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Abstract

In this paper, we propose a new method to gener-
ate C2 continuous gait motion for biped robots. The
method is based on the enhanced inverted pendu-
lum mode, which can easily handle angular momen-
tum around the center of gravity. Using our method,
it is possible to plan motion paths for biped robots
without discontinuity in the acceleration even dur-
ing switching from single support phase to double
support phase, and vice versa.

1 Introduction

Biped locomotion of humanoid robots is one of the
most exciting topics these days. Many researchers
have proposed humanoid robots which realize biped
gait [4, 2, 1, 3]. One way to generate gait motion is
to convert a dynamically infeasible motion to a fea-
sible one [7, 5]. This requires good quality motion
in advance, such as motion captured data. Another
way is to generate gait motion based on the Inverted
Pendulum Mode (IPM) [4, 3]. Using the IPM, we can
simplify complex models of humanoid robots which
have too many degrees of freedom to be controlled
directly. However, the IPM doesn’t consider any an-
gular momentum, since it assumes that the the cen-
ter of gravity (COG) is a mass point and that the
ground force vector always passes through the COG
of the system. Because of this, it is difficult to gen-
erate various patterns of gait motion, particularly
“human-like gait”.

In this paper, we propose a new method to plan gait
motion for biped robots in real-time. The proposed
method, named the Angular Momentum inducing
Inverted Pendulm Mode (AMPM), is based on the
IPM, which allows real-time motion generation for
biped robots, but two new concepts are added. This
AMPM enables to generate motion (1) which con-
siders angular momentum around the COG, and (2)
is C2 continuous at the moment of switching from
single support phase to double support phase, and
vice versa.

The method follows a bottom-up approach: First,
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Figure 1: Posture of the human body model in the
world coordinate system.

trajectory of the center of gravity and rotational mo-
mentum of the whole body during the motion are cal-
culated. Then, the motions of body segments that
satisfy the predefined trajectories are calculated us-
ing inverse kinematics. By changing the value of the
parameters that determine the angular momentum
around the COG, it is possible to generate gait mo-
tion that could not be created by the IPM without
destabilizing the system due to discontinuous accel-
eration.

1.1 Coordinates used in this study

We assume in this paper that the human body stands
in the world coordinate system as shown in Figure 1.
The x-axis corresponds to the anterior axis, y-axis to
the lateral axis, and z-axis to the vertical axis. The
frontal plane is defined by the lateral and vertical
axis, and the sagittal plane is defined by the anterior
and vertical axis.

1.2 Inverted Pendulum Model

The IPM is often used in robotics to calculate trajec-
tories of the COG of humanoid robots. This model
assumes the ground reaction force to pass through
the COG, as shown in Figure 2. Using the IPM, the
differential equation to describe the COG motion in
the world coordinate system can be written as

ẍg =
g

H
x, ÿg =

g

H
y

where H is the height of the COG which is considered
to be constant, g is the gravity constant (g = 9.81),
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Figure 2: IPM. The ground force always penetrates
the COG.

xg is the position along the anterior axis, and yg is
the position along the lateral axis. The great advan-
tage of using this model is that the motion of the
COG in the x-z plane and in the y-z plane can be
calculated independently.

By setting boundary conditions, the trajectory of the
COG can be written as the following equations:

x = x0 cosh
t

Tc
+ ẋ0 Tc sinh

t

Tc

y = y0 cosh
t

Tc
+ ẏ0 Tc sinh

t

Tc

where Tc =
√

H/g , (x0, y0) and (ẋ0, ẏ0) are the co-
ordinates and velocity of the COG in the x-y plane
at time t = 0. Although the ground force is applied
to the whole sole of the foot, it is known that such
a force can be summarized to a specific point. This
point is known as the zero moment point (ZMP) [6]
in the field of robotics. Therefore, the ZMP can be
considered as the center of the ground reaction force.
The ZMP of the humanoid robot is considered as the
origin of this coordinate system.

2 Enhanced Inverted Pendulum Model

A new model of the COG is proposed here, which
enhances the IPM in two ways: (1) the ZMP is al-
lowed to move over the ground, (2) the ground force
vector does not have to be parallel to the vector be-
tween the ZMP and the COG, as far as its horizontal
element is linearly dependent on the COG position.

As a result, rotational moment is allowed to be gen-
erated by the ground force. Their relationship is
depicted in Figure 3. The position of the COG is
(x, H), the position of the ZMP is (ax + b, 0), and
the normal vector of the ground force is parallel to
vector (cx + d, H). The relationship between the ac-
celeration of the COG and its position becomes:

Fx : Fy = ẍ : (z̈ + g) = (cx + d) : H.

As the height of the COG is z = H , we can write

ẍ =
g

H
(cx + d). (1)

The solution for this differential equation can be
written as

x = C1e
− t

Te + C2e
t

Te − d

c

Z

x
X

(Fx, Fz)

H

zmp=(ax+b)
cx+d+zmp

r

Figure 3: The AMPM. The ZMP is allowed to
move over the ground, and its position must be lin-
early dependent to that of the COG. The horizontal
component of the ground force vector is allowed to
change, by an amount which must be linearly depen-
dent on the COG.

where Te =
√

H/(cg), and C1, C2 are constant val-
ues. As initial parameter values are set at x = x0

and ẋ = v0 at t = 0, the constant values C1, C2 are

C1 =
x0 + d

c − v0 Te

2
, C2 =

x0 + d
c + v0 Te

2
.

Then, the ground force vector can be written as

Fx = mẍ =
m

Te
2

(
C1e

− t
Te + C2e

t
Te

)
Fz = mg

where m is the mass of the system. The rotational
moment r around the y-axis can be calculated as

r = −mH

Te
2

(
C1e

− t
Te + C2e

t
Te

)

−mg

(
(a − 1)

(
C1e

− t
Te + C2e

t
Te +

d

c

)
+ b

)

and the angular momentum ωt1,t2 generated by the
rotational momentum between times t = t1, t2 can
be obtained as

ωt1,t2 = m

[(
−C1e

− t
Te + C2e

t
Te

)(
−H

Te
− gTe(a − 1)

)

−g

(
(a − 1)

d

c
+ b

)
t

]t2

t1

+ ω1

where ω1 is the angular momentum at t = t1. In
the following sections, we show how AMPM can be
used to generate COG trajectories in the frontal and
lateral plane.

2.1 Application of the AMPM for motion in
the sagittal plane

Gait motion consists of two phases, which are the
single support phase and the double support phase.
The model is supported by one leg during the single
support phase and it is supported by two legs during
the double support phase. The relationship between
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Figure 4: The relationship of the COG, ZMP, and
ground force during (a) the single support phase and
(b) the double support phase. The positions of the
COG and ZMP are defined here by (Xg, H) and
(Xg

as
, 0) during the single support phase, and (Xg, H)

and (Xg

ad
, 0) in the double support phase. The x coor-

dinate value of the ZMP is considered linear to that of
the COG. During the single support phase, the COG
travels from P0 to P1, and the ZMP travels from Z0

to Z1, as well. During the double support phase, the
COG travels from P1 to P ′

0, which is the starting
point of another single support phase, and the ZMP
travels from Z0 to Z ′

0. The position of P0, P1, Z0, Z1

in the single support coordinate system are defined
here by (−ls, H), (ls, H), (− ls

as
, 0), and ( ls

as
, 0), where

2ls is the distance the COG travels during the single
support phase, and 2ld is the distance the COG trav-
els during the double support phase. The positions of
P1, P

′
0, Z1, Z

′
0 in the double support coordinate sys-

tem are defined here by (−ld, H), (ld, H), (− ld
ad

, 0),
and ( ld

ad
, 0).

COG, ZMP and ground force during these phases is
assumed here as shown in Figure 4, and the rela-
tionship between the acceleration of the COG and
its position during the single support phase and the
double support phase can be written relatively as

ẍg : (z̈g + g) = xg

(
cs − 1

as

)
: H, (2)

ẍg : (z̈g + g) = xg

(
cd − 1

ad

)
: H, (3)

where cs, as, cd and ad are parameters which are de-
scribed in Figure 4. Solving these as in the previous
subsection, the trajectory of the COG during the two
phases is obtained as

xg = Cs1 cosh
t

Ts
+ Cs2 sinh

t

Ts
(single)

xg = Cd1 cos
t

Td
+ Cd2 sin

t

Td
(double),

where C∗ are constants and

Ts =

√
H

(cs − 1/as)g
, Td =

√
H

(1/ad − cd)g
.

Therefore, using AMPM, the motion of the COG
in the sagittal plane can be expressed by hyper-
bolic functions during the single support phase, and
by trigonometric functions during the double sup-
port phase. This is because cs − 1/as > 0 and
cd − 1/ad < 0. As we assume the acceleration of the
COG must be continuous when switching from sin-
gle support phase to double support phase, and vice
versa, the ground force vector at the switching mo-
ment in the single coordinate system (Figure 4(a))
and the double support coordinate system (Figure
4(b)) must be the same. By setting xg = ls in Equa-
tion 2 and xg = −ld in Equation 3, we obtain the
following condition:

ls
cs

+
ld
cd

= ls + ld. (4)

Therefore, if the constant values cs, cd, ls, ld are cho-
sen in a manner that satisfies Equation 4, the accel-
eration becomes continuous.

As shown in Figure 4, the motions of the COG dur-
ing the single support phase and the double support
phase are symmetric. The angular momentum gen-
erated in the initial half of the phase is compensated
by that in the latter half. Therefore, it is not nec-
essary to tune parameters to avoid divergence of the
angular momentum.

2.2 Application of AMPM for motion in the
frontal plane

The coordinate systems used here are shown in figure
5. These systems are the same as those defined in
Kajita et al [3]. The distance between the feet when
they are both on the ground is 2s + 2β. The COG
travels 2β during the double support phase. After
switching to single support phase, it travels along
until it stops and returns back the same path. The
analytical models of the single support phase and the
double support phase can be explained by AMPM.
The way they are modeled is explained in the follow-
ing.

The relationship between ZMP, COG and ground
force during the single support phase is

ÿg : (z̈g + g) = cyyg : H. (5)

where cy is a constant value that can be set by the
user (Figure 5(b)). Using the terminal condition, the
motion of the COG can be finally written as:

yg = s cosh
t

Tls
− vex sinh

t

Tls
. (6)
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Figure 5: The coordinate systems used in the frontal
plane for (a) single support phase, and (b) double
support phase. The origin is set to the position of
the ZMP in single support phase, and to the center
in double support phase.

where vex is the velocity when the single support
phase starts, and Tls =

√
H/(cy g). Since the dura-

tion of the single support phase T is determined by
the motion in the sagittal plane (T = t2−t0), vex can
be calculated by setting t = T, yg = s into Equation
6. As a result, vex can be calculated as

vex =
−s + s cosh T

Tls

sinh T
Tls

The y-component of the ground force can be written
as

Fy =
m

T 2
ls

(
y0 cosh

t

Tls
− vex sinh

t

Tls

)
Fz = −mg

As the trajectories of the ground force, COG, and
ZMP are known, the rotational moment around the
anterior axis can be calculated as:

rx = ygFz − HFy.

The double support phase can be modeled as follows.
Since the motion in the frontal plane is symmetric
with respect to time, we can assume the ZMP and
COG satisfy the following relationship:

zy =
β

β + s
yg.

Since rotational momentum is generated in the
frontal plane, and since rotational momentum de-
creases as the COG approaches the origin of the co-
ordinate system, the motion of the COG can be ap-
proximated by the following function:

ÿg : g = c3(yg − zy) : H, (7)

where c3 is a constant. Using the boundary condi-
tions of the single support phase, c3 can be calculated
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Figure 6: The human body model used in this study

as

c3 =
β + (1 − acogy)s

β
< 0.

Then, the trajectory of yg becomes

yg = C1 cos
t − t2

Tc
+ C2 sin

t − t2
Tc

− b

T 2
c

.

where C1, C2 are arbitrary constant values. Using
the terminal conditions, the final form becomes:

yg = (β + s) cos
t − t2

Tc
+ vex sin

t − t2
Tc

.

The y and z components of the ground force can be
written as

Fy = − m

T 2
c

(
(β + s) cos

t − t2
Tc

+ vex sin
t − t2

Tc

)
Fz = −mg

Rotational moment around the anterior axis can be
calculated by using Equation 7, same as in the sagit-
tal plane. Because of the symmetry of the motion
with respect to time, we do not have to tune any pa-
rameters to compensate for the angular momentum.

2.3 Calculating the joint angles using inverse
kinematics

As we have already defined the trajectories of the
COG and the angular momentum, the next step is to
calculate kinematic parameters that satisfy these tra-
jectories. Inverse kinematics is used for this purpose.
A human body model with 40 degrees of freedom, as
shown in Figure 6, was used. At first, positions and
rotational trajectories of the feet, which are defined
here as (pl, θl) and (pr, θr), are calculated using the
foot step data specified in advance. Four key-frames
of the support foot are specified as shown in Fig-
ure 7. The data includes the posture of the foot at
initial contact, initial full contact, heel rise, and toe
off. The x- component of the velocity of the foot
of the swing leg when it is lifted from the ground is
calculated by

v0
swing =

ls
Tswing

.
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Figure 7: The key-frames of the foot rotation

The final velocity when it lands on the ground is set
to zero. The trajectory of the swung foot is calcu-
lated by interpolating the key-frames with a cubic
spline curve.

Trajectories of generalized coordinates of the hu-
man body model are defined here as q(t) =
(q1(t), q2(t), ..., qdof(t))T where dof is the number of
degrees of freedom of the human body model. Gen-
eralized coordinates q(t) include the position and ro-
tation of the root of the body in the 3D world coor-
dinate system.

The relationship between velocity of the COG and
velocity of the generalized coordinates can be written
as follows:

ẋg = Jcog q̇,

where Jcog is the Jacobian matrix that consists of the
partial differentials of the COG by the generalized
coordinates:

Jcog =
∂xg

∂q
.

Then, the acceleration of the COG can be obtained
as follows:

ẍg = Jcog q̈ + J̇cog q̇. (8)

Angular momentum r and first derivative of the gen-
eralized coordinates have a linear correlation:

r = Rq̇.

Then, the derivative of the angular momentum can
be calculated as follows:

ṙ = Rq̈ + Ṙq̇. (9)

Acceleration of the feet can be expressed as functions
of q̈ as well: 


p̈l

p̈r

θ̈l

θ̈r


 = Jf q̈ + J̇f q̇ (10)

Combining Equation 8, 9, and 10, linear constraints
that must be satisfied can be written in the following
form:

λ = Jall q̈ + J̇all q̇. (11)

Figure 8: Side view of the gait motion trajectory

where λ = (ẍg, ṙ, p̈l, θ̈l, p̈r, θ̈r)T , and Jall =
(Jcog, R, Jf )T . Calculating q̈ that satisfies Equation
11 can be considered an inverse kinematics problem.

Since the goal is to calculate a stable gait motion, q̈
that minimize the following quadratic form is calcu-
lated here:

(¨̂q − k(q̂ − q̂0) + d ˙̂q)(¨̂q − k(q̂ − q̂0) + d ˙̂q)T . (12)

where ¨̂q is the subset of q̈ which determines an up-
right posture of the body. Those parameters include
rotation of the loins and joint angles of the chest. q̂0

is the target posture to keep the body upright, which
is a zero vector here, and k, d are the elastic and the
viscosity constants respectively.

q̈ that minimize Equation 12 and satisfy Equation
11 were calculated through quadratic programming.
Using the calculated acceleration, the values of the
generalized coordinates and their velocity were up-
dated step by step, and finally, the whole trajectory
was obtained.

3 Experiments

In this section, several gait motions which have var-
ious angular momentum are generated. First, the
trajectory of the COG is determined, then the tra-
jectories of the ZMP and ground force are calculated
from the trajectory of the COG, and then the pos-
ture of the whole body is calculated using inverse
kinematics. Parameters in equations are set manu-
ally and angular momentum during motion can be
controlled by setting these appropriately.

The first demo of normal gait is shown in Figure 8.
The step length is set to 0.6m, the initial velocity in
the single support phase to 1.0m/s. The accelera-
tion of the COG during this gait along the anterior
axis and lateral axis are shown Figure 9. As can
be seen, the acceleration values are continuous even
when switching from single support phase to double
support phase. The angular acceleration of the flex-
ion/extension of (a) the hip joint, and (b) the knee
joint is shown in Figure 3. As can be seen, the ac-
celeration of these joints is also continuous. Next,
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Figure 9: The acceleration of the COG along (a)
the anterior and (b) the lateral axis
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Figure 10: The angular acceleration of the flex-
ion/extension of (a) the hip joint, and (b) the knee
joint

the angular momentum around the frontal axis dur-
ing the motion is increased by setting the value of
cy in Equation 5 from 0.1 to 0.7. The model swings
its upper body in the frontal plane according to the
magnitude of the applied moment. The final demo
is a motion in which the angular momentum around
the y-axis is enlarged (Figure 3). When a large mo-
ment is applied around the y-axis, the upper body
swings largely in the sagittal plane and the model
easily loses its balance. In order to prevent this, pa-
rameters are set to make each step large in this demo.

4 Summary and Future Work

In this paper, we proposed a new approach to gen-
erate gait motion. The algorithm, the Enhanced In-
verse Pendulum Model, is based on the Inverse Pen-
dulum Model. It allows to include moment around

(a) (b)

Figure 11: An example of increasing the rotational
momentum around the anterior axis cy from (a) 0.1
to (b) 0.7.

Figure 12: The trajectory of the humanoid model
when the angular momentum around the lateral axis
is large.

the COG and guarantees C2 continuity during the
whole motion. Two elements of motion, in the sagit-
tal plane and the frontal plane, can be calculated in-
dependently in this model, and a variety of motions
can be generated by changing parameter values. Af-
ter calculating the trajectories of the COG and the
ZMP using AMPM, the whole body posture is de-
termined by inverse kinematics.

In future work, we plan to use this gait motion gener-
ator to approximate various kinds of gait motion, and
characterize the features of those motions with the
parameters defined in this study. This will be par-
ticularly useful for generating various kinds of gait
motion by selecting a number of parameters from a
database.
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