibration object. The standard methods on
plane-based camera calibration are extended with theory
on how to use pure translational motions for the intrinsic
calibration and we see how hand-eye calibration can be
performed within the same framework. The calibration of
two cameras in a stereo head configuration is shown to be
an interesting application of the developed theory. Results of
experiments on a real robot vision system are presented.

I. INTRODUCTION

In the area of robot vision it is often the case that we
want to attach a camera to the end-effector, or hand, of a
robot so that the camera can work as visual sensor for the
robot. By applying computer vision techniques this sensor
can then be used to aid the robot in performing specific
tasks such as finding and grasping objects. To be able
to use the camera in this way we need to know the so-
called intrinsic parameters of the camera. These include
e.g. the focal length and the aspect ratio, i.e. the ratio
between the width and the height of the imaging elements
in the camera. The calculation of these parameters is called
intrinsic camera calibration.

Other essential information that needs to be obtained
is the orientation and position of the camera in relation
to the robot hand. The transformation between the robot
hand coordinate system and the camera coordinate system
is called the hand-eye transformation and the task of
calculating it is called hand-eye calibration.

Traditionally both the intrinsic camera calibration and
the hand-eye calibration has been performed using a three-
dimensional reference object, or calibration object, with
known metric structure, often with some sort of grid
pattern. See e.g. the book by Faugeras [2] for information
on this kind of calibration. In recent years, so-called self-
calibration methods has been common, cf. [4], [5]. These
methods do not need a special calibration object and
rely only on the rigidity of the scene in view. However,
in applications requiring high precision measurements
in performing their tasks, e.g. in most industrial vision
systems, the use of a carefully constructed calibration
grid is often most reliable. Since very accurate knowledge

of the relative 3D coordinates of points on the object is
needed the construction of the grid is greatly simplified if
a two dimensional planar object can be used. Zhang [13]
and Sturm and Maybank [10] has independently developed
principally identical algorithms for calibration from a
planar object using two homogeneous linear constraints on
the matrix describing the image of the so-called absolute
conic, cf. [3]. These constraints arises from the estimated
homography (2D projective transformation) from the ob-
ject plane to the image plane at each position of the
camera. By solving the linear system built up from these
constraints and by a subsequent Cholesky factorization of
the obtained matrix, the intrinsic parameters of the camera
are obtained.

Concerning hand-eye calibration, early references on
methods using a calibration object are Tsai and Lenz [12]
and Shiu and Ahmad [9]. These methods are applicable
both using a two- and three-dimensional calibration object
since the calculation of the relative camera orientation and
position, which is a subtask in these hand-eye calibration
techniques, can be performed using any intrinsic camera
calibration method which uses a calibration object. Meth-
ods for solving the hand-eye calibration problem without
the use of a calibration object has also emerged. Three
quite different approaches to this can be found in Andreff
et.al. [1], Ma [6] and Malm et.al. [7]. The latter two
of these papers also deals with the intrinsic calibration
problem. However, as mentioned above, for high precision
demands a method based on using a special calibration
object is usually more reliable.

In this paper we will make extensions to the theory on
plane-based intrinsic camera calibration and fit a hand-
eye calibration algorithm into the same framework. Our
ambition is to try to use as simple motions of the robot
hand as possible so that the method can be applied to
robot vision systems with a reduced number of degrees of
freedom. For the intrinsic calibration and the orientation
calculation in the hand-eye calibration we will show that
it is sufficient to use images where the relative orientation
between the object and camera does not change, i.e. the
motions of the camera between obtaining the images are
pure translations. This case is degenerate in the formula-
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tions of Zhang [13] and Sturm and Maybank [10]. Using
only the results in these two papers a new image does not
give any new constraints on the calibration parameters if
the motion has been purely translational. However, using
the knowledge that the motion is a pure translation we
can set up some additional constraints that fits nicely with
the previously developed theory. It will be shown that
two non-parallel translations will be sufficient to calculate
the intrinsic parameters and the orientation of the camera
relative to the robot hand.

The classic camera calibration paper by Tsai [11] also
includes an algorithm for calibration from a planar ob-
ject using translational motions. However, the technique
presented here is simpler and more adaptable to different
amounts of knowledge of the translational motion. Zhang
gives a hint in his technical report [14] that an extension
of the standard plane-based calibration technique to deal
with translational motions is possible and that extension is
fully developed here, producing new constraints that fits
nicely with the constraints in the theory from [13] and
[10]. The development of the theory in this paper was
started in [8].

A special application of the calibration theory presented
in this paper is the calibration of a stereo head con-
figuration of two cameras. The fact that both cameras
perform the same kind of translational motion can be
easily used to make an accurate simultaneous calibration
of the two cameras and to calculate the relative orientation
and translation of the cameras.

For completion, we also discuss how to find the position
part of the hand-eye calibration. To this end we have to
use rotational motions of the robot hand. However, two
simple rotations around e.g. the x- and z-axes in the robot
hand coordinate system will be sufficient. This part of
the calibration algorithm uses the pose of the camera in
relation to the calibration object, which is obtainable from
the estimated homographies after the camera has been
calibrated.

We start in Section II by explaining the camera model
in use and by briefly deriving the standard constraints
for plane-based intrinsic calibration. Then, in Section
III, the constraints on the intrinsic parameters appearing
when using pure translational motions are presented. We
continue in Section IV by discussing the special case of
calibrating a stereo head using translational motions. In
Section V we then present a simple and straightforward
extension of the theory to cover also hand-eye calibration.
In Section VI results of experiments on a real robot vision
system are presented and the paper is closed in Section
VII by some conclusions.

II. PRELIMINARIES

The perspective pinhole camera is used as our pro-
jection model. That is, λ~x = P~X , where ~x = (x,y,1) is

the 2D homogeneous coordinates for the image point,
~X = (X ,Y,Z,1) is the 3D homogeneous coordinates for
the object point and λ is an arbitrary scale factor. P is the
3×4 projection matrix that can be decomposed as

P = K[R | t ] =





α γ u0

0 β v0

0 0 1



 [R | t ] . (1)

Here, β denotes the focal length, α
β and γ

β the aspect
ratio and the skew, respectively, and (u0,v0) the principal
point. These are called the intrinsic parameters, and K is
called the intrinsic camera matrix. R describes the orien-
tation of the camera in relation to the world coordinate
system and t the translation of the camera from the origin
of this system, expressed in the coordinate system of the
camera.

In this section we will concentrate on describing the
constraints appearing when calibrating a camera from
a planar object using general positions and orientations
of the camera. The orientation and origin of the world
coordinate system can be chosen so that the plane of the
calibration object has Z = 0. We then get

λ
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 = K[ r1 r2 r3 t ]
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= K[ r1 r2 t ]
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 , (2)

where ri is the i:th column of R. In this way the object
point is related to the corresponding image point by a
homography H:
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 = H





X
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1



 , H =
1
λ

K[ r1 r2 t ] . (3)

The homography H can be estimated for each image, cf.
[13] for details. Let hi be the i:th column in H. We then
have

[h1 h2 h3 ] =
1
λ

K[ r1 r2 t ] (4)

and

r1 = λK−1h1 (5)

r2 = λK−1h2 . (6)

Introduce ω = K−T K−1. Since r1 and r2 are orthonormal,
the following constraints, involving h1, h2 and ω , can be
derived from (5) and (6).

rT
1 r1 = λ 2h1

T K−T K−1h1 = λ 2h1
T ωh1 = 1 (7)

rT
2 r2 = λ 2h2

T K−T K−1h2 = λ 2h2
T ωh2 = 1 (8)

rT
1 r2 = λ 2h1

T K−T K−1h2 = λ 2h1
T ωh2 = 0 (9)

These equations could of course be simplified so that the
unknown scale factor λ is excluded:

h1
T ωh2 = 0 (10)

h1
T ωh1 = h2

T ωh2 (11)
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The matrix ω describes the image of the absolute conic,
cf. [3], and we now have two linear constraints on this
symmetric matrix from each different image of the plane.
By using three different views of the plane, obtained
using different orientations of the camera, we have enough
constraints to solve for ω . The intrinsic camera matrix K
can then be obtained by Cholesky factorization and matrix
inversion.

III. INTRINSIC CALIBRATION FROM
TRANSLATIONS

In this paper we concentrate on the case when the mo-
tion of the camera is pure translational between the images
obtained. Let H ′ be the estimated homography from the
object plane to the image plane after the translation. If
H, in equation 3, is the estimated homography before the
translation H ′ can be written as

H ′ =
1
λ ′

K[ r1 r2 t +Rt ′ ] = (12)

=
1
λ ′

K[ r1 r2 t + t ′1r1 + t ′2r2 + t ′3r3 ] , (13)

where t ′ is the translation vector expressed in the coor-
dinate system of the calibration object, i.e. in the world
coordinate system. The vector t is the translation between
the camera and the calibration object in the initial position
before the motion, expressed in the camera coordinate
system. This vector will be cancelled out early in the
calculations.

Note that K and R are unchanged from before the
translation and that the first two columns in H ′ are parallel
to the first two columns in H. If we have multiple
images obtained with the same orientation of the camera
we can estimate the homographies from these images
simultaneously and set the first two columns equal for
every estimated homography, i.e. the scale factors becomes
equal, λ ′ = λ . This drastically reduces the number of
parameters to be estimated and makes the preceding
calculations more accurate. In the continuation there will
thus only be one scale factor, λ , present.

Let us have a look at the third columns in the matrices
H and H ′, denoted by h3 and h′3, respectively.

h3 =
1
λ

Kt , (14)

h′3 =
1
λ

K(t + t ′1r1 + t ′2r2 + t ′3r3) . (15)

Let

ĥ3 = h′3 −h3 . (16)

Then, using (4),

ĥ3 =
1
λ

K(t ′1r1 + t ′2r2 + t ′3r3) = t ′1h1 + t ′2h2 +
1
λ

Kt ′3r3 (17)

and subsequently

r3 =
λ
t ′3

K−1(ĥ3 − t ′1h1 − t ′2h2) . (18)

In search for new calibration constraints containing ĥ3 and
t ′, scalar products including r3, r1 and r2 are written down.
Taking the scalar product of the orthonormal vectors r1

and r3 and using (7) and (9) gives

rT
1 r3 =

λ 2

t ′3
hT

1 K−T K−1(ĥ3 − t ′1h1 − t ′2h2)

=
λ 2

t ′3
(hT

1 ω ĥ3 − t ′1hT
1 ωh1 − t ′2hT

1 ωh2)

=
λ 2

t ′3
(hT

1 ω ĥ3 −
t ′1
λ 2 ) = 0 .

So

hT
1 ω ĥ3 =

t ′1
λ 2 . (19)

Similarly, the scalar product of r2 and r3 gives

hT
2 ω ĥ3 =

t ′2
λ 2 . (20)

It remains to examine the scalar product of r3 with itself
which should be equal to |r3|

2 = 1,

rT
3 r3 =

λ 2

t ′3
2 (ĥT

3 − t ′1hT
1 − t ′2hT

2 )ω(ĥ3 − t ′1h1 − t ′2h2)

=
λ 2

t ′3
2 (ĥT

3 ω ĥ3 −
t ′1

2

λ 2 −
t ′2

2

λ 2 ) = 1 .

This gives

ĥT
3 ω ĥ3 =

|t ′|2

λ 2 . (21)

By letting ω̄ = λ 2ω , the complete set of constraints arising
from two images of a plane when the camera undergoes
translation t ′ looks like

hT
1 ω̄h2 = 0 (22)

hT
1 ω̄h1 = 1 (23)

hT
2 ω̄h2 = 1 (24)

hT
1 ω̄ ĥ3 = t ′1 (25)

hT
2 ω̄ ĥ3 = t ′2 (26)

ĥT
3 ω̄ ĥ3 = |t ′|2 (27)

Since the first two columns in H are equal to the first
two columns in H ′ and since the scale factor λ is unknown
we get 11 known distinct elements from the two estimated
homographies. There are 6 degrees of freedom for the
pose of the camera in the first image. Therefore, there
are 11− 6 = 5 degrees of freedom left for the intrinsic
parameters and the translational motion. That is, if we
want to calculate all the 5 intrinsic parameters from one
translational motion t ′ we need to know both the length
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and the direction of the translation. If we e.g. set the skew
s = 0, the camera can be calibrated when the length of the
translation is unknown. If set s = 0 and the aspect ratio
γ = 1, we can calibrate the camera when the direction of
the translation is unknown but the length is known.

After solving the system (22)-(27) of equations in the
unknowns of ω̄ , t ′1, t ′2 and |t ′| we perform a Cholesky
factorization of ω̄ . Inverting and scaling the resulting
matrix gives us the intrinsic calibration matrix K. The
scale factor λ is easily found since K should have a 1
in the bottom right position.

In Section V-A we are going to calculate the orientation
of the camera in relation to the robot hand. To this end a
minimum of two translations of the robot hand are needed.
Let t ′′ be a second translation vector. From this translation
we get a new set of equations of the form (25)-(27). If ˆ̂h3

is the equivalent to ĥ3 for the second translation we, for
example, get the additional constraint

ˆ̂h3
T

ω̄ ˆ̂h3 = |t ′′|2 . (28)

Consequently, knowing the length of two translations we
get five constraints on ω̄ and the camera can be calibrated
up to skew s = 0. If we, in a robot vision system, can
control the motion of the robot hand it is a reasonable
assumption that the length of the translations in the robot
hand coordinate system are known. These lengths are
equal to the lengths of the translations, t ′ and t ′′, in the
coordinate system of the calibration object.

IV. CALIBRATION OF A STEREO HEAD

One useful application of the theory presented in this
paper is the calibration of a stereo head configuration of
two cameras. If we translate a stereo head, the translation
vector t ′ will be the same for both of the cameras in
the coordinate system of the calibration object. This can
be used to make a simultaneous calibration of the two
cameras.

Let a tilde represent the entities corresponding to the
second camera in the stereo head. Suppose we know the
length of the translation of the stereo head. Then the
following equations can be used to calibrate the cameras
up to skew s = 0. Observe that we here will remove the
bar over ω to make the equations more readable, but ω
and ω̃ will still include two (generally different) unknown

scale factors.

hT
1 ωh2 = 0 (29)

hT
1 ωh1 = 1 (30)

hT
2 ωh2 = 1 (31)

h̃T
1 ω̃ h̃2 = 0 (32)

h̃T
1 ω̃ h̃1 = 1 (33)

h̃T
2 ω̃ h̃2 = 1 (34)

hT
1 ω ĥ3− h̃T

1 ω̃ ˆ̃h3 = 0 (35)

hT
2 ω ĥ3− h̃T

2 ω̃ ˆ̃h3 = 0 (36)

ĥT
3 ω ĥ3 = |t ′|2 (37)

ˆ̃h3
T

ω̃ ˆ̃h3 = |t ′|2 (38)

Another situation could be that we know the direction of
the translation but the length of the translation is unknown.
For example, the calibration plane could be placed on the
floor and the stereo head be translated orthogonal to the
floor (t ′ = (0,0,1)). The last four equations in the last
listing should then be replaced by

hT
1 ω ĥ3 = t ′1 (39)

h̃T
1 ω̃ ˆ̃h3 = t ′1 (40)

hT
2 ω ĥ3 = t ′2 (41)

h̃T
2 ω̃ ˆ̃h3 = t ′2 (42)

ĥT
3 ω ĥ3 −

ˆ̃h3
T

ω̃ ˆ̃h3 = 0 (43)

After calculation of the camera matrices K and K̃, the
pose of the cameras, i.e. the orientation and position of the
cameras in relation to the calibration object, can easily be
obtained from relation (4). (The scale factors λ and λ̃ are
obtained during the calculation of K and K̃.) From this
the relative rotation and the relative translation between
the two cameras in the stereo head can be obtained and
the stereo head is then fully calibrated with respect to
the intrinsic parameters and the relative pose. This can be
done from one translation, minimally.

V. EXTENSION TO HAND-EYE CALIBRATION

A. Calculation of Camera Orientation

After calculating the intrinsic camera matrix K using
two translations of the robot hand, it is an easy task
to obtain the orientation of the the camera relative to
the robot hand coordinate system. Since the directions of
the translations in the robot hand coordinate system are
known, we just have to find the corresponding directions
in the camera coordinate system to be able to calculate
the rotational transformation Rhe between the robot hand
and the camera. If tc is a translation vector expressed in
the camera coordinate system, the estimated homography
after the translation, H ′, has the following form

H ′ =
1
λ

K[ r1 r2 t + tc ] . (44)
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Using the vector ĥ3 introduced earlier, cf. (16), we get

ĥ3 =
1
λ

Ktc . (45)

When calculating the translation directions in the camera
coordinate system the length of the translation vectors are
not of importance and tc can be written as

tc ∼ K−1ĥ3 , (46)

where ∼ means “proportional to”. Let t ′c and t ′′c be two
translation directions in the camera coordinate system
and t ′r and t ′′r be the corresponding translations in the
robot hand coordinate system. By constructing a third
corresponding pair using t ′′′c = t ′c × t ′′c and t ′′′r = t ′r × t ′′r
and normalizing all the vectors we can calculate Rhe for
example using

Rhe =
[

t ′c t ′′c t ′′′c

][

t ′r t ′′r t ′′′r

]−1
. (47)

Due to errors in the calculation of t ′c and t ′′c , the matrix
Rhe will not be exactly orthogonal. To find the nearest
orthogonal matrix in the Frobenius norm we can do a
singular value decomposition of Rhe, Rhe = USV T , and
choose R̄he = UV T as our rotation matrix.

B. Calculation of Camera Position

This paper primarily deals with the problem of cali-
brating a single camera or a stereo head in a robot hand-
eye configuration using translational motions. However,
to calculate the position of the camera in relation to
the robot hand motions also including a rotational part
have to be used. To make the presentation on hand-eye
calibration complete we here include a discussion on how
the position of the camera can be obtained after the camera
has been calibrated using the techniques described in the
earlier sections. In our quest to use as simple motions
and few degrees of freedom as possible, we choose to
use pure rotations of the robot hand. The theory presented
is the standard formulation of calculating the hand-eye
translation from e.g. [12] and [9] applied to the special
case of pure rotational motions.

Let

The =

[

Rhe the

01×3 1

]

(48)

be the hand-eye transformation. Here, the is the translation
vector that determines the position of the camera in
relation to the robot hand. It is this the vector that we
want to calculate. Let

Tc =

[

Rc tc
01×3 1

]

(49)

be the transformation of the camera pose under the rota-
tional motion of the robot hand. This transformation can
be calculated since the pose of the camera in relation to
the calibration plane can be obtained directly from the

Fig. 1. The robot used in the experiments.

estimated homograpies if the camera has been calibrated,
cf. equations (4)-(6). Let

Tr =

[

Rr 03×1

01×3 1

]

(50)

be the known transformation of the robot hand. Note that
Tr is a pure rotation. It is easy to convince oneself that
the following relation must hold for the current motion of
the robot hand, cf. [9].

TrThe = TheTc . (51)

Performing the matrix multiplication and examining
the rightmost columns, i.e. the translation part, in the
transformation matrices on both sides of the equality gives
the following relation

Rrthe = Rhetc + the . (52)

Rewriting this as

(Rr − I)the = Rhetc (53)

gives a linear system in the unknown translation vector the.
Unfortunately, since the 3× 3-matrix Rr − I has at most
rank 2, we cannot solve for the uniquely using one rotation
but by intuition this was not really to expect. However,
using two different pure rotations of the robot hand gives
us enough equations to solve for the. For example, one
rotation around the x-axis and one rotation around the
z-axis in the robot hand coordinate system should be
sufficient.

VI. EXPERIMENTS

The calibration algorithms presented in this paper has
been tested on a real robot vision system. The robot used
is an ABB IRB2003, cf. Figure 1, which is capable of
moving in all six degrees of freedom. The camera was
mounted by a ball head camera holder on the gripper (or
hand) of the robot so that the orientation of the camera
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could be changed with respect to the orientation of the
robot hand coordinate system. Figure 2 shows an image
from one of the used image sequences picturing the cali-
bration plane. In the following experiments approximately
ten images were used in each sequence.

Fig. 2. An image from one of the sequences used.

Experiments were performed for both a single camera
and a stereo head. In the stereo head case the head was
simulated by making two identical translational motions
starting from two different points in space using different
orientations and settings of the camera. The different
camera settings will, for simplicity, be referred to as
camera 1 and camera 2 in this section.

As a reference the cameras was calibrated using the
plane-based calibration technique by Zhang [13] for gen-
eral motions. The intrinsic calibration matrices K and K̃
for camera 1 and camera 2, respectively, calculated using
this method was

KZhang =





1063.1 −6.2 328.9
0 1094.0 247.9
0 0 1



 ,

and

K̃Zhang =





1089.6 −9.9 335.1
0 1126.4 231.9
0 0 1



 .

To test the practical performance of the theory presented
in this paper camera 1 was first translated straight down
orthogonally to the floor, i.e. t ′ = (0,0,1). By using
equations (22) to (26) the camera was calibrated with the
skew set to zero, s = 0. The following intrinsic camera
matrix was obtained

K(0,0,1) =





1019.4 0 339.3
0 1047.8 235.5
0 0 1



 .

The value on the focal length seems to be little bit
underestimated compared to KZhang. However, the result
using Zhangs method isn’t the ground truth and the result
obtained here probably still falls within the error bounds
of that method.

Camera 1 was also calibrated using a motion sequence
of the camera were the translation direction was changed
after each obtained image. Here we assumed that the
translation directions were unknown and instead used a
fixed length of the translations, i.e. equations (22) to (24)
and multiple instances of (27) was used for the calculation.
The following matrix was obtained

Kchange =





1030.7 0 337.4
0 1076.5 236.9
0 0 1



 .

Kchange is a bit closer to KZhang than K(0,0,1) which might
indicate a slightly more accurate result.

We also calibrated the stereo head configuration using
the theory presented in Section IV. The camera pair was
translated orthogonal to the floor, but this direction was
assumed to be unknown. Instead we used a known length
of the translations and applied equations (29) to (38). The
following two matrices were calculated:

Kstereo =





1058.7 0 353.2
0 1092.8 231.4
0 0 1



 ,

and

K̃stereo =





1091.8 0 310.1
0 1125.1 252.9
0 0 1



 .

The result is amazingly close to the reference method,
were general motions of the cameras were used, at least
w.r.t the focal length and the aspect ratio. The principal
point is a little bit further off, but still acceptable.

When, as in this last experiment, the length of the
translations is known and it is known that the translation
direction is unchanged through the whole image sequence
additional constraints can be put on the homography esti-
mation. Actually, by using the known translation lengths
in the estimation only 11 parameters in total needs to
estimated for all the homographies together. By putting
as much knowledge into the homography estimation as
possible the calibration algorithm becomes more stable
and accurate.

The relative orientation and translation of the cameras in
the stereo head configuration was also calculated following
the discussion at the end of Section IV. Also, the rotational
part of the hand-eye transformation was calculated for
camera 1, as discussed in Section V-A, by using the
motion sequence where the translational direction was
changed after each obtained image. The results has un-
fortunately not been compared to a reference method but
seemed reasonable by visual inspection.

VII. CONCLUSIONS

We have in this paper presented extensions to the stan-
dard theory on intrinsic camera calibration and hand-eye
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calibration using a planar calibration object. The vision
system considered is a robot with a camera attached to its
end-effector, or hand, of the robot arm.

The main objective has been to develop algorithms that
uses as simple motions of the robot hand as possible and
put small demands on the degrees of freedom of the robot
vision system. The resulting theory shows that we can
calculate the intrinsic parameters of the camera using a
single translational motion and a planar calibration object
if we know that the motion is pure translational and have
some additional information about the translation, such as
its length or direction. If two translations are used, the
intrinsic parameters and the orientation of the camera in
relation to the robot hand can be calculated if we know the
directions of the translations in the robot hand coordinate
system.

Using two additional rotational motions of the robot
hand the position of the camera in relation to the robot
hand can also be calculated. These rotations can for
example be chosen as simple rotations around the x- and
z-axis in the robot hand coordinate system.

The two cameras in a stereo head configuration can be
calibrated simultaneously up to skew s = 0 and the relative
translation and rotation of the two cameras can be obtained
using a single translational motion if we either know the
length or the direction of the translation.

An interesting setup is when the calibration plane is
placed on the floor and the robot hand is translated
orthogonally to the floor. Since we know the direction of
the translation in this case we do not need the knowledge
of the length of the translation for the calibration. This
is one of the situations that has been successfully tested
experimentally. Experimental results using a couple of
different configurations and degrees of knowledge has
shown that the presented algorithms for calibration from
translational motions gives similar results to the standard
calibration techniques using general motions of the cam-
era.

Further studies on the topic of calibration using trans-
lational motions and a planar calibration object should
include a complete discussion on critical configurations.
The calibration plane could not, for example, be parallel
to the image plane for the algorithm to work. Also, motion
directions parallel to the plane will not give any additional
information on the calibration since this can be viewed as
only extending the area of the plane in space.
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