
On-Line Safe Path Planning in Unknown Environments

Chen Weidong, Fan Changhong and Xi Yugeng
Institute of Automation

Shanghai Jiao Tong University
Shanghai, 200030 , P.R. China

changhongfan@sjtu.edu.cn, wdchen@sjtu.edu.cn, ygxi@sjtu.edu.cn

Abstracts - For the on-line safe path planning of a mobile
robot in unknown environments, the paper proposes a simple
Hopfield Neural Network (HNN) planner. Without learning
process, the HNN plans a safe path with consideration of “ too
close” or “ too far” . For obstacles of arbitrary shape, we prove
that the HNN has no unexpected local attractive point and can
find a steepest climbing path, if a feasible path(s) exists. To
effectively simulate the HNN on sequential processor, we
discuss algorithms with O(N) time complexity, and propose the
constrained distance transformation-based Gauss-Seidel
iteration method to solve the HNN. Simulations and
experiments demonstrate the method has high real-time ability
and adaptability to complex environments.

I. Introduction
Planning a collision-free path to navigate a mobile robot

through an unknown environment has received considerable
attentions. The path planning methods [5,6] includes the
graph-search, the roadmap and the potential field methods
etc. The A* algorithm [5] is a typical graph-search method
for path re -planning, and its time complexity is O(NlogN)
for an NN × grid map. The roadmap method [6] has
fewer nodes than the grid map and can plan path very
quickly. But the online reconstruction of the roadmap is
time-consuming. The a rtificial potential field (APF) method,
proposed by Kathib [8], is computationally advantageous,
but introduces unexpected local attractive point.

Recently, Glasius [4] and Yang [13-15] respectively used
the numerical potential fie lds (NPF) of generalized HNN to
plan collision-free path in a dynamic, unknown environment.
These HNN take parallel time complexities O(N) to find
feasible paths. But there’re some problems to be analyzed
for their method. 1) The completeness: [4,13-15] paid more
attention to the stability of their HNN, and deemed the
stability of the HNN would insure the finding of a feasible
path if it exists, but ignore the analysis of the completeness.
Unfortunately, we found HNN of [13-15] existed unexpected
attractive point sometimes. 2) The effective application on
sequential processors: because the outputs of those HNN
nodes are very small (such as 10-100 Voltage), those HNN are
still hard to be precisely realized by nowadays hardware
technology, and can only be simulated on computers. A
single sequential processor can do but pseudo-parallel
simulation of the HNN. So in simulations on a sequential
processor, continuous HNN of [4,13 -15] become discrete
HNN similar to Kassim’s WENN [7] , and also need O(N2)

time to form feasible paths. Lagoudakis [6] used the “Raster
Scan” (RS), a sequential scan, to accelerate the propagation
of the NPF of Glasius’s HNN. But the NPF’s propagation
with RS is constrained by the obstacle nodes, and there is
still much useless computing.

The safety of the planned path is nontrivial for navigating
a mobile robot. Some methods for path planning try to find
the shortest path. But the shortest path always clips the
corners of obstacles and runs along the edges of obstacles,
and this forms the “too close” problem [16]. Some other
methods, such as the Voronoi diagram (VD) [5] , plan path
along the middle axis of the free configuration space. But
the VD method always produces path that is far away from
the shortest path, and forms the “too far” problem . For a
static and known environments, Zlinsky [16] increased the
cost of area nearing obstacles and used a distance
transformation for the A* algorithm to search for the safe
path, but the time complexity is still O(N logN). Muniz [10]
used a feed-forward neural network to learning the planning
of safe path, but the learning process is time-consuming.
Yang [14] extended his HNN method to find a safe path in
unknown environments. But as above discussion, method in
[14] needs O(N2) time on a sequential processor, and the
stability of HNN in [14] can’t guarantee the elimination of
unexpected attractive points.

We propose a simple HNN for safe path planning. This
model has the following characters: 1) The neural nodes are
locally connected; 2) The safety of the collision-free path is
considered in the weight design of the HNN, and then no
learning process is needed to keep the robot suitable distance
away from obstacles. We give the condition for the existing
of the feasible path, and then we prove the HNN can find a
steepest climbing path if there is feasible path(s) and the
HNN don’t have unexpected attractive points, that means the
method is complete. For effective application on a sequential
processor, we use the constrained distance transformation
(CDT) [11] information to guide the asynchronous iteration
of the HNN and can plan a safe path in O(N) time.

Section II describes the HNN. The stability of HNN and
the condition for the existing of feasible path(s) are analyzed
in Section III; Section IV analyzes the safe path planning.
The effective solving of the HNN is given in Section V, and
Section VI provides simulations and experiment. We
summarize conclusions in Section VII.

II. The HNN model

Proceedings of the 2003 IEEE
International Conference on Robotics & Automation
 Taipei, Taiwan, September 14-19, 2003

0-7803-7736-2/03/$17.00 ©2003 IEEE 4191

The 2-dimensional environment may be unknown initially,
and obstacles are not assumed to be convex. The robot R has
only local sense ability and can incrementally construct the
map of the environment. The configuration space [9] of the
mobile robot R is C; obstacles are represented by Oi，
i=1,2,…,m, which are sets of the unreachable points in C;
R(q) represents the robot R at the point Cq ∈ . So the
unreachable set is })(|{' Φ≠∩∈∪=∪

ii
OqRCqO , and the

free configuration space is '\
ifree

OCC ∪= .
Fig.1 illustrates Net, the locally connected neural network

similar to that in [7]. Each neural node in Net represents a
configuration point in the discrete configuration space C.
According to the connectivity between the neighboring
points in C, each node of Net at most is connected with 2d
neighboring nodes. If d=2, the nodes are 4-connected; and if
d=4, the nodes are 8-connected. We select d=4 in following
simulations and experiments. The robot makes decisions at
discrete time, T=1,2,…, and moves along the steepest
climbing path, if it exists, to reach the target.

We assume the number of nodes in Net is N for a
NN × grid map. The output of the ith node is xi(t) for
Ni ≤≤1 , and the 8-connected neighboring set of the ith

node is NEi. The target node is Tset， NTset ≤≤1 . And
only the Tset node has external constant input I >0.

The dynamic equation of the ith node is





++−
≠+−

=
otherwiseItyTDtAx

TsetiiftyTDtAx
tx

iii

iii

i ,)()()(

),()()(
)(& (1)

∑=
∈ iNEj

jiji txmty)()(ω (2)

Equations (1) and (2) form a linear system. In (1), A>0 is
the negative feedback gain. Di(T) represents the accumulated
information about the environment at discrete time T. If the
ith node is occupied by obstacle, then Di(T)=0; otherwise
Di(T)=1.

In (2), m is a positive gain coefficient. The connected
weight from the node j to node i is ω ij= ω ij0 ω ijs]1,0(∈ . ω ij0

represents the factor of the Euclidean distance between
nodes i and j, and we select ω ij0= 1)/2(414.0 <= Amd (in
following theorems we asks 2md/A<1) for the diagonal
8-connected neighboring nodes, while ω ij0=1 for the
4-connected neighboring nodes. Additionally, ω<0 ijs 1≤
represents the safety factor from the jth node to the ith one,
and is given in Section IV. Because the safety factor from j
to i may be different that from i to j, so we don’t assume the
connect ed weights are symmetrical, and this is different
from [4,13-15] .

The system equation of Net is rewritten in

UtxTGtAxtx ++−=)()()()(& (3)

where only the element of U corresponding to Tset is I, and
the other elements of U are zeros..

Fig.1 8-connected HNN of the 2-dimensional environment

III. Stability and non-negative of the HNN
Glasius [4] and Yang [13-15] respectively used the

Liapunov method to prove the stabilit ies of their models. For
the simple HNN model (3), The M-matrix [2] is introduced
to elegantly prove the global exponential stability (GES) of
(3) and the non-negative property of the HNN’s equilibrium
point which describes whether one node has feasible path or
not.
Definition 1 [2]: The n×n matrix Q={qij} is a Zn-matix, if
qii>0 and qij is not larger than 0 for ji ≠ .
Lemma 1 [2]: the Zn-matrix Q is a nonsingular M-matrix, is
equivalent to:
1) There exists positive diagonal matrix D, such that he

matrix QD is a strictly diagonal dominant matrix and
the diagonal elements of QD is larger than zero;

2) The real part of each eigenvalue of Q is positive;
3) Q is nonsingular and 1−Q 0≥ ;
Theorem 1: If A>2md, then the system (3) has only one
equilibrium point xe and is GES.
Proof. The system matrix of the linear system (3) is
(-AE+G(T)), where E is the N×N unit matrix. It can be easily
known that the sum of elements in every row (column) of
G(T) is smaller than 2md. By the definition 1, if D is an unit
matrix and A>2md, (AE-G(T))D＝(AE-G(T)) is a strictly
diagonal dominant Zn-matrix. By 1) of Lemma 1, (AE -G(T))
is nonsingular M-matrix, and then the real part of every
eigenvalue of (AE -G(T)) is larger than 0 by 2) of Lemma 1,
that is the real part of every eigenvalue of (-AE+G(T)) is
smaller than 0. According to the linear system theory, system
(3) has only one equilibrium point xe and is GES. The proof
is complete.
Theorem 2: If A>2md, then (a) the equilibrium point
satisfies 0≥ex ; (b) xei＝0 for any node i that don’t have
feasible path to the target node Tset; and xei>0 for any node i
that has feasible path to the target node Tset.
Proof. (a) Because the equilibrium point xe of the system
(3) satisfies 0=ex& ,we have (AE-G(T))xe=U. By theorem 1, if
A>2md, then (AE-G(T)) is nonsingular M-matrix of Zn , and
xe=[AE-G(T)]-1U. Then by 3) of Lemma 1 and 0≥U , we
have [AE-G(T)]-1 0≥ and xe=[AE-G(T)]-1U ≥ 0.

4192

(b). If there is no feasible path between the ith node and Tset,
we separate all the nodes that have feasible paths to the ith
node from the system (3), and a new linear system forms. By
theorem 1, this new system is also GES. And more, it can be
easily known that this new linear system has no external
input, and so xei=0.

Otherwise, we suppose that Tset has a feasible path which
passes the non-obstacle nodes i1，i2，i3 ,…to reach the ith
node. Firstly, from (a), Tset gives a positive excitation to the
node i1, and more all other excitations to i1 are not smaller
than 0, so it is immediate that the stable state of the node i1 is
larger than zero. Analogically, all nodes on the feasible path
between Tset and the ith node have stable states that larger
than zero. The proof is complete.

Form Theorem 2, we have the corollary:
Corollary 1: xei>0 is equivalent to that there is feasible path
between the ith node and Tset.

In following, Net(T) represents the set of nodes that have
feasible paths to Tset at time T. The stable state of the nodes
in Net(T) are noted as ex , and ex satisfies 0>ex .

IV. Path planning
This section firstly proves the NPF of the HNN doesn’t

have unexpected attractive point. So if there is feasible
path(s), the NPF of the HNN must form a steepest climbing
path from the starting node to the target.
1 The steepest climbing path

Similar to Glasius’s and Yang’s models, our model also
uses the steepest climbing path of the NPF of the HNN to
navigate the robot to the target , which needs that the NPF
can’t have local maximal attractive point at any node b ut the
target node. In the following theorem, we analyze the local
maximal property of the NPF formed by 0>ex , and show
that the NPF has only one local maximal point that’s just at
the target point.
Theorem 3: If A>2md, the g lobal NPF formed by 0>ex has
only one local maximal point, and this local maximal point
must be at the target node.
Proof by contradiction. Assume that ex has a local
maximal point at the ith node,)(TNeti ∈ and Tseti ≠ . By
(1), (2) and 0=ex& , we know that

0>=∑
∈ ie

iN Ej
jeij xAxm ω

jeij
iN EjiN Ej

jeij xmdxm ωω
∈∈

≤∑< max20

then

0max2 >≥
∈ iejeij

iNEj
xAxmd ω

But by the precondition that A>2md, we
know 0maxmax >>≥

∈∈ iejeij
iNEjje

iNEj
xxx ω ,which means that there

is at least one node in the neighborhood of the ith node has a
larger output than the ith node. So this is in opposition to the

assumption, and means that the NPF formed by ex

impossible has local maximal point at non-target node.
All elements of ex are larger than 0 and the number of

the elements of ex is enumerable, so ex has at least one
global (and local at the same time) maximal point.

From the above two outcomes, it is immediately known
that the global NPF formed by 0>ex has only one local
maximal point, and this local maximal point must be at the
target node. The proof is complete.

Theorem 3 indicates that in the neighborhood of any
non-target node I in Net(T), there is a node j having the
largest output in node i’s neighborhood. We call the node j is
the steepest climbing node of the node i. if Tsetj ≠ , node j
also has a new steepest climbing node. If the steepest
climbing nodes are selected one by one, a steepest climbing
nodes sequence from the node i to the node Tset is formed.
By contraries, the outputs of neighboring nodes of any node
not in Net(T) are zeroes, so there doesn’t exist the steepest
climbing path for any node not in Net(T).

(1) (2)

(3)

Fig.2 obstacleon; S: starting point; G: target point; (1) The contour of

the NPF of the HNN without safety consideration and the shortest path; (2)

The contour of the NPF of the HNN with safety consideration and the

safe-path; (3) The new contour of the NPF of the HNN with safety

consideration and the corresponding new safe-path

Notes : Model (3) can be extended to Yang’s HNN [13]
whose GES condition is A>0. But in simulations, if A>0 and

s

G

s

G

s

G

4193

A<2md, the extended model has unexpected attractive points
sometime s. So our analysis of theorem 3 is necessary.
2 Safe path planning

If ω ijs=1, the HNN (3) will also plan the shortest feasible
path similar to [4,13,15]. This means that the HNN (3)
doesn’t consider the safety factor and implicitly optimize the
length of the feasible path when ω ijs=1. Fig.2(1) illustrates
the contour mapping of the equipotential surfaces of the
NPF formed by ex when ω ijs=1. The steepest climbing
path search forms the shortest path from the starting node S
to the target node G in Fig.2(1). Obviously the shortest path
always clips the corners of obstacles and runs along the
edges of obstacles.

From the theorem 3, if ω ijs>0, the NPF of ex will forms
the steepest climbing paths from any nodes that have
feasible path to the target node. This means, that so long as
we select ω ijs>0 then the NPF of ex will not have
unexpected maximal point. To consider the safe factor of the
path, we decrease the weights of nodes that near obstacles to
reduce the output of these nodes. A node is more near
obstacles, the outputs of this node is smaller. When the robot
is close to obstacles, the small weights ω ijs will form
repulsive potential filed to impulse the robot away from the
obstacles. This kind of design of ω ijs will not have
unexpected local maximal point.

First, we compute the Euclidean distance (ED) of every

no-obstacle node’s to the nearest obstacle node by the

Euclidean distance transformations (EDT) [12] in O(N) time.

For example, the ith node’s ED is di. Then according to the

sizes of the grid and the mobile robot, the safe distance limit

Dsafe is selected by the users: if di<Dsafe, the safe factor is
considered in the weight ω ijs ; otherwise, not considered.

We select the following function to consider the safe factor:

)()/2(idfs
ijs Amd=ω , where the safe function fs (di) satisfies

that fs(di)>0 and fs(di) is a non-increasing function with di,

that is



 <<

=
otherwise

Ddifdks
dfs safeii

i ,0

0,/
)((4)

where the parameter ks>0 can be adjusted.
By the above selection of ω ijs, ω ij will decrease very

quickly while the node i is closer to obstacles, and as
illustrated by Fig.2(2) the contour lines of the NPF of ex

near the obstacle is dense, so the robot will be repulsed away
from obstacles while the robot still traces the gradient of the
NPF to reach the target. Obviously, the safe -path in Fig.2(2)
is longer than that in Fig.2(1), but the safe-path is
advantageous for the robot’s safety and forwarding speed.

The safe-path in Fig.2(2) is still similar to that in Fig.2(1).
In Fig.2(3), a new obstacle is added to the map of Fig.2(1),

the shortest path is still feasible, but the shortest path must
pass a strait channel, but the HNN plans a new safe-path in
Fig.2(3), which is quite different from that in Fig.2(1) and
Fig.2(2).

V. The effective solving of the HNN
Discussing the effective solving of the HNN is important

when the HNN is simulated on a sequential processor. A
single processor has only sequential computational abil ity,
and can only do pseudo-parallel simulation of HNN. In
simulations on a sequential processor, continuous HNN in
[4,13-15] become discrete HNN, and need O(N2) time [7] to
form feasible paths. Lagoudakis used the “Raster Scan” (RS),
a sequential scan, to accelerate the simulation of HNN of [4],
and this formed asynchronous HNN. But the NPF’s
propagation with RS is constrained by the obstacle nodes,
and there are still many useless computing. We discuss
how to effectively solve the equation [AE-G(T)]xe=U of
HNN (3).
1) The direct method

Because each nodes of the HNN has only local
connections to nodes in its neighborhood, the N×N matrix
AE-G(T) has at most 9N non-zero elements. So by the sparse
matrix technology [17], [AE-G(T)]xe=U can be solved in
O(N) time. The direct method is advantageous for a known
map. But the programming for solving sparse matrix is
complicated, and the solving of the new equilibrium can’t
use the last equilibrium when new obstacles are added to the
map.
2) The indirect method——The iterative method

Lagoudakis ’s “raster scan” [6] simulation turned the
parallel HNN of [4] into a sequential or asynchronous HNN.
The RS method could be considered a small integration step
Gauss-Seidel iteration method (GSIM) [3], which is an
efficient indirect method for solving linear system of
equations. Compared the pseudo-parallel simulation on
sequential processor, the GSIM accelerates the propagation
of NPF quickly. But constrained by the obstacle nodes, after
the GSIM is used once, the RS method can’t propagate the
NPF over all nodes that have feasible path to the target node,
and there is still much useless computing.

We use the constrained distance transformation (CDT) [11]
to decide the propagation order of the NPF, and then use the
order to refresh the GSIM. The gist of this CDT-based GSIM
(CDTGSIM) is that: firstly, the nodes are classified into
different classes by their constrained connected distances
(CCD) to the target node; and then the smaller CCD a class
has, the priority the nodes in this class are calculated by the
GSIM. For example, the node in the class with CCD=0
(that’s just the target node itself) is firstly calculated by the
GSIM; secondly the nodes in the class with CCD=1 are
calculated by the GSIM; thirdly the nodes in the class with
CCD=2 are calculated by the GSIM … , until all nodes that
have feasible paths are calculated once. If the starting node

4194

can’t be expanded by the CDT, then there is no feasible path ;
otherwise repeating the CDTGSIM several times to
approximate to xe of the HNN (3).

The on-line CDTGSIM is detailed as following:
(1) The 4-connected constrained distances between all

non-obstacle nodes and Tset are simply computed by the
Breadth-First Search [18] in O(N) time and then are
classified into different classes by their distances to Tset in
O(N) time. Assume the largest 4-connected distance N0, and
the number of the nodes (include Tset) that have feasible
paths to the target node is N1. Set j0=0, repnum=1.

If the starting node is not expanded by CDT, go to (5).
Merge all nodes in the N0 number of classes into an

increasing sequence x~ according to their CDT values, and
we notes the ith node in this sequence is ix~ .

(2) GSIM is used for each node whose 4-connected
distance to the target is j0, e.g. for the ith node ix~ of x~ :

))(~)1(~()1(~ ∑+∑ +=+
∈∩>∈∩< iNEjij

j
ij

iNEjij

j
ij

i repnumxrepnumx
A

m
repnumx ωω

The above iteration formula means that the states of the

nodes that have been iterated will be directly used by the

successive nodes , and forms a asynchronous iteration.

(3) j0+1 j0. If j0>N0, go to (4); else go to (2)
(4) j0=1, repnum+1 repnum. If repnum is smaller than

pre-set iteration number, go to (2); else go to (6).
 (5) There is no feasible path, so stop and go to (7).

(6) Search the s teepest climbing path, and go to (7).
(7) In the next decision processing, if new obstacle

information is obtained, then go to (1) to recalculate the
iterative order of the CDTGSIM; else the iterative order of
the CDTGSIM is unchanged and directly go to (2).

The time complexity from (2) to (4) is O(N). So it is
obviously that the whole process from (1) to (6) for a path
re-planning in every decision period is just O(N).

VI. Simulations and Experiments
In simulations, we assume: 1) the robot’s perceptio n

radius is 10 times of the length of the grid; 2) the HNN is
computed twice by the CDTGSIM every discrete time with
the new obstacle information.

A Pioneer 2 mobile robot whose decision period is 0.1
second is used in experiments. The robot has 16 sonars and
the effective detect ranges of these sonars are limited to 1.5
meters. The environment of 10× 10 square meters is divided
into a grid map with 100× 100 grids. We use the histogamic
in-motion mapping method [2] to decide whether a grid is
occupied by obstacle or not. The obstacle distance
transformation [12] is used to cut down the very narrow pass
that can’t be passed by the robot.

The processor for simulations and experiments is a 300M
CPU with Linux OS. For a large grid map with 500×500
grids, the processor can do 30 times CDTGSIM per second.

(1) safe path with ks=5 (2) safe path with ks=10

Fig 3 The CDTGSIM for the HNN to plan safe-path

(1) From S to G (2) From G back to S

(3) From S to G again

Fig.4 The on-line path planning from S to G

Fig.5 Experiment in the unknown environment: the real line gives the

trajectories from S to G and from G back to S

1 The fast speed of the CDTGSIM
Within our experience, the CDTGSIM is very effective to

solve the HNN for safe-path planning. In this simulation, the
initial map is known and it has 500×500 grids. We select
A=8，m=1，ks=5 and Dsafe=5. After twice CDTGSIM, the

4195

HNN plans a safe-path in Fig.3(1). The CPU time for this
safe-path is less than 0.4s. A new safe-path is also planned
for a larger ks =10 after twice CDTGSIM in Fig.3(2). The
new safe -path is longer than that in the Fig.3(1), but the new
safe-path is more smooth. The CPU time for the new
safe-path is less than 0.4s.

The CPU time reported here is very faster than the results
reported in [4,6,13-15], and shows that the CDTGSIM has
high real-time ability for path planning.
2 Simulations under the unknown environment

Initially the robot doesn’t know any obstacle information
about the environment. After 283 times CDTGSIM, the
robot reaches G the first time in Fig.4(1), and takes 312
times CDTGSIM back to S in Fig.4(2). And then the robot
moves from S to G again with 133 times CDTGSIM in
Fig.4(3). In all the round-trip, the robot doesn’t clip the
corners of obstacles or run along the edges of obstacles, and
isn’t trapped in unexpected local attractive point.
3 Experiment under the unknown environment

The forward speed of the real robot is proportional to the
distances of forward obstacles, and is limited under 250
mm/s. Without initial information about the obstacles, the
robot’s spent much time to explore the enviro nment, and
used 85 seconds on reaching G. Then with the grid map of
the detected obstacles, the robot used less time, 30 seconds,
to back to S.

VII. Conclusions
A HNN is used to plan safe path on-line. Without learning

processing, the HNN can plan a safe-path that compromises
between the “too close” and “too far” paths. For
environments of arbitrary shape, the NPF of the HNN has no
unexpected attractive points. Effective solving of the NPF of
the HNN based on distance transformation is given.
Simulations and experiments demonstrated the method has
high real-time ability and adaptability to complex
environments.

VIII. Acknowledgements
This work is supported by National high-tech research

and development plan under grant 2001AA422140, by
National Science Foundation under grant 60105005.

Reference
[1] Berman, A.Nonegative matrices in the mathematical

science. 2nd ed. New York Academic, 1994
[2] Borenstein, J., Y. Koren, The vector field Histogram ---

fast obstacle avoidance for mobile robots. IEEE RA,
1991,Vol.7(3):278-288

[3] Connolly, C.I. et al , Path planning using Laplace’s
Equation . ICRA, 1990,Vol.3:2102-2106

[4] Glasius, R., A. Komoda, Neural network dynamics for
path planning and obstacle avoidance. Neural
Networks, 1995, Vol.8(1):125-133

[5] Huang, Y., Ahuju, N., Gross-motion planning, ACM
Computing Surveys, 1992, Vol.24(3): 220-291

[6] Lagoudakis, M.G., Maida, A.S. Neural maps for mobile
robot navigation. 1999 Int. Joint Conf. on Neural
Networks, 1999, Vol.3: 2011-2016

[7] Kassim, A., V. Kumar. Path planners based on wave
expansion neural network . Robotics and Autonomous
Systems, 1999, Vol.26:1-22

[8] Kathib, O., Real-time obstacle avoidance for
manipulators and mobile robots. Int. J. Rob. Res.
1986,Vol.5:90-98

[9] Latombe, J.C., Robot motion planning. Kluwer
Academic Publishers，1991

[10] Muniz, F., et al, Neural controller for a mobile robot
in nonstationary environment. the 2nd IFAC on
Intelligent Autonomous Vehicles, Helsinki, Finland,
1995: 275-284

[11] J. Piper, E. Granum, Computing distance
transformations in convex and non-convex domains.
pattern Recognition, 1987, Vol.20, pp: 599-615

[12] Shih, F.Y., Liu, J.J., Size-invariant four-scan Euclidean
distance transformation , Pattern Recognition,
1998,Vol.31(11):1761-1766

[13] Yang, S.X., M. Max, Neural Network Approaches to
Dynamic Collision-Free Trajectory Generation. IEEE
SMC Part B. 2001, Vol.31(3):302 -318

[14] Yang, S.X., M. Max, An efficient neural network
method for real-time motion planning with safety
consideration, Robotics and Autonomous Systems,
2000, Vol.32: 115-128

[15] Yang, S.X., M. Max, An efficient neural network
approach to dynamic robot motion planning, Neural
Networks, 2000, Vol.13: 143-148

[16] Zelinsky, A., Using path transforms to guide the
search for findpath in 2D. The Int J. of Robotics
Research, 1994, Vol.13(4):315-325

[17] S. Pissanetzky, Sparse matrix Technology. New York:
Academic, 1984

[18] Shaffer, C.A. Data structures and algorithm analysis.
Prentice Hall Publishers, 1996

4196

