
Human-Computer interaction

Session 5

User interface styles and technology

MMI/SS08

1

User Interfaces

Different styles to build user interfaces

- command line
- form filling
- point (select) & click
- menues
- □ Graphical user interfaces (GUI)
 - WIMP Windows, Icons, Menues, Pointer
 - More "widgets": buttons, scrollbars, etc.
 - "look & feel": appearance, semantics, and behavior of widgets

User Interfaces

- □ Command Line Interface (CLI)
 - way of expressing instructions to the computer directly (e.g. 438 commands in BSD Unix)

□ Form Filling

- whole interface is form-based
- data entered into *fields*
- few keys to navigate through fields and conclude form
 Go-faster Travel Agency Booking

C) Teinet daimi.au.dk									
Kernel 2.4.9-31smp on a 2-processor i686 Ingin: mades Password:									

* Welcome to the paimi mallserver. In most cases it will be more appropriate * * if you log onto the host alias *									
*	9 01	ico che	nost arras					÷	
*		fresh	-horse.daini	i.au.dk					
-							*		
	* which is also reachable from outside the firewall.							*	
*******	***	******	*********	*******	****	***	*****	*******	
Trying find			haat						
Trying to g									
DISPLAY is	dhea	-11 - 21	-22:0						
Enadss@daim									
total 100									
drwxr-xr-x		madss	users	4096	Apr	21	13:20	1	
drwxr-xr-x		root	root				03:35		
-rw-rr	1	madss	users				14:59	.Xdefaults	
-rw	1	madss madss	users	268	Hpr	21	15:35 14:59	.bash_history	
		madss	users	10540				.bash_logout .bash_profile	
-ppp		madss	users				14:59	bashrc	
druxr-xr-x		madas	users				15:35	daini-setup	
-ppp		madss	users				14:59	emacs	
	1	madss	users				14:59	founro	
-r-xr-xr-x	1	madss	users				14:59	gnonerc	
-ru-rr		madss	users				14:59	gtkrc	
-rrr	1	madss	users				14:59	.hushlogin	
-ru-rr		madss	users				14:59	. inputro	
-hhh		madss madss	users	11024	reb	12	14:59	.login	
		madss madss	users				14:59	. logout	
-r-xr-xr-x	1	mades	users				14:59	xinitro	
-ru-rr		madss	users					my-important-file	
-ru-rr		madss	users	õ	Apr	21	13:20	my-very-important-file.doc	
[madss@daimi:~]\$									
								<u> </u>	
4								► //	
•	_				_	_		<u>·</u> //.	

Point & click interfaces

Present options that can just be click

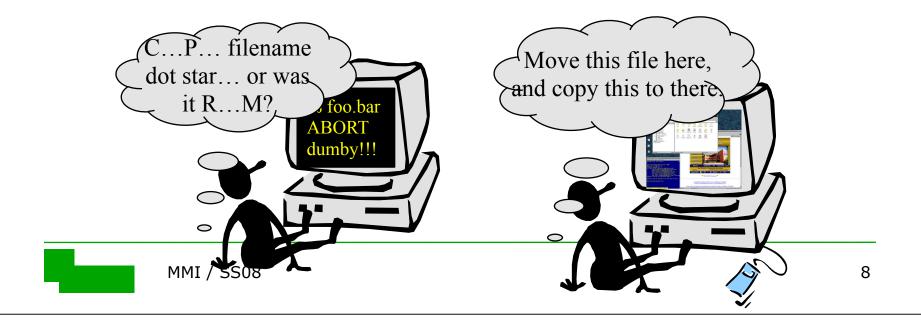
- icons, text links or location on map
- used in multimedia, web pages, hypertext, touch screens
- minimal typing, often combined with menubased interfaces

Menus

menu = set of options displayed on screen, where the selection & execution of one (or more) of the options results in a state change of the interface (Paap & Roske-Hofstrand, 1989)

- user selects from *predefined* selection of operations *arranged* in menus
- $\hfill\square$ selection by
 - Text input: numbers, keys/letters, speech ("shortcuts")
 - Pointing: buttons, stylus, gesture
 - Positioning: arrow keys, mouse
 - Combination: mouse + "accelerator" key

Graphical user interfaces (GUI)


THE method of interacting with a computer through a metaphor of manipulation of *graphical images* and *widgets* in addition to text.

- Combines a lot of interaction styles in a consistent graphical interface
- Also called WIMP interface, short for Windows, Icons, Menus, Pointers
- Widgets = Window gadget
 - bits that make the graphical user interface (GUI)
 - checkboxes, menus, toolbars, buttons, etc.

Direct manipulation (Shneiderman, 1982)

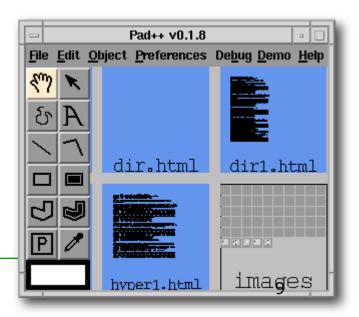
□ **Directly manipulate** the object of interest

- objects must be visible and distinguishable in the UI
- can act as if in a workplace
- rapid, reversible, incremental actions and feedback
 → can see results as you go
- □ Example: resizing a rectangle by dragging its corners
- Enables different ways of thinking about the interaction

Enhanced graphical interfaces

□ 3D workspaces

- infinite virtual space
- Light, size, and occlusion give depth impression
- a lot like WIMP, but point & click in 3D (how does a 3D button look like?)


□ ZUI's: Zoomable UI's

- Navigation like panning a video camera
- Zooming in on objects

Virtual Reality

VRML

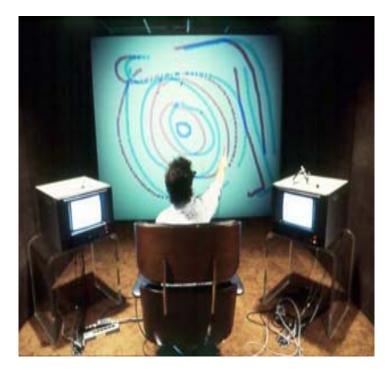
MMI / SS08

Year	Paradigm	Implementation
1950s		Switches, punched cards
1970s	Typewriter	Command-line interface
1980s	Desktop	Graphical user interface, direct manipulation
1980s+	Spoken Language	Speech recognition/synthesis, natural language processing, dialogue systems
1990s+	Natural interaction	Perceptual, multimodal, interactive, conversational, tangible, adaptive
2000+	Social interaction	Agent-based, anthropomorphic, social, emotional, affective, collaborative

Natural language

□ **Just say** what you want the machine to do

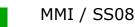
- familiar and intuitive
- spoken or typed
- Problems
 - must deal with phonology, syntax, semantics, pragmatics
 - inherently vague, ambiguous, situated
- Solutions
 - restrict to sub-language or only few fixed key words
 - interactive dialogue with feedback, alignment, repairs, etc.



MMI / SS08

Multimodal interfaces

Using multiple means and styles of interacting in combination, e.g. point & click plus speech



Agent-based interfaces

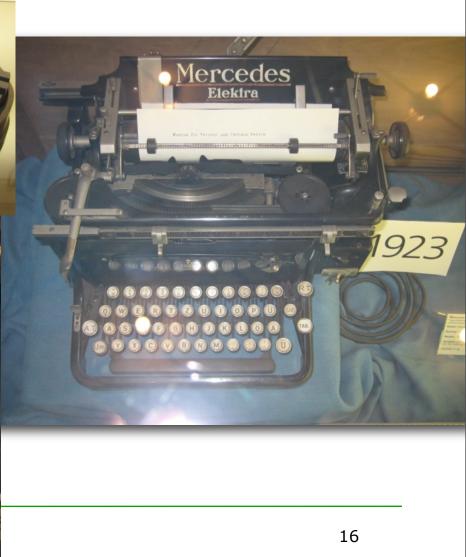
- Artifacts that have human-like appearance, are experts for special tasks, communicate back naturally, are proactive, etc.
- Paradigm shift from tool to companion

Interface technology

MMI/SS08

A 'typical' computer system

- □ screen with text and graphics/windows
- keyboard
- mouse/trackpad
- variations
 - desktop
 - Iaptop
 - PDA

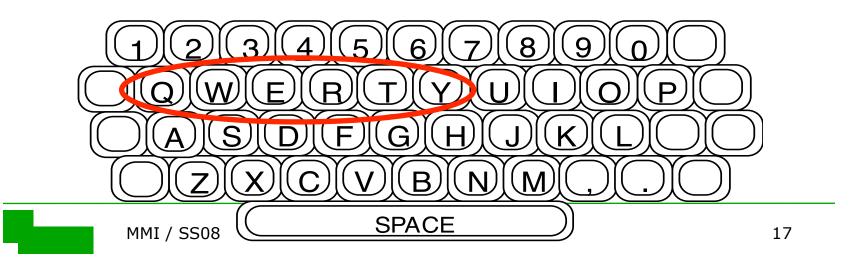


- Devices vs. interaction
 - existing devices dictate the possible styles of interaction
 - devices especially **designed for** certain interaction modes
 - If we use different devices, then the interface can support different styles of interaction

MMOND (MODELL 1)

ersteller: Ga Machine Co., New York / USA

sonderheiten: Erste Maschine mit Sichtarschreing Die Hawkow besitzt eine doppete Umschaltung wei en Typenschillichen mit neurzig Schrittreichen a Schiltichen ist austauschber und ermoglicht somt



1870

0

Keyboards


- Inherited from type writers, first keyboard in 1874 ("Remington No. 1")
- Standard layout: "QWERTY", but arrangement <u>not</u> <u>optimal</u> for typing!
 - meant to prevent typewriters jamming
 - but, common combinations of consecutive letters placed at different ends of the keyboard
 - Anecdote: try typing "typewriter"

Alternative keyboard layouts

Dvorak

- since 1932
- common letters under dominant fingers
- biased towards right hand
- common combinations of letters alternate between hands
- 10-15% improvement in speed and reduction in fatigue
- But large social base of QWERTY typists produce market pressures not to change

Special purpose keyboards

designed to reduce fatigue and repetitive strain injury (RSI)

Maltron left-handed keyboard for one handed use

Kinetics keyboard

MMI / SS08

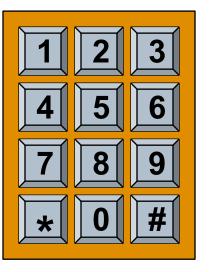
Phone pads and T9 entry

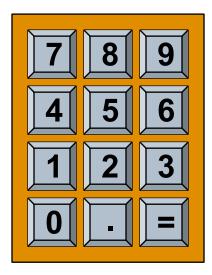
- use numeric keys with multiple presses
 - 2 a b c 6 m n o
 - 3-def 7-pqrs
 - 4 g h i 8 t u v
 - 5 j k l 9 w x y z

hello = 4433555[pause]555666 surprisingly fast, but not ergonomic

□ T9 algorithm for predicting entries

- type as if single key for each letter
- use dictionary to guess right word
- hello = 43556 ...
- give options when ambiguities like
 26 -> `am' or `an'




Numeric keypads

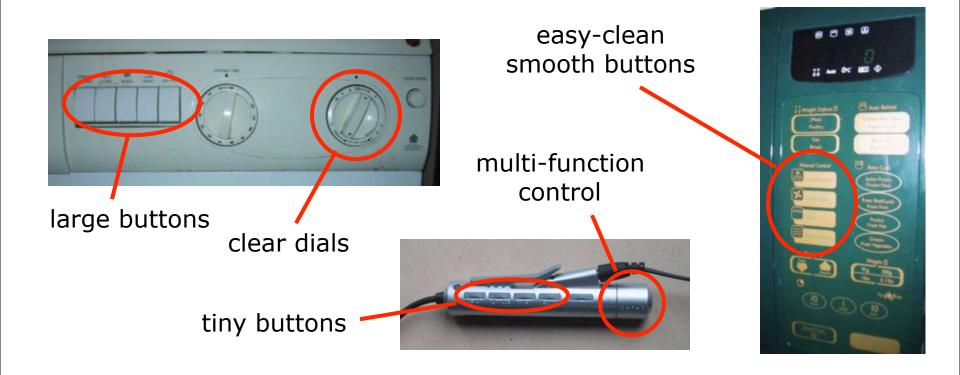
for entering numbers quickly

- calculator, PC keyboard numpad
- Telephone, ATM

not the same!!

telephone

calculator/ keyboard


MMI / SS08

21

Physical controls

□ specialist controls needed ...

industrial controls, consumer products, etc.

Example: BMW iDrive

- single multi-purpose device for controlling climate, navigation, entertainment, communication
 - not used very often
- haptic feedback: feel small `bumps' for each item
 - makes it easier to select options by feel
- slides backwards & forwards, rotates

Example: BMW iDrive

- Significant controversy among users, the automotive media, and critics
- □ Criticisms include
 - steep learning curve, short but intensive training
 - causes driver to look away from the road too much
 - system reactions too slow
- became labelled "iDistract" and "iCrash"
- In some countries, such as the USA and Australia, BMW includes a warning that the user must accept before using the iDrive

Input devices

Mouse

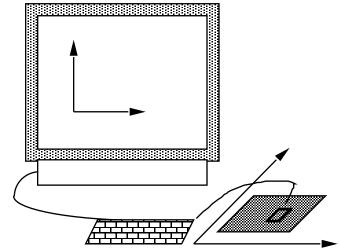
- very common, easy to use
- buttons (1-3 on top, wheel)
- Mechanical vs. optical

Trackball

- separate buttons for picking
- meant to reduce RSI

Joystick

- Absolute vs. isometric: pressure of stick = cursor velocity
- buttons for selection

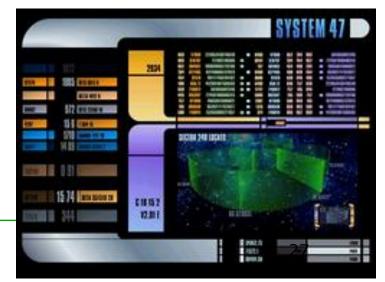


Mouse

- Located on desktop
 - requires physical space
 - little arm fatigue
- Only relative movement detectable
- □ Movement of mouse moves screen cursor
 - Cursor oriented in (x, y) plane, mouse movement in (x, z) plane ...

- □ *indirect* pointing device
 - device itself doesn't obscure screen
 - accurate and fast
 - hand-eye coordination poses problems for novice users

Note, in practice every monitor has fingerprints!


Touch-sensitive screen

- Detect the presence of finger or stylus on the screen.
 - works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
 - direct pointing device
- Advantages:
 - fast, and requires no specialised pointer
 - good for menu selection
 - suitable for use in hostile environment, clean and safe from damage.

□ Disadvantages:

- finger can mark screen
- Imprecise, finger is fairly blunt
- lifting arm is tiring

MMI / SS08

Stylus & light pen

Stylus

- small pen-like pointer to draw directly on screen
- may use touch sensitive surface or magnetic detection

Light Pen

- detects light from screen
- does not work with LCDs
- now rarely used

both ...

- direct pointing, obvious to use
- can obscure screen

Handwriting recognition

- Text can be input into the computer using a pen and a digesting tablet
- □ Lots of technical problems:
 - capturing all useful information stroke path, pressure, etc., in a natural manner
 - segmenting into individual letters
 - interpreting individual letters
 - coping with different styles of handwriting
 - speed

Used in PDAs and tablet computers, leave the keyboard on the desk!

🗆 But...

MMI / SS08

29

Speech recognition

- □ Almost every device comes with a mic
- □ Improving rapidly
- Most successful when:
 - single user initial training and learned peculiarities
 - limited vocabulary systems
 - used with headset or telephone
- Problems with
 - external noise interfering
 - imprecision of pronunciation, speed, varying prosody
 - large vocabularies
 - different speakers and dialects

Dictate directly to your Mac with ViaVoice, but remember to speak slowly and clearly.

Eyegaze

- control interface by eye gaze dir.
 - e.g. look at menu item to select it
- uses laser beam or infrared light reflected off retina
- mainly used for evaluation
- potential for hands-free control
- □ high accuracy requires headset
- cheaper and lower accuracy devices available, sit under the screen like a small webcam

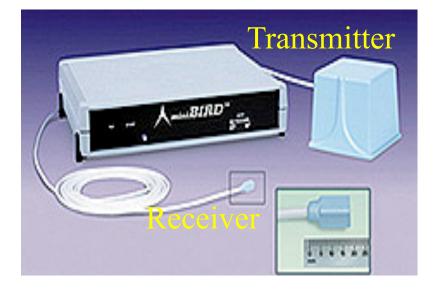
□ Other fancy input devices

- iris scanners, body temperature, heart rate, galvanic skin response, blink rate, goniometry
- possible applications: emotion recognition (affective computing), life signal monitoring, etc.

Positioning in 3D (6 DOF)

- □ SpaceBall
- □ SpaceOrb
- □ Space Mouse

MMI / SS08


Moving in 3D - Tracking systems

Electromagnetic

Noisy, affected by metal

Optical

- Marker reflect IR light
- Combined to unique spatial configuration per tracked position
- >3 IR cameras needed to cope with occlusions

Tracking systems

- □ Acoustic (ultrasound)
 - Distance inferred from travel time of sound
 - No interference, inexpensive, sensitive to air temperature & noises

🗆 Inertia

- Only 3 DOFs (orientation)
- Use gyroscopes & accelerometers
- Less noise, lag

Hybrids

- Inertia (orient.)
- acoustic (pos.)

Intersense IS-300

MMI / SS08

35

Data Gloves

- Tracks the user's finger postures and movements
- Bi-metal, fibre optics, exoskeleton, etc.
- Common types
 - CyberGlove

 18 sensors
 22 sensors

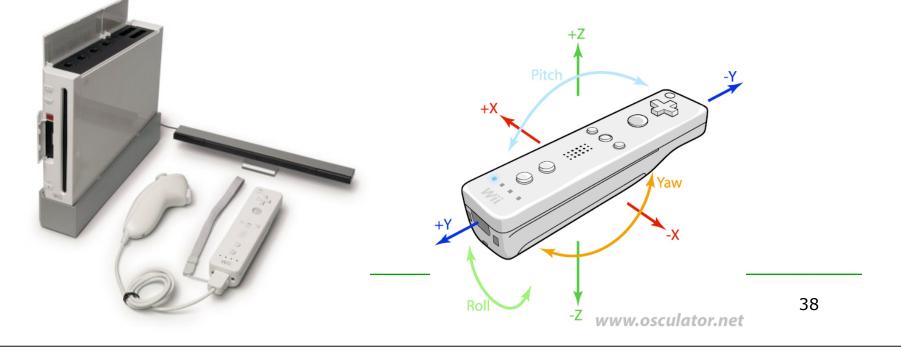
 5DT Glove


 5 sensors
 16 sensors

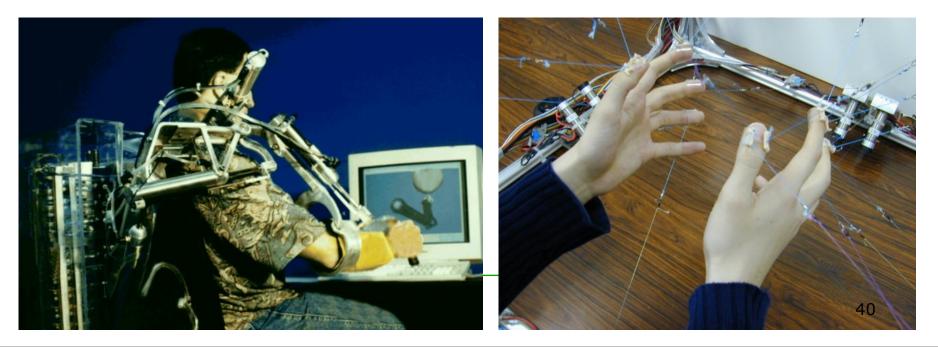
Tracked point & click devices

- □ Space Mouse
- Ring Mouse
- □ Fly Mouse
- Wand

Exmaple: Wii controller

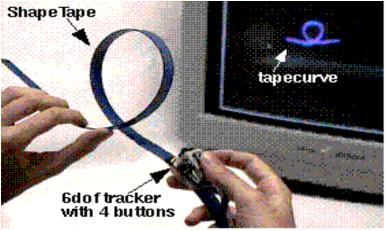

- Infrared camera
- Accelerometers
- Buttons
- Transmission to Wii console via Bluetooth

Wii


Cubic Mouse

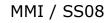
- □ 12 DOF input device
- Tracks position and rotation of rods using potentiometers
- Other shapes and implementations possible
 - Mini Cubic Mouse

Touch, feel, smell

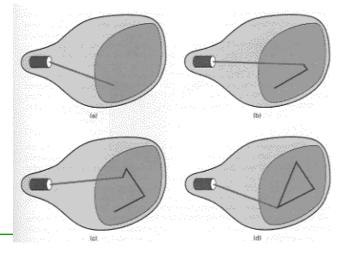

- touch and feeling important
 - in games ... vibration, force feedback
 - in simulation ... feel of surgical instruments
 - called haptic devices
- texture, smell, taste
 - current technology very limited

More fancy input devices

Cyberglove with haptics



Treadmill types (e.g. bicycles)

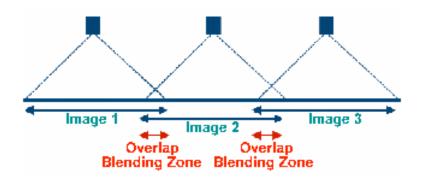


Shape tape

Output devices

- Bitmap devices: CRT vs. LCD
- Random Scan (Directed-beam refresh, vector display)
 - draw the lines to be displayed directly
 - no jaggies ("Treppeneffekt")
 - lines need to be constantly redrawn
 - rarely used except in special instruments

42


Large scale displays

□ used for meetings, design, lectures, etc.

□ technologies

plasma – usually wide screen video walls – lots of small screens together projected – RGB lights or LCD projector back-projected – frosted glass + projector behind powerwalls - lots of projectors

Sensorama

- Morton Heilig designed the first multisensory virtual experiences in 1956 (patented in 1961)
- The Sensorama combined projected film, audio, vibration, wind, and odors.
- □ The five "experiences" included
 - a motorcycle ride through New York
 - a bicycle ride
 - a ride on a dune buggy
 - a helicopter ride over Century city
 - a dance by a belly dancer.

Head-mounted display (Sutherland, 1968)

small TV screen for each eye □ slightly different angles

(Mechanical) tracking

MMI / SS08

45

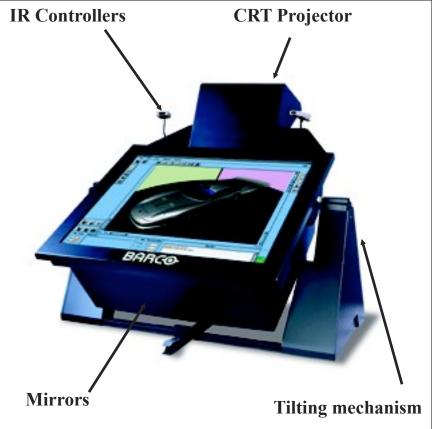
Head-mounted displays

Main advantages

- Scene completely surrounds user
- sharp and brisk
- Classical disadvantages
 - Field of view (FOV) is narrow
 - Early devices heavy, cause fatigue
 - Can't see others
- Now, light-weight seethrough HMDs

VR motion sickness

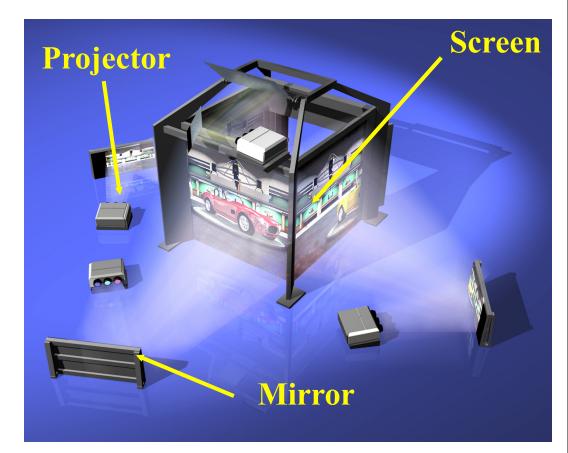
- □ time delay (>100ms)
 - move head ... lag ... display moves
 - conflict: head movement vs. eyes
- depth perception
 - objects presented at different stereo distances
 - but all focused in same plane (monitor)
 - conflict: eye angle vs. focus
- \Box conflicting cues => sickness
 - motivate improvements in technology


BOOM (Binoccular Omni Orientation Monitor)

- High resolution
- Wide Field of View
- User must not carry heavy weight
- tracking with minimal lag
- Limited user movement
 Requires the user to hold onto the BOOM for control

Workbench

- □ Table-top metaphor
- Change display orientation
- Integrate real & virtual
- Less immersion
- Occlusion/cancellation
- □ \$\$\$


Two-Sided Workbench

View volumeTelepresence\$\$\$

CAVE

- □ Multi-wall (usually 4)
- Provides wide FOV
- □ Can see other people
- Stereo more realistic
- Missing walls break illusion
- Brightness
- □ \$\$\$

Technological limitations on interface performance

Computation bound

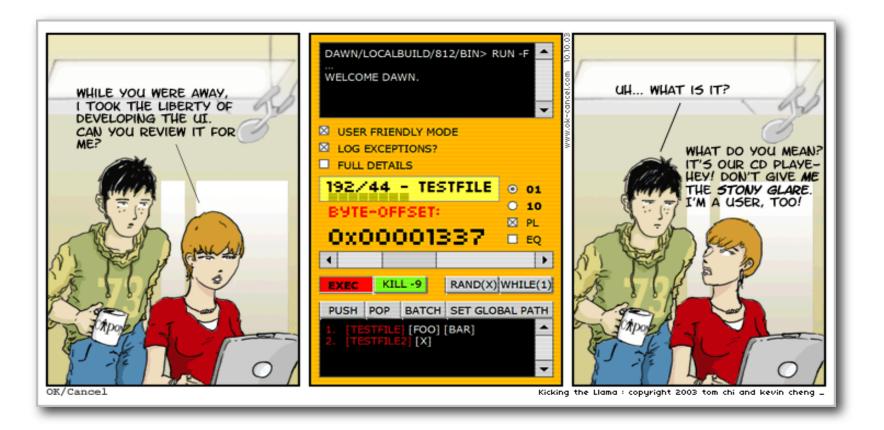
Computation takes time, causing frustration for the user Storage channel bound

Bottleneck in transfer of data between storages

- Graphics bound
 - Updating displays requires effort nowadays helped by adding a graphics processor to take on the burden

Network capacity

Many computers networked - shared resources and files, access to printers etc. - but interactive performance can be reduced by slow network speed


→ Reduced system responsivity and interactivity !

Needs to be taken into account!

- Designers tend to assume fast processors, and make interfaces more and more complicated
- Problems occur, because processing cannot keep up with all the tasks it needs to do
- □ Examples:
 - cursor overshooting because system has buffered keypresses
 - icon wars user clicks on icon, nothing happens, clicks on another, then system responds and windows fly everywhere
- □ Also problems if system reacts too fast
 - e.g., help screens may scroll through text much too rapidly to be read

Next session

How to use all this to build a "usable" system?

