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Abstracts - For the on-line safe path planning of a mobile 
robot in unknown environments, the paper proposes a simple
Hopfield Neural Network ( HNN ) planner. Without learning 
process, the HNN plans a safe path with consideration of “ too 
close”  or “ too far” . For obstacles of arbitrary shape, we prove 
that the HNN has no unexpected local attractive point and can
find a steepest climbing path, if a feasible path(s) exists. To
effectively simulate the HNN on sequential processor, we
discuss algorithms with O(N) time  complexity, and propose the
constrained distance transformation-based Gauss-Seidel
iteration method to solve the HNN. Simulations and
experiments demonstrate the method has high real-time ability 
and adaptability to complex environments.

I. Introduction
Planning a collision-free path to navigate a mobile robot 

through an unknown environment has  received considerable 
attentions. The path planning methods [5,6] includes the
graph-search, the roadmap and the potential field methods 
etc. The A* algorithm [5]  is a typical graph-search method 
for path re -planning, and its time complexity is O(NlogN)
for an NN ×  grid map. The roadmap method [6] has
fewer nodes than the grid map and can plan path very 
quickly. But the online reconstruction of the roadmap is 
time-consuming. The a rtificial potential field  (APF) method,
proposed by Kathib [8], is computationally advantageous, 
but introduces unexpected local attractive point.

Recently, Glasius [4] and Yang [13-15] respectively used 
the numerical potential fie lds (NPF) of generalized HNN to 
plan collision-free path in a dynamic, unknown environment.
These HNN take parallel time complexities O(N) to find 
feasible paths. But there’re some problems to be analyzed 
for their method. 1) The completeness: [4,13-15] paid more 
attention to the stability of their HNN, and deemed the 
stability of the HNN would insure the finding of a feasible 
path if it exists, but ignore the analysis of the completeness. 
Unfortunately, we found HNN of [13-15] existed unexpected
attractive point sometimes. 2) The effective application on 
sequential processors: because the outputs  of those HNN 
nodes are very small (such as 10-100 Voltage), those HNN are
still hard to be precisely realized by nowadays hardware 
technology, and can only be simulated on computers. A
single sequential processor can do but pseudo-parallel
simulation of the HNN. So in simulations on a sequential 
processor, continuous HNN of [4,13 -15] become discrete 
HNN similar to Kassim’s  WENN [7] , and also need O(N2)

time to form feasible paths. Lagoudakis [6] used the “Raster
Scan” (RS), a sequential scan, to accelerate the propagation
of the NPF of Glasius’s HNN. But the NPF’s propagation
with RS is  constrained by the obstacle nodes, and there is
still much useless computing.

The safety of the planned path is nontrivial for navigating
a mobile robot. Some methods for path planning try to find 
the shortest path. But the shortest path always clips the
corners of obstacles and runs along the edges of obstacles, 
and this forms the “too  close” problem [16]. Some other 
methods, such as the Voronoi diagram (VD) [5] , plan path 
along the middle axis of the free configuration space. But 
the VD method always produces path that is  far away from 
the shortest path, and forms the “too far” problem . For a 
static and known environments, Zlinsky [16] increased the 
cost of area nearing obstacles and used a distance
transformation for the A* algorithm to search for the safe 
path, but the time complexity is still O(N logN). Muniz [10]
used a feed-forward neural network to learning the planning 
of safe path, but the learning process is time-consuming.
Yang [14] extended his HNN method to find a safe path in 
unknown environments. But as above discussion, method in 
[14] needs O(N2) time  on a sequential processor, and the
stability of HNN in [14] can’t guarantee the elimination of 
unexpected attractive points.

We propose a simple HNN for safe path planning. This 
model has the following characters: 1) The neural nodes are 
locally connected; 2) The safety of the collision-free path is
considered in the weight design of the HNN, and then no
learning process is needed to keep the robot suitable distance 
away from obstacles. We give the condition for the existing 
of the feasible path, and then we prove the HNN can find a 
steepest climbing path if there is  feasible path(s) and the
HNN don’t have unexpected attractive points, that means the 
method is complete. For effective application on a sequential
processor, we use the constrained distance transformation
(CDT) [11] information to guide the asynchronous iteration 
of the HNN and can plan a safe path in O(N) time.

Section II describes the HNN. The stability of HNN and 
the condition for the existing of feasible path(s) are analyzed 
in Section III; Section IV analyzes the safe path planning.
The effective solving of the HNN is given in Section V, and 
Section VI provides simulations and experiment. We
summarize conclusions in Section VII.

II. The HNN model
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The 2-dimensional environment may be unknown initially,
and obstacles are not assumed to be convex. The robot R has 
only local sense ability and can incrementally construct the 
map of the environment. The configuration space [9] of the 
mobile robot R is C; obstacles are represented by Oi，
i=1,2,…,m, which are sets of the unreachable points in C;
R(q) represents the robot R at the point Cq ∈ . So the 
unreachable set is })(|{' Φ≠∩∈∪=∪

ii
OqRCqO , and the 

free configuration space is '\
ifree

OCC ∪= .
Fig.1 illustrates Net, the locally connected neural network

similar to that in [7]. Each neural node in Net represents a 
configuration point in the discrete configuration space C.
According to the connectivity between the neighboring
points  in C, each node of Net at most is connected with 2d
neighboring nodes. If d=2, the nodes are 4-connected; and if 
d=4, the nodes are 8-connected. We select d=4 in following 
simulations and experiments. The robot makes decisions at 
discrete time, T=1,2,…, and moves along the steepest
climbing path, if it exists, to reach the target.

We assume the number of nodes in Net is N for a 
NN × grid map. The output of the ith node is xi(t) for 
Ni ≤≤1 , and the 8-connected neighboring set of the ith

node is NEi. The target node is Tset， NTset ≤≤1 . And 
only the Tset node has external constant input I >0.

The dynamic equation of the ith node is




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=
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Equations (1) and (2) form a linear system. In (1), A>0 is
the negative feedback gain. Di(T) represents the accumulated 
information about the environment at discrete time T. If the 
ith node is  occupied by obstacle, then Di(T)=0; otherwise
Di(T)=1.

In (2), m is a positive gain coefficient. The connected 
weight from the node j to node i is ω ij= ω ij0 ω ijs ]1,0(∈ . ω ij0

represents  the factor of the Euclidean distance between 
nodes i and j, and we select ω ij0= 1)/2( 414.0 <= Amd (in
following theorems we asks 2md/A<1) for the diagonal
8-connected neighboring nodes, while ω ij0=1 for the
4-connected neighboring nodes. Additionally, ω<0 ijs 1≤
represents the safety factor from the jth node to the ith one,
and is given in Section IV. Because the safety factor from j
to i may be different that from i to j, so we don’t assume the 
connect ed weights are symmetrical, and this is different 
from [4,13-15] .

The system equation of Net is rewritten in

UtxTGtAxtx ++−= )()()()(& (3)

where only the element of U corresponding to Tset is I, and 
the other elements of U are zeros..

Fig.1 8-connected HNN of the 2-dimensional environment

III. Stability and non-negative of the HNN
Glasius [4] and Yang [13-15] respectively used the

Liapunov method to prove the stabilit ies of their models. For 
the simple HNN model (3), The M-matrix [2] is introduced 
to elegantly prove the global exponential stability (GES) of 
(3) and the non-negative property of the HNN’s equilibrium 
point which describes whether one node has feasible path or 
not.
Definition 1 [2]: The n×n matrix Q={qij} is a Zn-matix, if 
qii>0 and qij is not larger than 0 for ji ≠ .
Lemma 1 [2]: the Zn-matrix Q is a nonsingular M-matrix, is 
equivalent to:
1) There exists positive diagonal matrix D, such that he

matrix QD is a strictly diagonal dominant matrix and
the diagonal elements of QD is larger than zero;

2) The real part of each eigenvalue of Q is positive;
3) Q is nonsingular and 1−Q 0≥ ;
Theorem 1: If A>2md, then the system (3) has only one 
equilibrium point xe and is GES.
Proof. The system matrix of the linear system (3) is
(-AE+G(T)), where E  is the N×N unit matrix. It can be easily 
known that the sum of elements in every row (column) of 
G(T) is smaller than 2md. By the definition 1, if D is an unit
matrix and A>2md, (AE-G(T))D＝(AE-G(T)) is a strictly 
diagonal dominant Zn-matrix. By 1) of Lemma  1, (AE -G(T))
is nonsingular M-matrix, and then the real part of every
eigenvalue of (AE -G(T)) is larger than 0 by 2) of Lemma  1,
that is the real part of every eigenvalue of (-AE+G(T)) is
smaller than 0. According to the linear system theory, system 
(3) has only one equilibrium point xe and is GES. The proof 
is complete.
Theorem 2: If A>2md, then (a) the equilibrium point
satisfies 0≥ex ; (b) xei＝0 for any node i that don’t have
feasible path to the target node Tset; and xei>0 for any node i
that has feasible path to the target node Tset.
Proof. (a) Because the equilibrium point xe of the system 
(3) satisfies 0=ex& ,we have (AE-G(T))xe=U. By theorem 1, if 
A>2md, then (AE-G(T)) is nonsingular M-matrix of Zn , and 
xe=[AE-G(T)]-1U. Then by 3) of Lemma  1 and 0≥U , we 
have [AE-G(T)]-1 0≥ and xe=[AE-G(T)]-1U ≥ 0.
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(b). If there is no feasible path between the ith node and Tset,
we separate all the nodes that have feasible paths to the ith
node from the system (3), and a new linear system forms. By
theorem 1, this new system is also GES. And more, it can be 
easily known that this new linear system has no external 
input, and so xei=0.

Otherwise, we suppose that Tset has a feasible path which 
passes the non-obstacle nodes i1，i2，i3 ,…to reach the ith
node. Firstly, from (a), Tset gives a positive excitation to the 
node i1, and more all other excitations to i1 are not smaller 
than 0, so it is immediate that the stable state of the node i1 is
larger than zero. Analogically, all nodes on the feasible path 
between Tset and the ith node have stable states that larger 
than zero. The proof is complete.

Form Theorem 2, we have the corollary:
Corollary 1: xei>0 is equivalent to that there is feasible path 
between the ith node and Tset.

In following, Net(T) represents the set of nodes that have 
feasible paths to Tset at time T. The stable state of the nodes 
in Net(T) are noted as ex , and ex satisfies 0>ex  .

IV.  Path planning
This section firstly proves the NPF of the HNN doesn’t

have unexpected attractive point. So if there is  feasible 
path(s), the NPF of the HNN must form a steepest climbing 
path from the starting node to the target.
1 The steepest climbing path

Similar to Glasius’s and Yang’s  models, our model also 
uses  the steepest climbing path of the NPF of the HNN to 
navigate the robot to the target , which needs that the NPF
can’t have local maximal attractive point at any node b ut the 
target node. In the following theorem, we  analyze the local
maximal property of the NPF formed by 0>ex , and show
that the NPF has only one local maximal point that’s just at 
the target point.
Theorem 3: If A>2md, the g lobal NPF formed by 0>ex  has 
only one local maximal point, and this local maximal point 
must be at the target node.
Proof by contradiction. Assume that ex  has a local
maximal point at the ith node, )(TNeti ∈ and Tseti ≠ . By
(1), (2) and 0=ex& , we know that

0>=∑
∈ ie

iN Ej
jeij xAxm ω

jeij
iN EjiN Ej

jeij xmdxm ωω
∈∈

≤∑< max20

then

0max2 >≥
∈ iejeij

iNEj
xAxmd ω

But by the precondition that A>2md, we
know 0maxmax >>≥

∈∈ iejeij
iNEjje

iNEj
xxx ω ,which means that there 

is at least one node in the neighborhood of the ith node has a 
larger output than the ith node. So this is in opposition to the 

assumption, and means that the NPF formed by ex

impossible has local maximal point at non-target node.
All elements of ex  are larger than 0 and the number of 

the elements of ex  is enumerable, so ex  has at least one 
global (and local at the same time) maximal point. 

From the above two outcomes, it is immediately known 
that the global NPF formed by 0>ex  has only one local 
maximal point, and this local maximal point must be at the 
target node. The proof is complete.

Theorem 3 indicates that in the neighborhood of any
non-target node I in Net(T), there is a node j having the 
largest output in node i’s neighborhood. We call the node j is 
the steepest climbing node of the node i. if Tsetj ≠ , node j 
also has a new steepest climbing node. If the steepest
climbing nodes are selected one by one, a steepest climbing 
nodes sequence from the node i to the node Tset is formed. 
By contraries, the outputs of neighboring nodes of any node 
not in Net(T) are zeroes, so there doesn’t exist the steepest 
climbing path for any node not in Net(T).

(1)    (2)

(3)

Fig.2 obstacleon; S: starting point; G: target point; (1) The contour of 

the NPF of the HNN without safety consideration and the shortest path; (2) 

The contour of the NPF of the HNN with safety consideration and the 

safe-path; (3) The new contour of the NPF of the HNN with safety 

consideration and the corresponding new safe-path

Notes : Model (3) can be extended to Yang’s HNN [13]
whose GES condition is A>0. But in simulations, if A>0 and

s

G

s

G

s

G
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A<2md, the extended model has  unexpected attractive points
sometime s. So our analysis of theorem 3 is necessary.
2 Safe path planning

If ω ijs=1, the HNN (3) will also plan the shortest feasible 
path similar to [4,13,15]. This means that the HNN (3)
doesn’t consider the safety factor and implicitly optimize the 
length of the feasible path when ω ijs=1. Fig.2(1) illustrates 
the contour mapping of the equipotential surfaces of the 
NPF formed by ex  when ω ijs=1. The steepest climbing 
path search forms the shortest path from the starting node S
to the target node G in Fig.2(1). Obviously the shortest path 
always clips the corners of obstacles and runs along the 
edges of obstacles.

From the theorem 3, if ω ijs>0, the NPF of ex  will forms 
the steepest climbing paths from any nodes that have
feasible path to the target node. This means, that so long as 
we select ω ijs>0 then the NPF of ex  will not have
unexpected maximal point. To consider the safe factor of the 
path, we decrease the weights of nodes that near obstacles to 
reduce the output of these nodes. A node is more near 
obstacles, the outputs of this node is smaller. When the robot 
is close to obstacles, the small weights ω ijs will form 
repulsive potential filed to impulse the robot away from the 
obstacles. This kind of design of ω ijs will not have
unexpected local maximal point.

First, we compute the Euclidean distance (ED) of every

no-obstacle node’s to the nearest obstacle node by the

Euclidean distance transformations (EDT) [12]  in O(N) time. 

For example, the ith node’s ED is di. Then according to the 

sizes of the grid and the mobile robot, the safe distance limit 

Dsafe is selected by the users: if di<Dsafe, the safe factor is 
considered in the weight ω ijs ; otherwise, not considered. 

We select the following function to consider the safe factor:

)()/2( idfs
ijs Amd=ω , where the safe function fs (di) satisfies 

that fs(di)>0 and fs(di) is a non-increasing function with di,

that is



 <<

=
otherwise

Ddifdks
dfs safeii

i ,0

0,/
)(       (4)

where the parameter ks>0 can be adjusted.
By the above selection of ω ijs, ω ij will decrease very 

quickly while the node i is closer to obstacles, and as
illustrated by Fig.2(2) the contour lines of the NPF of ex

near the obstacle is dense, so the robot will be repulsed away
from obstacles while the robot still traces the gradient of the 
NPF to reach the target. Obviously, the safe -path in Fig.2(2)
is longer than that in Fig.2(1), but the safe-path is
advantageous for the robot’s safety and forwarding speed.

The safe-path in Fig.2(2) is still similar to that in Fig.2(1).
In Fig.2(3), a new obstacle is added to the map of Fig.2(1),

the shortest path is still feasible, but the shortest path must 
pass a strait channel, but the HNN plans a new safe-path  in 
Fig.2(3), which is quite different from that in Fig.2(1) and 
Fig.2(2).

V. The effective solving of the HNN
Discussing the effective solving of the HNN is important 

when the HNN is simulated on a sequential processor. A 
single processor has only sequential computational abil ity,
and can only do pseudo-parallel simulation of HNN. In
simulations on a sequential processor, continuous HNN in
[4,13-15] become discrete HNN, and need O(N2) time [7] to 
form feasible paths. Lagoudakis used the “Raster Scan” (RS), 
a sequential scan, to accelerate the simulation of HNN of [4],
and this formed asynchronous HNN. But the NPF’s
propagation with RS is constrained by the obstacle nodes, 
and there are still many useless computing. We discuss
how to effectively solve the equation [AE-G(T)]xe=U of
HNN (3).
1) The direct method

Because each nodes of the HNN has only local
connections to nodes in its neighborhood, the N×N matrix 
AE-G(T) has at most 9N non-zero elements. So by the sparse
matrix technology [17],  [AE-G(T)]xe=U can be solved in 
O(N) time. The direct method is advantageous for a known 
map. But the programming for solving sparse matrix is
complicated, and the solving of the new equilibrium can’t
use the last equilibrium when new obstacles are added to the 
map.
2) The indirect method——The iterative method

Lagoudakis ’s “raster scan” [6] simulation turned the
parallel HNN of [4] into a sequential or asynchronous HNN.
The RS method could be considered a small integration step 
Gauss-Seidel iteration method (GSIM) [3], which is an
efficient indirect method for solving linear system of
equations. Compared the pseudo-parallel simulation on
sequential processor, the GSIM accelerates the propagation 
of NPF quickly. But constrained by the obstacle nodes, after
the GSIM is used once, the RS method can’t propagate the 
NPF over all nodes that have feasible path to the target node,
and there is  still much useless computing. 

We use the constrained distance transformation (CDT) [11]
to decide the propagation order of the NPF, and then use the 
order to refresh the GSIM. The gist of this CDT-based GSIM 
(CDTGSIM) is that: firstly, the nodes are classified into
different classes by their constrained connected distances
(CCD) to the target node; and then the smaller CCD a class 
has, the priority the nodes in this class are calculated by the 
GSIM. For example, the node in the class with CCD=0
(that’s just the target node itself) is  firstly calculated by the 
GSIM; secondly the nodes in the class with CCD=1 are 
calculated by the GSIM; thirdly the nodes in the class  with 
CCD=2 are calculated by the GSIM … , until all nodes that
have feasible paths are calculated once. If the starting node 
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can’t be expanded by the CDT, then there is no feasible path ;
otherwise repeating the CDTGSIM  several times to
approximate to xe of the HNN (3).

The on-line CDTGSIM is detailed as following:
(1) The 4-connected constrained distances between all 

non-obstacle nodes and Tset are simply computed by the 
Breadth-First Search [18] in O(N) time and then are
classified into different classes by their distances to Tset in
O(N) time. Assume the largest 4-connected distance N0, and
the number of the nodes  (include Tset) that have feasible 
paths to the target node is N1. Set j0=0, repnum=1.

If the starting node is not expanded by CDT, go to (5).
Merge all nodes in the N0 number of classes into an

increasing sequence x~ according to their CDT values, and
we notes the ith node in this sequence is ix~ .

(2) GSIM is used for each node whose 4-connected
distance to the target is j0, e.g. for the ith node ix~ of x~ :

))(~)1(~()1(~ ∑+∑ +=+
∈∩>∈∩< iNEjij

j
ij

iNEjij

j
ij

i repnumxrepnumx
A

m
repnumx ωω

The above iteration formula means that the states of the 

nodes that have been iterated will be directly used by the 

successive nodes , and forms a asynchronous iteration.

(3) j0+1 j0. If j0>N0, go to (4); else go to (2)
(4) j0=1, repnum+1 repnum. If repnum is smaller than 

pre-set iteration number, go to (2); else go to (6).
  (5) There is no feasible path, so stop and go to (7).

(6) Search the s teepest climbing path, and go to (7).
(7) In the next decision processing, if new obstacle

information is obtained, then go to (1) to recalculate the 
iterative order of the CDTGSIM; else the iterative order of 
the CDTGSIM is unchanged and directly go to (2).

The time complexity from (2) to (4) is O(N). So it is 
obviously that the whole process from (1) to (6) for a path 
re-planning in every decision period is just O(N).

VI. Simulations and Experiments
In simulations, we assume: 1) the robot’s perceptio n

radius is 10 times of the length of the grid; 2) the HNN is 
computed twice by the CDTGSIM every discrete time with 
the new obstacle information. 

A Pioneer 2 mobile robot whose decision period is 0.1 
second is used in experiments. The robot has 16 sonars  and 
the effective detect ranges of these sonars are limited to 1.5 
meters. The environment of 10× 10 square meters is divided 
into a  grid map with 100× 100 grids. We use the histogamic 
in-motion mapping method [2] to decide whether a grid is 
occupied by obstacle or not. The obstacle distance
transformation [12] is used to cut down the very narrow pass 
that can’t be passed by the robot.

The processor for simulations and experiments is a 300M
CPU with Linux OS. For a large grid map with 500×500
grids, the processor can do 30 times CDTGSIM per second.

(1) safe path with ks=5 (2) safe path with ks=10

Fig 3 The CDTGSIM for the HNN to plan safe-path

(1) From S to G              (2) From G back to S

(3) From S to G again

Fig.4 The on-line path planning from S to G

Fig.5 Experiment in the unknown environment: the real line gives the 

trajectories from S to G and from G back to S

1 The fast speed of the CDTGSIM
Within our experience, the CDTGSIM is very effective to 

solve the HNN for safe-path planning. In this simulation, the 
initial map is known and it has 500×500 grids. We select 
A=8，m=1，ks=5 and Dsafe=5. After twice CDTGSIM, the 

4195



HNN plans a safe-path in Fig.3(1). The CPU time for this 
safe-path is less than 0.4s. A new safe-path is also planned 
for a larger ks =10 after twice CDTGSIM in Fig.3(2). The 
new safe -path is longer than that in the Fig.3(1), but the new 
safe-path is more smooth. The CPU time for the new
safe-path is less than 0.4s.

The CPU time reported here is very faster than the results 
reported in [4,6,13-15], and shows that the CDTGSIM has 
high real-time ability for path planning.
2 Simulations under the unknown environment

Initially the robot doesn’t know any obstacle information 
about the environment. After 283 times CDTGSIM, the 
robot reaches G the first time in Fig.4(1), and takes 312 
times CDTGSIM back to S in Fig.4(2). And then the robot 
moves from S to G again with 133 times CDTGSIM in 
Fig.4(3). In all the round-trip, the robot doesn’t clip the 
corners of obstacles or run along  the edges of obstacles, and 
isn’t trapped in unexpected local attractive point.
3 Experiment under the unknown environment

The forward speed of the real robot is proportional to the 
distances of forward obstacles, and is limited under 250 
mm/s. Without initial information about the obstacles, the 
robot’s spent much time to explore the enviro nment, and 
used 85 seconds on reaching G. Then with the grid map of 
the detected obstacles, the robot used less time, 30 seconds, 
to back to S.

VII. Conclusions
A HNN is used to plan safe path on-line. Without learning 

processing, the HNN can plan a safe-path that compromises 
between the “too close” and “too far” paths. For
environments of arbitrary shape, the NPF of the HNN has no 
unexpected attractive points. Effective solving of the NPF of 
the HNN based on distance transformation is given.
Simulations and experiments demonstrated the method has 
high real-time ability and adaptability to complex
environments.
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