
The dynamic wave expansion neural network
model for robot motion planning in

time-varying environments

Dmitry V. Lebedev, Jochen J. Steil, Helge J. Ritter

October 11, 2004

We introduce a new type of neural network - the dynamic wave expansion
neural network (dwenn) - for path generation in a dynamic environment for
both mobile robots and robotic manipulators. Our model is parameter-free,
computationally efficient, and its complexity does not explicitly depend on
the dimensionality of the configuration space. We give a review of existing
neural networks for trajectory generation in a time-varying domain, which
are compared to the presented model. We demonstrate several representative
simulative comparisons as well as the results of long-run comparisons in a
number of randomly-generated scenes, which reveal that the proposed model
yields dominantly shorter paths, especially in highly-dynamic environments.

1



List of symbols

C ⊂ <N , robot’s configuration space;
N , the number of robot’s degrees-of-freedom;
si, the neighbourhood of the i-th neuron in the network field;
xi, activity level of neuron i;
Ii, the external input of neuron i;
g(.), the transfer function of a neuron;
δij , the Kronecker symbol;

2



Target

S
ta

rt

Stationary
obstacles

a)

Target

S
ta

rt

Moving
obstacle

b)

Robot

Figure 1: The path planning problem at two extremes: a) The simple problem: to find
a path from the start to the target in a stationary environment with a given
description of obstacles. b) The complex problem: the environment is initially
unknown and the information about (potentially moving) obstacles is acquired
during the motion. To get a reasonable path in a time-varying environment
and to escape possible local minima effects, this information has to be efficiently
integrated into the path planning process.

1 Introduction

One of the major challenges in the development of intelligent robotic systems is endow-
ing them with an ability to plan motions and to navigate autonomously. This ability
becomes critical particularly for robots which operate in dynamic environments, where
unpredictable and sudden changes may occur. Whenever the robot’s sensory system de-
tects a dynamic change, its planning system has to adapt the path accordingly. Prominent
examples are real world environments that involve interaction with people, like museums,
shops, or households. Usually, it is required that the path of a robot is safe (i.e. collision-
free), optimal or close to optimal, and natural, i.e., in a complex situation the robot does
not get lost and goes far away from its destination.

Different types (and complexity levels) of the path planning problem can be distin-
guished (Figure 1). The simplest problem is, given the exact description of the environ-
ment, to find a continuous path from a starting location to a target location. There exists
a number of global approaches, such as decomposition, road-map, and retraction methods
(Latombe, 1991; Hwang & Ahuja, 1992; Henrich, 1997), randomised approaches (Kavraki,
Svestka, Latombe, & Overmars, 1996; Barraquand et al., 1997; Song, Thomas, & Amato,
2003), genetic algorithms (Paredis & Westra, 1997; Mazer, Ahuactzin, & Bessiere, 1998;
Eldershaw & Cameron, 2000), as well as several local approaches, e.g., potential field
methods (Khatib, 1986; Barraquand & Latombe, 1991) to solve this problem. Usually,
global approaches require a preprocessing stage, during which a graph structure containing
the information about the connectivity of the robot’s free space is formed, before the path
search can be performed. Local methods need some heuristics, as, e.g., the estimation of
local gradients in a potential field to provide an effective path search.

If the environment is dynamic (i.e., if obstacles and/or the target are moving), then two
cases are possible. If trajectories of obstacles are known in advance and the robot dynam-
ics is not considered (like for free-flying objects), the problem is reduced to the stationary
case by adding the time axis to the planning space (moving obstacles become stationary
in the new space) (Latombe, 1991). There exist also a number of methods, which account
for the constraints on the robot dynamics during the planning (see, e.g., (Fraichard &
Laugier, 1993; Fiorini & Shiller, 1998; Hsu, Kindel, Latombe, & Rock, 2002)). For the
most complex case, when obstacle placements/trajectories are unknown in advance, there

3



exist much fewer approaches. Obstacles in that case are detected locally during the robot
movement and are dynamically incorporated into the path generation process, what of-
ten makes global approaches with replanning computationally demanding. In (Zelinsky,
1992), for instance, the whole path is replanned from scratch each time the robot bumps
into an obstacle. Stentz (1995) and Koenig and Likhachev (2002) proposed graph-search
algorithms which utilise the information from previous searches to accelerate the replan-
ning. The algorithms in (Lumelsky & Stepanov, 1986) guarantee to find a path to the
target (if one exists) in an unknown stationary environment based on the local “tactile”
input. Other approaches (Miura, Uozumi, & Shirai, 1999; Yu & Su, 2001; Bennewitz,
Burgard, & Thrun, 2003) try to predict and to approximate the movement of obstacles
in the workspace, what reduces the problem to the previous case. Several neural network
models for path generation in a non-stationary environment have been proposed, which
are surveyed in Section 2 and evaluated in simulations in Section 4. Generally, the local
nature of these methods allows to integrate the information about changes in the environ-
ment into the path generation process in an efficient way, such that real-time planning is
possible in many situations.

In this paper, we present a novel type of neural network – the dynamic wave expansion
neural network (dwenn) – which is capable of generating dynamic distance potentials for
real-time path planning in a time-varying environment. This model can be applied to all
aforementioned types of the path planning problem. The underlying idea of the dwenn

algorithm is to organise wave propagation in a way similar to waves in water spreading, for
instance, around a dropped stone. The neurons of the network are arranged in a regularly
discretised lattice. In our model a scalar potential field is formed by repetitively generated
waves of neural activity, which originate from the target location. Each subsequent wave
“brings” an updated distance information from the target, and increases the potential
of lattice nodes in such a way that farther (from the target) neurons accumulate larger
activity values. If at some instance of time a location is not reached by the actual wave
front, it is regarded as untraversable for the robot.

To prevent local minima problems, in our model the propagation of inhibitory waves
(waves of zero activity) is triggered in particular situations to temporarily interrupt the
planning process, and thus to avoid undesired path oscillations. The robot then waits sev-
eral time steps until a new activity wave reaches its position from an appropriate direction,
and then continues to move. Thus, no replanning from scratch is needed, since the po-
tential field adapts to changes in the environment dynamically and rapidly. The dwenn’s
update rules are computationally very efficient, and its state equations are parameter-free.
Preliminary versions of the model have been reported in (Lebedev, Steil, & Ritter, 2002,
2003b, 2003a). In (Lebedev et al., 2003b), we have shown that dwenn can be viewed (with
minor simplifications) as a dynamic version of the distance transform algorithm (Zelinsky,
1992), used for path planning in stationary environments.

The paper is organised as follows. Section 2 provides a taxonomy and review of existing
neural network approaches for path planning with particular attention to neural network
models for trajectory generation in a time-varying domain. In Section 3 we describe the
proposed dwenn model and analyse its dynamics. Comparative simulation studies and a
complexity analysis are presented in Section 4, and, finally, conclusions are discussed in
Section 5.

2 Review of neural network models for path planning

Table 1 summarises most of the existing neural network models for path planning. They
are ordered along two main axes: (i) with respect to the environment type (stationary

4



Table 1: Neural network models for path planning.
Authors Network type Dynamics Repres. Type

(Ageev & Istratov, 1998) multi-layer, gradient minimiz. algebraic, stationary
feed-forward method explicit

(Lee & Kardaras, 1997) multilayer network simulated annealing algebraic, stationary
explicit

(Meng & Picton, 1992) single hidden layer learns collision algebraic, stationary
back-propagation penalties explicit

(Vleugels et al., 1997) Kohonen-type, road-map algebraic, stationary
with 2 classes of nodes construction explicit

(Xia & Wang, 2000) discrete-time, linear optimization algebraic, stationary
recurrent explicit

(Dracopoulos, 1998) multilayer learns to predict grid-based stationary
perceptron movement direction

(Kassim & Vijaya Kumar, 1995) two layers, wave fronts grid-based stationary
locally connected propagation

(Kindermann et al., 1996) three layers, with local diffusion-like grid-based stationary
reccurent connections activity propagation

(Lemmon, 1991) single layer, produces oscillatory grid-based stationary
locally connected, behavior
oscillatory dynamics

(Siemiatkowska & Dubrawski, 1998) cellular, two layers diffusion-like grid-based stationary
activity propagation

(Bugmann et al., 1995), one or two layers, diffusion-like grid-based stationary,
(Tarassenko et al., 1991) locally connected activity propagation dynamic
(Chen et al., 2003) Hopfield-type, diffusion-like grid-based stationary,

topologically organised, activity propagation dynamic
locally connected

(Glasius et al., 1995) Hopfield-type, diffusion-like grid-based stationary,
topologically organised, activity propagation dynamic
locally connected

(Yang & Meng, 2000) single layer, diffusion-like grid-based stationary,
topologically organised, activity propagation dynamic
locally connected

vs. dynamic), and (ii) with respect to the environment representation (algebraic vs. grid-
based). Since dwenn is a model for fast planning in a non-stationary domain, we review
for further reference and comparison the models in the second part of Table 1.

These models generate scalar potentials over a distributed representation of the con-
figuration space of the robot. Such potentials are an efficient alternative to analytically-
described potential fields (Khatib, 1986; Rimon & Koditschek, 1992; Li & Bui, 1998;
Wang & Chirikjian, 2000) because of their easy implementation and high performance.
An attempt to draw analogies between potential fields and neural networks was made in
(Liu & Khatib, 2002).

In all models surveyed below, the path planning process is performed in the robot’s
configuration space C, a regularly discretised hypercube in <N , where N is the number
of degrees-of-freedom of the robot (Lozano-Perez, 1983). Each discrete position in C is
associated with a formal neuron. Each neuron i is connected to its neighbours within a
certain radius, which comprise its neighbourhood si. The neural networks have a locally
connected, highly parallel architecture, such that they can be realized in a distributed
fashion as parallel processes (see, e.g., (Shu & Buxton, 1995)). All neurons together
comprise the network field.

The existing models have in common that their dynamics perform an averaging of the
potentials of their local neighbouring neurons. In all these models the initial activity
potential associated with the target location is distributed through the network field in
such a way that activity of all neighbours of a neuron is used to compute its potential.
Neurons associated with obstacle locations receive typically a negative value on their
external inputs, and have, therefore, smaller potential values. Each path step in that
case is done in the direction of the neighbour with the maximal activity value, what leads
the robot to the target. As we show in Section 3, our newly introduced model follows a
different idea of selective activity propagation, and in many situations there is no need
to query all neighbours of a neuron to calculate its activity level, what results in a more
efficient update rule.

5



2.1 The resistive grid model

A resistive grid is represented as a regular lattice, in which nodes are associated with neu-
rons. Each neuron is connected to its 2N closest neighbours, where N is the dimensionality
of the state space. The evolution of the i-th node is given in discrete time by

xi(t + 1) = Ii +
1

2N

∑

j∈si

xj(t) ,

where Ii is the external current applied to the node.
The resistive grid model is based on a numerical approximation of a solution ϕ(x, y)

of the Laplace equation: ∂2ϕ/∂x2 + ∂2ϕ/∂y2 = 0 (in 2D). By expansion of ϕ into a
Taylor series with a small discretisation step for each variable, it can be shown that in
the first-order approximation the potential value of a grid node is equal to the average
sum of the potential values of its immediate neighbours (Connolly, Burns, & Weiss, 1990;
Karnik, Dasgupta, & Eswaran, 2002; Alvarez, Alvarez, & Gonzalez, 2003).

In (Bugmann et al., 1995), a cellular automaton is used to calculate resistive grid po-
tentials and the influence of Dirichlet and von Neumann boundary conditions on route
generation is analysed.

2.2 The model by Glasius et al.

Glasius et al. (1995); Glasius, Komoda, and Gielen (1996) proposed a discrete-time
Hopfield-type neural network, whose dynamics is described by

xi(t + 1) = g





∑

j∈si

wijxj(t) + Ii



 , wij =

{

e−γ|i−j|2 , if |i − j| ≤ r

0, if |i − j| > r
,

where wij are symmetric connections weights, |i − j| is the Euclidian distance between
corresponding grid nodes, γ, r > 0 are scalars, and g is the transfer function. The external
input Ii encodes the information about the target and obstacle positions on the network
field and is given by

Ii =











v, i - target

−v, i - obstacle

0, else

, v ≥ 1.

Since any monotonically-increasing function can be used as the transfer function g (Glasius
et al., 1995), a piecewise linear transfer function was chosen:

g(x) =











0, x ≤ 0

βx, x ∈ [0, 1]

1, x ≥ 1

, and β > 0.

2.3 The model by Yang et al.

Yang and Meng (2000, 2001, 2003) proposed a continuous-time dynamics, which is derived
from the Grossberg’s shunting model (Grossberg, 1988). The dynamics of neuron i is given
by

dxi

dt
= −Axi + (B − xi)



[Ii]
+ +

∑

j∈si

wij [xj ]
+



 − (D + xi)[Ii]
−,

6



where the parameters A, B and D are the passive decay rate, the upper and lower bounds
of the neural activity, accordingly, and the neural activity xi ∈ [−D,B]. The function [a]+

is defined as [a]+ = max{a, 0}, whereas the function [a]− is given by [a]− = max{−a, 0}.
The symmetric connection weights are defined by

wij =

{

µ/|i − j|, if 0 < |i − j| ≤ r

0, if |i − j| > r
,

where |i − j| is the Euclidean distance between corresponding lattice nodes, µ and r are
positive constants. Note, that some additional efforts for tuning and selection of proper
network parameters are required for this model.

2.4 The model by Chen et al.

While in the model by Glasius et al. (1995) the decay rate is fixed and equal to one, Chen
et al. (2003) introduced recently a similar model, where the decay rate A > 0 may be
chosen arbitrarily:

dxi

dt
= −Axi + Di · m ·

∑

j∈si

wijxj + Ii.

Here m is a positive gain coefficient, Di = 0 for the obstacles, and Di = 1, other-
wise. The external input Ii is positive only for the target neuron, and is zero, other-
wise. The connection weights wij = 1 if network neighbourhoods are 4-connected, while

wij = (8m/A)
√

2−1 < 1 if the latter are 8-connected (therefore, it is required that 8m < A).

3 The dynamic wave expansion neural network (dwenn)

In the dwenn’s network field waves of neural activity are spread around the neuron
associated with the target location. At each instance of time a new wave emanates from
that point and carries the information about the distance to the target, i.e., it propagates
in such a way, that neurons associated with farther locations accumulate larger activity
values. The update rule employs one addition and some binary checks only, it is parameter-
free, and involves only integer-valued computation. Hence, the activity propagation is
computationally efficient and makes real-time planning possible.

At each time step, a neuron inherits (and increments by two) the activity from a neigh-
bour, which is (i) closer to the target neuron, (ii) is not an obstacle neuron, and which
belongs to (iii) the active (i.e., this neighbour has a positive activity value) and (iv) actual
(i.e., this neighbour has changed its activity level at the previous time step) wave front.
If for a neighbour all the conditions (i)-(iv) are satisfied, then the corresponding connec-
tion weight becomes equal to one, while the connection weights from all other neighbours
become (or stay) zero.

The activities of all neurons constitute a scalar potential field, in which the minimal
positive value is always at the target location (the zero state is the prohibited state in the
potential field). The robot is globally ”attracted” by the target, and starts to move as soon
as the first wave front reaches its initial position. It can move only to the neighbouring
location, from which the activity has been inherited. This ensures that robot path steps
are safe, and the path tends to be L1-optimal.

3.1 The network dynamics

Using the definitions from Section 2, each neuron i is connected to its set si = {i1, ..., in} of
neighbours, for which we assume an arbitrary and (possibly) fixed enumeration (Figure 2a).

7



Z
-1

wii4 wi4i

ii1

i

i2

i3

4

a) b)

xd

w x

Figure 2: The network architecture: a) Network neighbourhood in 2D. Neurons are locally
connected and arranged on a regular lattice. Neurons in local neighbourhoods
are arbitrarily enumerated. b) The model of the neuron. Each neuron is charac-
terised by its activity level xi, which depends on its own state and on the state
of its neighbours at the current and the previous time step.

Figure 2b shows the neuron model.
The dwenn model can be viewed as a discrete-time dynamical system. The activity of

neuron i at the moment of time t+1 will depend on the current activities of its neighbours
(the vector ~x = (xi1(t), .., xin (t))) as well as on the activities of its neighbours and its own
activity at the previous time step (the vector ~xd = (xi(t − 1), xi1(t − 1), .., xin (t − 1))).
Furthermore, neuron i is active, if xi > 0, and inactive, otherwise.

Initially, the activity values of all neurons and all connection weights are zero. Let i∗(t)
define the index of the target neuron at time t. Three classes of neurons are distinguished
with dynamics given by:
(i) for the target (i = i∗(t)):

xi(t + 1) = 1, (1)

(ii) for its direct neighbours (i ∈ si∗(t)):

xi(t + 1) =

{

xi(t) + 1, if i∗(t + 1) = i∗(t)

2, otherwise
, (2)

(iii) for all other neurons

xi(t + 1) =
∑

j∈si

wij(t) · (xj(t) + 2). (3)

At each time step, before updating the activity level of neuron i, the corresponding
connection weights are determined in accordance with:

wij(t + 1) =











δjk, if k ∈ si is the first neuron,

for which (a)-(d) below hold

0, otherwise

, (4)

where δjk is the Kronecker symbol, and the corresponding conditions for neuron k are:
(a) k is not an obstacle,
(b) xk(t) > 0, i.e., it is part of the activity wave front and carries some information about
the changes in the workspace,
(c) xk(t) 6= xk(t − 1), i.e., it carries new information,
(d) if (xi(t) + xi(t− 1)) > 0, then xk(t) < xi(t) must hold, i.e., its location is closer to the
target than the robot’s current position.

8



Note, that the neighbours of neuron i are considered with respect to some preassigned
ordering.

Equations (1) assures that the neuron at the (potentially moving) target always has the
minimal activity value in the neural field. The weights update rule (4) enforces that for
each neuron at most one connection weight wij∗ = 1, where j∗ is selected in accordance
with the rules (a)-(d), and wij = 0 for all others j ∈ si.

The rules (a)-(d) determine the selective flow of neural activity because the weight
wik(t+1) is equal to one, if and only if the neuron k has changed its state at the previous
evolution step (rule c)), if at time t it is active (rule b)), and is not associated with an
obstacle (rule a)), and if its activity level is less than that of neuron i, i.e., if neuron k is
closer to the target neuron with respect to the actual global distribution of the potentials
(rule d)).

The following properties can immediately be obtained from dwenn’s dynamics equa-
tions (1, 4):

Property 1. If the first wave front reaches neuron xi at the time step tk, then this
neuron becomes active with value xi(tk) = (2tk − 1);

Property 2. If there exists a positive weight wij for neuron i, then this weight indicates
the gradient direction in the potential field: wij > 0 ⇒ xj < xi;

Property 3. The activity level of neuron i is bounded by the number n of network
iterations: xi(t) ≤ n;

Property 4. If an active neuron i has become inactive, then it will stay inactive at the
following time step. Indeed, if xi(t − 1) > 0 and xi(t) = 0, then xk(t) < xi(t) is always
false, therefore, the condition (d) in (4) is also false, and ∀ j ∈ si : wij = 0, and, hence,
xi(t + 1) = 0.

Further, if the target is stationary:
Property 5. If an active neuron remains active, then its activity level is increased by

one at each time step: xi(t) > 0 ⇒ xi(t + k) = xi(t) + k;
Property 6. If neuron i became active at time ti and neuron j at time tj > ti, then

xi(t) < xj(t) for all t ≥ tj > ti.
When the robot is at the configuration represented by neuron i, its next path step is

done in the direction indicated by the only non-zero weight, i.e. to the configuration
represented by neuron j if wij > 0 (or j is the target neuron). From Property 2, each
path step of the robot is done along the gradient descent direction in the potential field.
Consequently, the resulting path tends to be optimal in a L1 metrics.

The preassigned and fixed enumeration of the neighbours results in a tendency to gen-
erate paths consisting of straight lines. Therefore, it is reasonable to query first the same
neighbour from which the activity at the previous time step has been inherited, since the
probability that a new wave will arrive along this direction is high.

3.2 Obstacle avoidance and global adaptation in dynamic environments

In dynamic environments, a fast reconfiguration of the potential field is possible because
active neurons can temporarily become inactive to signal dynamic changes (Property 4).
This key property is encoded in Condition (d) in (4). An inactive neuron, therefore, may
initiate the propagation of an inhibitory wave. This is illustrated in Figure 3a, where the
initial placement of two obstacles is shown.

The neuron, which is behind the gate (the position of this neuron is denoted by the
black border), receives new activity only through the gate and all its other neighbours
have a larger activity (Figure 3b). Thus, when the gate is closed, this neuron becomes in-
active (Property 4). This triggers the generation of an inhibitory wave, which sequentially

9



Figure 3: Global adaptivity of the potential field to environmental changes by means of
inhibitory waves. a) Propagation of wave fronts around the target in a 2D
workspace. b) Rapid adaptation to the new placement of the dynamic obstacle.
The neuron shown by a black border becomes inactive and inhibits (inacti-
vates) other neurons. Inactive neurons become active after a new wave front has
reached them again.

inactivates neurons behind the gate until they receive new activity carried by a wave front
passing through the new gate position (Figure 3b).

The same inhibitory mechanism provides a natural behaviour for avoidance of dynamic
obstacles appearing on the robot’s path. This is illustrated in Figure 4 for a dynamic
obstacle emerging at time tk at m path steps before the robot1. The neuron i between the
robot and the obstacle, which is next to the obstacle, becomes inactive at time tk +1, since
all of its neighbours (except the obstacle neuron) have a larger activity, and, therefore,
Condition (d) in (4) is false for them. This is similar to the “gate” situation illustrated
above.

As follows from Property 4, the neuron i stays inactive also at the next time step tk +2,
and (at least) one of its neighbours becomes also inactive (analogous as discussed above
for the neuron i). Therefore, two time steps after the obstacle has emerged, at least a
pair of two inactive neurons appears. It moves away from the target along the direction
of the wave front expansions. After m/2 steps the robot position coincides with one of
these inactive neurons, the robot stops and waits at least one more time step, and at
time tk + m/2 + 2 continues the navigation, if a new wave front has reached its position
(Figure 4b). The direction of robot’s next path step depends on the enumeration of the
neurons in the local neighbourhood. The final path of the robot, which corresponds to the
neighbours’ enumeration as in Figure 4a, is shown in Figure 4c.

This inhibitory mechanism distinguishes our model from other models, for instance, from
the classical resistive grid model, which requires a large number of iterations to escape
from local maxima and to converge to a solution. During these iterations oscillatory
movements of the robot centred at the point of a local extremum are observed, which lead
to unnatural “hither and thither” paths with far from optimal lengths.

4 Comparative simulation and complexity analysis

Below we present comparative simulations of the models discussed in Section 2 together
with dwenn in three different dynamic environments: (i) the results for the “closing gate”

1here m is even, the case of an odd m is similar.

10



Figure 4: Avoidance of dynamic obstacles by travelling inhibitory waves. a) An obstacle
appears on the way of the robot. b) This causes the appearance of a chain of
two neurons, which moves along the direction of the wave front expansions. c)
The resulting path avoiding the obstacle depends on the enumeration of neurons
in local neighbourhoods (the shown path corresponds to the enumeration as in
a)).

Table 2: Model parameters chosen for the shown simulations (the first part of the table),
and for the statistical evaluations (the second part of the table).

Glasius et al. Yang et al. Chen et al.

r = 1, γ = 0.9, β = 0.43 r = 1, A = 40, A = 100, m = 17
B = D = 1,
µ = 8, E = 15

β = 0.437, 0.43 for the A = 93.2
“closing gate” and the
“freezing up obstacles”
scenario, respectively.

scenario similar to the one discussed in the previous section are shown in Figure 5; (ii)
Figure 6 displays the results for the scene with forward and backward moving obstacles,
which finally freeze up at their initial position, and, (iii) the results for moving target
pursuit are shown in Figure 7.

In all simulations the network consists of 3600 (60 × 60) neurons representing a 2D
workspace. The borders of the workspace are treated as obstacles, SP and TP denote the
starting and target positions, respectively, and arrows indicate the movement directions
of obstacles. On the 3D plots the values along the z-axis are scaled by the log() function
(for all models, except dwenn). The models were simulated with the parameters listed
in Table 2. Lacking general rules, we tried to optimise the performance of these models
by trial and error with heuristically chosen parameters.

The statistical evaluations were based on 500 runs per model and scenario each. For
the “closing gate” scenario (Figure 5), the robot’s starting position and starting times
of the moving obstacle were selected randomly. The maximum number of iterations was
limited by 1000. In the second “freezing obstacles” scenario (Figure 6) the x positions
of the obstacles and their stopping time were selected randomly and a maximum of 1500
iterations was allowed. In this case two experiments were conducted: in the first series
the obstacles stop at their current positions. In the second series, despite their current
positions, the obstacles were placed at the last visited wall (i.e., either to the top, or to
the bottom of the workspace). For both scenarios, the average number of path steps,
the average number of iterations required to reach the target, the corresponding standard

11



0 0 0 0
20 20 20 20

40 40 40 40
60 60 60 60

0 0 0 0

20 20 20 20

40 40 40 40

60 60 60 60

0 0 0 0

100 100 100 100

200 200 200 200

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

a)

TP SP TP SP TP SP TP SP

0 0

0 0

20 20

20 20

40 40

40 40

60 60

60 60

0 0

0 0

20 20

20 20

40 40

40 40

60 60

60 60

−40 −40

−10
−40

−20 −20

−5
−20

0 0

0
0

d) e)

b) c)

Path oscillations

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP TP SP

Figure 5: Scene 1: the “closing gate” scenario. The moving obstacle closes the ”gate”
before the robot has come through it. a) Three intermediate planning steps,
the resulting path, and corresponding activity landscapes for the dwenn model
(142 path steps, 283 network iterations). b) The final path and the activity
landscape for the resistive grid model (464 path steps, 560 iterations). c) For
the model by Glasius et al. (274 path steps, 380 iterations). d) For the model
by Yang et al. (158 path steps, 743 iterations). e) For the model by Chen et al.
(270 path steps, 412 iterations). While models b)-e) lead to significant detours,
the dwenn model a) can be seen to produce a very parsimonious path that is
of minimal L1-length in this case.

12



0 0 0 0
20 20 20 20

40 40 40 40
60 60 60 60

0 0 0 0

20 20 20 20

40 40 40 40

60 60 60 60

0 0 0 0

100 100 100 100

200 200 200 200

TP

SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP

SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP

SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP

SP

10

20

30

40

50

60

0 10 20 30 40 50 60

a)

TP

SP

TP

SP

TP

SP

TP

SP

0 0

0 0

20 20

20 20

40 40

40 40

60 60

60 60

0 0

0 0

20 20

20 20

40 40

40 40

60 60

60 60

−40 −40

−10
−40

−20 −20

−5
−20

0 0

0
0

Path
oscillations

e)

b)

d)

c)

TP

TP

SP

SP

10

10

20

20

30

30

40

40

50

50

60

60

0

0

10

10

TP

SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP

SP

20 30 40 50 60

TP

SP

TP

SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP

SP

20 30 40 50 60

TP

SP

Figure 6: Scene 2: “freezing up obstacles” scenario. The dynamic obstacles start at the
positions as shown on the fourth 2D plot, move from the bottom to the top and
back, and freeze up at their initial positions. a) Three intermediate planning
steps, the resulting path, and corresponding activity landscapes for the dwenn

model (100 path steps, 216 network iterations). b) The final path and the activity
landscape for the resistive grid model (1152 path steps, 1252 iterations). c) For
the model by Glasius et al. (250 path steps, 368 iterations). d) For the model
by Yang et al. (150 path steps, 652 iterations). e) For the model by Chen et al.
(232 path steps, 368 iterations).

13



0 0

0 0

0

20 20

20 20

20

40 40

40 40

40

60 60

60 60

60

0 0

0 0

0

20 20

20 20

20

40 40

40 40

40

60 60

60 60

60

−40 −40

−10
−40

0

−20 −20

−5
−20

100

0 0

0
0

200

TP

SP

TP

10

SP

20

10

30

20

40

30

50

40

60

50

0

60

10

0

20

10

30

20

40

30

50

40

60

50 60

d) e)

c)b)

a)

Path oscillations

TP

TP TP

SP

SP SP

10

10 10

20

20 20

30

30 30

40

40 40

50

50 50

60

60 60

0

0 0

10

10 10

20

20 20

30

30 30

40

40 40

50

50 50

60

60 60

TP

SP

TP

SP

TP

SP

TP

SP

TP

SP

Figure 7: Scene 3: pursuit of the moving target. The target starts to move after several
path steps of the robot. a) The path of the robot and the resulting activity
landscape for the dwenn model: the target is captured. b) The resistive grid
model: failed. The robot got trapped by a local maximum (several local maxima
appear during the network evolution; this can be seen in the corresponding 3D
plot). c) The model by Glasius et al.: failed. The robot got trapped by a local
maximum, and the network dynamics is too slow to continue the pursuit; the
target left the border of the workspace. d) The model by Yang et al.: failed.
This model demonstrated a reliable pursuit, but it is not fast enough to capture
the target. e) The model by Chen et al.: the target is captured.

14



Table 3: Statistical comparison for the “closing gate” scenario (an example is demonstrated
in Figure 5). The table shows for each model the average number of path steps
(the average path length) and its standard deviation as well as the average number
of iterations and its standard deviation in 500 runs. For each run, the starting
time of the moving obstacle and the initial robot position are randomly selected.
Each network is given the maximum of 1000 iterations.

dwenn resist. grid Glasius et al. Yang et al. Chen et al.

av. # of steps 106.63 287.67 188.6 121.51 199.32
std. deviation 25.49 162.79 86.29 35.56 94.45

av. # of iter. 212.95 370.93 274.64 505.51 288.83
std. deviation 50.76 169.16 94.85 241.45 104.67

deviations, and the number of failures are summarised in Table 3 and Table 4, respectively.

4.1 Discussion of results

In all experiments, the dwenn model clearly outperforms all other models: in the “clos-
ing gate” scenario with respect to the path length as well as to the number of network
iterations. In the “freezing obstacle” scenario, the results vary in two series of runs (the
latter differ with respect to the “freezing” positions of the obstacles). In the first series,
all models generate paths of approximately the same length, but the model by Yang et
al. requires much more iterations. The results for the second and more complex series
reveal that the final placement of obstacles does not influence the dwenn efficiency, while
all other models need significantly more iterations to converge to a solution and the path
length at least doubles in comparison with dwenn. Obviously, the dynamics of these mod-
els is not fast enough to provide rapid adaptation to the sudden stopping of the obstacles
(hence some models failed to find a solution in many trials).

The following remarks summarise further observations with respect to the typical be-
haviour of the existing models. As revealed by the simulations, the resistive grid model
has the slowest dynamics. Usually, several local maxima appear when the environment
is changing rapidly. As a result, a large number of iterations is needed to escape from a
local maximum and to converge to a solution.

The model by Glasius et al. in many situations is more efficient than the resistive grid
model. However, in complex dynamic scenes the network dynamics is not fast enough to
adapt to the changes effectively. Some efforts are also needed to find an appropriate set
of the model parameters.

The model by Yang et al. generates mainly paths of a good quality, which are usually
shorter, than those of the resistive grid and the Glasius’s et al. models. But typically, this
model requires a larger number of iteration to converge to a solution. As noticed also in
(Chen et al., 2003), the network dynamics and, therefore, the quality of a generated path,
significantly depend on the choice of parameters. The most important model parameters
are A (the passive decay rate) and µ, which defines “how much” activity is transferred
between a neuron and its neighbours. Incorrect choice of these parameters may lead (a)
to a quick saturation of the neural activity (as soon as the activity landscape is in its
steady state, no further planning is possible, since all neurons have the same activity
level, and the robot stops at its current position), and (b) to the case, when the neural
activity decays and becomes too small to reach the position of the neuron, corresponding
to the robot’s starting point. In both cases path planning fails. An illustration of how the
parameters in the model by Yang et al. influence the “quality” of trajectory generation

15



Table 4: Statistical comparison for the “freezing up obstacles” scenario (an example is
demonstrated in Figure 6). The table shows for each model the average number
of path steps (the average path length) and its standard deviation as well as the
average number of iterations and its standard deviation in 500 runs per series. For
each run, the stopping time of the moving obstacles and their initial x positions
are randomly selected. Each network is given the maximum of 1500 iterations.
In Series 1 the obstacles stopped at their current positions. In Series 2 their
were placed to the last visited wall (either to the top, or to the bottom of the
workspace).

Series 1 dwenn resist. grid Glasius et al. Yang et al. Chen et al.

av. # of steps 101.88 119.98 105.35 103.4 105.36
std. deviation 8.25 101.64 20.67 8.46 23.0

av. # of iter. 221.48 220.79 235.12 437.93 236.5
std. deviation 19.5 101.58 20.41 44.8 22.86

# of failures 0 5 0 0 0

Series 2

av. # of steps 105.53 812.63 221.99 133.2 234.84
std. deviation 23.24 249.63 22.36 23.22 23.75

av. # of iter. 227.74 913.08 352.53 571.41 367.19
std. deviation 40.19 249.47 19.74 96.67 20.43

# of failures 0 98 16 0 3

is shown in Figure 8. As demonstrated in Figure 5, when A = 40 and µ = 8, the path
length is 158 and the number of iterations is 743. For µ = 10, the path length and the
necessary number of iterations is 166 and 975, correspondingly (this path is illustrated in
Figure 8a). For A = 10 and µ = 2, the path length is 158 steps again, but in this case the
model requires much more, namely 2507 iterations to converge to a solution (this path is
depicted in Figure 8b). For A = 2 and µ = 10, the neural activity saturates quickly, such
that the robot is not able to move further and to reach the target (the position, where
the robot stopped, is shown in Figure 8c; the activity landscape is shown for the moment,
when the neuron, corresponding to the robot’s current position becomes saturated).

The paths, generated by the model by Chen et al., are of an acceptable quality, and
are similar to those produced by the model by Glasius et al. (what indicates also the
similarity of these models).

It is worth to notice, that there are no explicit rules of selecting the model parameters
for the models by Glasius et al., by Yang et al., and by Chen et al.. Even if some parameter
set appears to be suitable for a certain task, it is not known, whether a generated path
is optimal and what parameters are needed to get a good path. In contrast, the dwenn

model is parameter-free and its performance exclusively depends on the task.

4.2 Complexity issue

Besides the performance in terms of path length and network iterations, two major issues
are important in robotic tasks: (i) the computational load needed to carry out the path
planning, and (ii) possible applicability of the method for planning in higher dimensional
configuration spaces and corresponding memory requirements.

Table 5 displays for each model the number of additions and multiplications needed for
updating the activity level of a single neuron. Note that in all possible cases the dwenn

needs at most a single addition to increment the activity inherited from a neighbour, re-

16



0

0

0

20

20

20

40

40

40

60

60

60

0

0

0

20

20

20

40

40

40

60

60

60

−40

−40

−40

−20

−20

−20

0

0

0

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

c)

a)

b)

deadlock
robot position

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP

TP SP

10

20

30

40

50

60

0 10 20 30 40 50 60

TP SP

TP SP

Figure 8: Influence of the parameters in the model by Yang et al. on path planning. a)
The resulting path and the activity landscape for A = 40 and µ = 10. The path
length and the necessary number of iterations is 166 and 975, correspondingly
(note, that for µ = 8 the path length is 158 and the number of iterations is 743,
Figure 5). b) The resulting path and the activity landscape for A = 10 and
µ = 2. The path length is 158 steps again, but the number of iterations is 2507.
c) The resulting path and the activity landscape for A = 2 and µ = 10. The
neural activity saturates when the robot is in the shown position. No further
movements are possible since the “saturated” neurons have the same activity
level.

17



Table 5: The number of additions and multiplications per state update of a neuron (N is
the dimensionality of the configuration space).

dwenn resist. grid Glasius et al. Yang et al. Chen et al.

1 (2N + 1) (2N + 3) (2N + 5) (2N + 6)

gardless of the number of neighbours involved and, thus, independent of the dimensionality
of the configuration space. However, one needs to query the neighbour(s) and evaluate a
number of binary attributes in Conditions (a)-(d) in (4) (at most 2N ×5 such binary oper-
ations are needed in the worst case). In practice, however, the number of these evaluations
is dramatically reduced, if the neighbour is queried first, which has a positive weight, i.e.,
which carried the last activity wave to the updating neuron at the previous time step.

The dwenn model is extremely efficient with respect to memory requirements as well,
because only integer-valued computation is involved. Assume that the neural field has
kN neurons, then a simple field of 2kN short integers of 16 bit is sufficient to store the
potential values together with all additionally needed information to evaluate Conditions
(a)-(d) in (4), which can be encoded in two bits. This and an additional array of kN × 2N
bits to store the index of the positive weight for each neuron is sufficient to implement the
whole dwenn dynamics.

5 Conclusions

We proposed a new type of neural network – the dynamic wave expansion neural network
(dwenn) – which is capable of calculating dynamic distance potentials, useful for route
generation in time-varying environments. By means of local interactions between neurons,
waves of neural activity propagate in the network field and the corresponding activity levels
of neurons are updated by summation of the transferred activity. In particular situations
(when the activity propagation is interrupted by obstacle movements), dwenn neurons
may initiate the propagation of inhibitory waves, which prevent the appearance of local
minima, and, hence, undesirable situations, when the robot “gets lost”.

For the dwenn model, no a priori knowledge of the environment is needed, as well
as no learning process is required to perform path generation. Since the network is only
locally connected, the computational complexity grows linearly in the number of neurons
in the network field. Therefore, the generation of grid potentials is an extremely fast
process, which makes real-time planning possible. The dwenn dynamics is parameter-
free, therefore, no efforts are needed to tune the model. The dwenn paths are safe and
tend to be optimal in a L1 metrics even in complex, highly dynamic situations.

The dwenn algorithm may be characterised as an active, exploratory method, in which
the activity propagation is selective. It is sufficient that only one neuron with required
properties exists in a local neighbourhood to provide further activity spreading. A sequen-
tial principle of adaptation of connection weights was used also in (Kassim & Vijaya Ku-
mar, 1995, 1997b, 1997a, 1999), where a model of neural network for path planning in a
stationary domain was proposed. In contrast to dwenn, other models are passive, since
the initial quantity of neural activity is distributed through the network field in such a way,
that all neurons in a local neighbourhood participate in the process of activity propagation
(such methods are called sometimes relaxation methods).

Since the activity propagation is selective, dwenn’s complexity (i.e., the number of
operations per state update of a neuron, see Table 5), unlike all other models, does not
explicitly depend on the dimensionality of the configuration space, and depends only on

18



0 020 2040 4060 600 0

20 20

40 40

60 60

−40
0

−20 0.1

0 0.2

20
0.3

a) b)

Figure 9: a) Scalar potential field generated by the model by Glasius et al. (the target is
in the centre of the workspace). b) Scalar potential field with zi = 10/xi, where
xi are the potential values generated by the dwenn model. This potential field
can be considered as a coarse, but qualitatively similar approximation of the
first one.

the “complexity” of the dynamic scene. Therefore, in the case of a stationary environ-
ment, for instance, only one addition operation and five binary checks per neighbour are
required to calculate the activity level of a neuron in a configuration space of an arbitrary
dimensionality.

The dwenn algorithm triggers in particular situation the propagation of inhibitory
waves in the network field, what provides an active, rapid, and effective reaction and
adaptation to sudden environmental changes, as well as local-minima-free trajectory gen-
eration in the most cases.

If one takes zi = g(xi) for xi > 0 (xi are computed according to (3), g(x) = k/x, k ∈ R+),
then a potential field generated by the dwenn model can be considered as a coarse,
but qualitatively similar approximation of a potential field obtained by the considered
relaxation models (Figure 9).

The dwenn dynamics is fast enough to adapt to rapid changes in the environment. It
requires only a small number of iterations to stabilise in the presence of environmental
changes and to lead the robot to its destination. In the simulations dwenn demonstrated
a robust planning and typically outperformed other models by generating shorter and
more “efficient” paths. The model can deal effectively with all kinds of dynamic changes
in the environment, and, hence, it may be applied to an efficient path planning of mobile
robots in (i) environments with a highly dynamic nature, as well as in (ii) multi-agent
environments (when robots are considered as moving obstacles for each other). Since the
computational efficiency of the model does not explicitely depend on the dimensionality of
the configuration space, it can potentially be applied to the trajectory generation of multi-
joint robotic manipulators with many degrees-of-freedom, even if corresponding higher-
dimensional configuration spaces are changing in time. Further, a distributed planning for
multi-body articulated systems, as e.g., a robotic hand with several fingers, or multiple
robot arms sharing a common workspace is another prospective application of the dwenn

model.

Acknowledgement

The authors would like to thank R. Haschke for his comments on a draft version of the
manuscript.

19



References

Ageev, D. A., & Istratov, A. Y. (1998). Neural network implementation for the optimal
path problem. Journal of Computer and System Sciences International, 37, 118–125.

Alvarez, D., Alvarez, J. C., & Gonzalez, R. C. (2003). Online motion planning using
Laplace potential fields. In Proceedings of IEEE International Conference on Robotics
and Automation (pp. 3347–3352). Taipei, Taiwan: IEEE.

Barraquand, J., Kavraki, L., Latombe, J. C., Li, T.-Y., Motwani, R., & Raghavan, P.
(1997). A random sampling scheme for path planning. International Journal of
Robotics Research, 16, 759–774.

Barraquand, J., & Latombe, J. C. (1991). Robot motion planning: a distributed repre-
sentation approach. International Journal of Robotics Research, 10, 628–649.

Bennewitz, M., Burgard, W., & Thrun, S. (2003). Adapting navigation strategies us-
ing motions patterns of people. In Proceedings of IEEE International Conference on
Robotics and Automation (pp. 2000–2005). Taipei, Taiwan: IEEE.

Bugmann, G., Taylor, J. G., & Denham, M. (1995). Route finding by neural nets. In
J. G. Taylor (Ed.), Neural networks (pp. 217–230). Alfred Waller Ltd.

Chen, W., Fan, C., & Xi, Y. (2003). On-line safe path planning in unknown environments.
In Proceedings of IEEE International Conference on Robotics and Automation (pp.
4191–4196). Taipei, Taiwan: IEEE.

Connolly, C., Burns, J. B., & Weiss, R. (1990). Path planning using Laplace’s equation.
In Proceedings of IEEE International Conference on Robotics and Automation (pp.
2102–2106). Cincinnati, OH: IEEE.

Dracopoulos, D. C. (1998). Neural robot path planning: the maze problem. Neural
Computing & Applications, 7, 115–120.

Eldershaw, C., & Cameron, S. (2000). Using genetic algorithms to solve the motion
planning problem. Journal of Universal Computer Science, 6, 422–432.

Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity
obstacles. International Journal of Robotics Research, 17, 760–772.

Fraichard, T., & Laugier, C. (1993). Path-velocity decomposition revisited and applied
to dynamic trajectory planning. In Proceedings of IEEE International Conference on
Robotics and Automation (pp. 40–45). Atlanta, GA: IEEE.

Glasius, R., Komoda, A., & Gielen, S. C. A. M. (1995). Neural network dynamics for
path planning and obstacle avoidance. Neural Networks, 8, 125–133.

Glasius, R., Komoda, A., & Gielen, S. C. A. M. (1996). A biologically inspired neural net
for trajectory formation and obstacle avoidance. Biological Cybernetics, 74, 511–520.

Grossberg, S. (1988). Nonlinear neural networks: principles, mechanisms, and architec-
tures. Neural Networks, 1, 17–61.

Henrich, D. (1997). Fast motion planning by parallel processing - a review. Journal of
Intelligent and Robotic Systems, 20, 45–69.

Hsu, D., Kindel, R., Latombe, J. C., & Rock, S. (2002). Randomized kinodynamic
motion planning with moving obstacles. International Journal of Robotics Research,
21, 233–255.

Hwang, Y. K., & Ahuja, N. (1992). Gross motion planning - a survey. ACM Computing
Surveys, 24, 219–291.

Karnik, M., Dasgupta, B., & Eswaran, V. (2002). A comparative study of Dirichlet and
Neumann conditions for path planning through harmonic functions. In P. M. A. Sloot,
C. J. K. Tan, J. J. Dongarra, & A. G. Hoekstra (Eds.), Lecture notes in computer
science 2330 (pp. 442–451). Springer-Verlag Berlin Heidelberg.

Kassim, A. A., & Vijaya Kumar, B. V. K. (1995). Potential fields and neural networks. In

20



M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 749–753).
Cambridge, MA: The MIT Press.

Kassim, A. A., & Vijaya Kumar, B. V. K. (1997a). Path planning for autonomous robots
using neural networks. Journal of Intelligent Systems, 7, 33–56.

Kassim, A. A., & Vijaya Kumar, B. V. K. (1997b). The wave expansion neural network.
Neurocomputing, 16, 237–258.

Kassim, A. A., & Vijaya Kumar, B. V. K. (1999). Path planners based on the wave
expansion neural network. Robotics and Autonomous Systems, 26, 1–22.

Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic
roadmaps for path planning in high-dimensional space. IEEE Transactions on Robotics
and Automation, 12, 566–580.

Khatib, O. (1986). Real time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research, 5, 90–99.

Kindermann, T., Cruse, H., & Dautenhahn, K. (1996). A fast, three-layer neural network
for path finding. Network: Computation in Neural Systems, 7, 423–436.

Koenig, S., & Likhachev, M. (2002). Incremental A*. In T. G. Dietterich, S. Becker, &
Z. Ghahramani (Eds.), Advances in neural information processing systems 14. Cam-
bridge, MA: MIT Press.

Latombe, J. C. (1991). Robot motion planning. Boston, MA: Kluwer Academic Publishers.
Lebedev, D. V., Steil, J. J., & Ritter, H. (2002). A new wave neural network dynamics

for planning safe paths of autonomous objects in a dynamically changing world. In
Proceedings of WSEAS International Conference on Neural Networks and Applications
(pp. 4171–4176).

Lebedev, D. V., Steil, J. J., & Ritter, H. (2003a). Real-time path planning in dynamic
environments: a comparison of three neural network models. In Proceeding of IEEE
International Conference on Systems, Man, and Cybernetics (pp. 3408–3413).

Lebedev, D. V., Steil, J. J., & Ritter, H. (2003b). A neural network model that calculates
dynamic distance transform for path planning and exploration in a changing environ-
ment. In Proceedings of IEEE International Conference on Robotics and Automation
(pp. 4209–4214). Taipei, Taiwan: IEEE.

Lee, S., & Kardaras, G. (1997). Collision-free path planning with neural networks. In
Proceedings of IEEE International Conference on Robotics and Automation (pp. 3565–
3570). Albuquerque, NM: IEEE.

Lemmon, M. (1991). 2-degree-of-freedom robot path planning using cooperative neural
fields. Neural Computation, 3, 350–362.

Li, Z. X., & Bui, T. D. (1998). Robot path planning using fluid model. Journal of
Intelligent and Robotic Systems, 21, 29–50.

Liu, J., & Khatib, O. (2002). Practical connection between potential fields and neural
networks. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks
(second edition). Cambridge, MA: The MIT Press.

Lozano-Perez, T. (1983). Spatial planning: a configuration space approach. IEEE Trans-
actions on Computers, C-32:108–120.

Lumelsky, V. J., & Stepanov, A. A. (1986). Dynamic path planning for a mobile automa-
ton with limited information on the environment. IEEE Transactions on Automatic
Control, 31, 1058–1063.

Mazer, E., Ahuactzin, J. M., & Bessiere, P. (1998). The Ariadne’s clew algorithm. Journal
of Artificial Intelligence Research, 9, 295–316.

Meng, H., & Picton, P. D. (1992). A neural network for collision-free path planning. In
I. Aleksander & J. Taylor (Eds.), Artificial neural networks 2 (p. 591-594). North-
Holland.

Miura, J., Uozumi, H., & Shirai, Y. (1999). Mobile robot motion planning considering

21



the motion uncertainty of moving obstacles. In Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics (pp. 692–697).

Paredis, J., & Westra, R. (1997). Coevolutionary computation for path planning. In H.-J.
Zimmermann (Ed.), Proceedings of 5th Europian Congress on Intelligent Techniques
and Soft Computing (pp. 394–398). Aachen: Verlag Mainz.

Rimon, E., & Koditschek, D. (1992). Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation, 8, 501–518.

Shu, C., & Buxton, H. (1995). Parallel path planning on the distributed array processor.
Parallel Computing, 21, 1749–1767.

Siemiatkowska, B., & Dubrawski, A. (1998). Cellular neural networks for navigation
of a mobile robot. In L. Polkowski & A. Skowron (Eds.), Lecture notes on artificial
intelligence 1424 (pp. 147–154). Heidelberg: Springer-Verlag.

Song, G., Thomas, S., & Amato, N. M. (2003). A general framework for PRM motion plan-
ning. In Proceedings of IEEE International Conference on Robotics and Automation
(pp. 4445–4450). Taipei, Taiwan: IEEE.

Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In Proceedings of
Fourteenth International Joint Conference on Artificial Intelligence (pp. 1652–1659).
Montreal, CA: Morgan Kaufmann.

Tarassenko, L., Brownlow, M., Marshall, G., Tombs, J., & Murray, A. F. (1991). Real-
time autonomous robot navigation using VLSI neural networks. In R. Lippmann, J. E.
Moody, & D. S. Touretzky (Eds.), Advances in neural information processing systems
3 (pp. 422–428). San Fransisco, CA: Morgan Kaufmann.

Vleugels, J., Kok, J. N., & Overmars, M. (1997). Motion planning with complete knowl-
edge using a colored SOM. International Journal of Neural Systems, 8, 613–628.

Wang, Y., & Chirikjian, G. S. (2000). A new potential field method for robot path plan-
ning. In Proceedings of IEEE International Conference on Robotics and Automation
(pp. 977–982). San Francisco, CA: IEEE.

Xia, Y., & Wang, J. (2000). A discrete-time reccurent neural network for shortest-path
routing. IEEE Transactions on Automatic Control, 45, 2129-2134.

Yang, S. X., & Meng, M. (2000). An efficient neural network approach to dynamic robot
motion planning. Neural Networks, 13, 143–148.

Yang, S. X., & Meng, M. (2001). Neural network approaches to dynamic collision-free
trajectory generation. IEEE Transactions on Systems, Man, and Cybernetics–Part B:
Cybernetics, 31, 302–318.

Yang, S. X., & Meng, M. (2003). Real-time collision-free motion planning of a mobile robot
using a neural dynamics-based approach. IEEE Transactions on Neural Networks, 14,
1541–1552.

Yu, H., & Su, T. (2001). A destination driven navigator with dynamic obstacle mo-
tion prediction. In Proceedings of IEEE International Conference on Robotics and
Automation (pp. 2692–2697). Seoul, Korea: IEEE.

Zelinsky, A. (1992). A mobile robot navigation exploration algorithm. IEEE Transactions
on Robotics and Automation, 8, 707–717.

22


