Human-Computer Interaction

I. Session: Introduction Historical background

MMI - WS11/12

Modul "Mensch-Maschine Interaktion"

Mensch-Maschine-Interaktion (V+Ü)

- I 80h = 6 LP

Natürliche Benutzerschnittstellen (S bzw. Pj/Pr)

- ▶ 120h = 4 LP
- Vortrag mit Ausarbeitung im Seminar (4 LP) bzw. erfolgreiche Teilnahme am Projekt und Ausarbeitung (4 LP)
- Dieses Semester: 239642 Künstliche konversationale Agenten (S)

Prof. Dr.-Ing. Stefan Kopp

Cognitive Interation Technology (CITEC) AG Sociable Agents http://www.techfak.uni-bielefeld.de/ags/soa

- Raum: H1-115, Sprechstunde: Fr 13-14
- Tel: (106) 12144
- EMail: skopp@techfak.uni-bielefeld.de

Sekretariat: Dagmar Philipp, H1-120 Tel: (106) 12153 EMail: <u>dphilipp@cit-ec.uni-bielefeld.de</u>

Vorlesung "Mensch-Maschine-Interaktion"

Vorlesung

Grundlagen, zentrale Methoden und aktuelle Ansätze der Gestaltung interaktiver Systeme

Übungen

- > Dipl.-Inform. Kirsten Bergmann
- Konzeption, Realisierung und Evaluation einer Nutzerschnittstelle nach Usability-Gesichtspunkten

http://www.techfak.uni-bielefeld.de/~skopp/MMI.html

Inhaltliche Struktur

Benutzer als kognitive Systeme

- Wahrnehmung & Aufmerksamkeit
- Gedächtnis
- Nachdenken & Handeln

Computer & Schnittstellen

- Ansätze und Technologien
- Designprozess
- Evaluation

Interaktionen

- Sprache
- Multimodale Schnittstellen
- Dialogsysteme
- Konversationale Agenten
- Kollaborative Systeme
- Soziale Kompanions und Roboter

What is HCI? Why should I learn about it?

Simple answer: because computers are built for and will be used by humans

 \rightarrow Humans interact with computers and everything has to work properly, the human, the computer, and the interaction

5

- Dix et al.: Human-Computer Interaction (3.Aufl.). London: Prentice Hall, 2003.
 - Shneiderman: Designing the User Interface Strategies for Effective Human-Computer Interaction (3.Aufl.). Addison Wesley, 1998.
- M. Dahm: Grundlagen der Mensch-Computer-Interaktion, Pearson Studium, 2006.

Jurafsky & Martin: Speech and Language Processing, Prentice Hall, 2000.

Cassell et al.: Embodied Conversational Agents, MIT Press, 2000.

Breazeal, C .: Designing Sociable Robots, MIT Press

Train crash at Montparnasse (1895) due to maloperation

8

00

6

Three integral parts of one system

The Human

• wants to get a particular task/problem done

The Computer

- built for accomplishing a certain range of tasks
- hardware and software, used as one system
- specialized devices for input/output

The Interaction

- user needs to "tell" the computer what s/he wants
- computer solves task and communicates results back

Shootdown of an Iranian airliner (July 1988)

"We have determined that the Aegis radars and computers functioned correctly and that the misidentification of an Airbus airliner as an F-14 was due to human error induced by combat stress.... The operator interpreted a display indicating the Airbus was at 12,000 feet and flying level as indicating it was at 7,500 feet and descending toward the ship ... However, we are looking at the user interface - what we show on the displays - there may be some room for improvement there, to make it even more user-friendly than it is now ... "

Defense secretary Frank Carlucci said that to find range and altitude information of a target on the screen, one must examine a computer readout, which is distracting. "We think it's a good idea to display altitude and range on a large screen," Carlucci said. "I think you could probably even put an arrow on whether it's ascending or descending." ... "I'm not indicating it wasn't designed correctly," he said, but "as you go through experience with any weapon system you improve the design, particularly in combat."

A320 crash Bangalore (1990)

"The pilot put the plane into OPEN DESCENT mode without realizing it. This change resulted in the aircraft's speed being controlled by pitch rather than thrust. The throttles went to idle. In that mode, the automation ignores any preprogrammed altitude constraints. To maintain the pilotselected speed without power, the automation had to use an excessive rate of descent, which led to a crash short of runway."

Nancy G. Leveson, Safeware Engineering Corp.

14

Important Issues Use and Context _በቢ Social Organization and Work Human-Machine Fit and Adaptation Application Area -Human Computer \cap° Dialogue Techniques Human Graphics nformation Processing Aa Dialogue Architecture Dialogue Language, Genre Communication and Interaction Input and Output Devices Ξ nomics Ő Example Systems and Case Studies Evaluation Implementation Technique Techniques and Tools Design Approache -Development Proces

Why learn about HCI?

Interface is of major importance in "real" systems

• is all the ordinary user will experience (sees, operates, feels)

ACM SIGCHI - "contents of CHI"

- major part in terms of developmental costs & code
- of utmost importance in systems with high costs of failure and high demands on operators

Bad interfaces cause users to ...

- need more time for learning & performing their tasks
- make errors
- feel dissatisfied
- miss the full functionality of the software
- refrain from buying and using the software

18

Why improve HCI?

Business view:

- ▶ to exploit humans more productively/effectively
- human costs far outweigh hardware and software costs

Personal view:

- people want computers to perform like appliances
- want systems to save own work, with little training, easy to use
- not tolerant of poorly designed systems

Societal view:

- machines get used for all kinds of important tasks
- interact with all kinds of heterogeneous user groups

21

History of HCI

Pioneers & Visions

Why research HCI?

To explore how HCI can be improved in a systematic way to benefit people

To understand how future interactive systems need to be built and what machine abilities are crucial for this

To understand principles and mechanisms of interaction and cognition in humans (constructivist approach)

Vannevar Bush

Coordinator of US scientific activities during and after WW II

"As we may think" (1945): "The summation of human experience is being expaned at a prodigious rate, and the means we use for threading through the consequent maze to the momentarily important item is the same as was used in the days of square-rigged ships"

Memex (memory expander): Hypothetical device for storage and retrieval of knowledge

→ multimedia, hyperlinks

Joseph C.R. Licklider

Director ARPA Information Processing Technology Office (1962-64)

"Man-Computer Symbiosis" (1960):

"The hope is that [...] human brains and computing machines will be coupled together very tightly and that the resulting partnership will think as no human brain has ever thought and process data in a way not approached [...] today."

Enable humans "to cooperate [with computers] in making decisions and controlling complex situations" and "to think in interaction with a computer in the same way that you think with a colleague whose competence supplements your own".

25

Joseph C.R. Licklider

Visions in 1960:

Short-term

Time-sharing, input/ouput of symbolic and graphical information, real-time systems

Mid-term

Facilitate human cooperation, speech recognition, character recognition, light-pen editing

▸ Long-term

Natural language understanding, heuristic programming (=A.I.), learning systems

26

Time-Sharing

Bob Bemer, John McCarthy (Mid '60s)

- Before: batches of jobs scheduled by operator
- Now: multiple users can use a computer at the same time; every user has the impression that they are on their own personal machine
- Afforded interactive systems and interpreted programming languages
- Foundations of, e.g., current word processors
- → need for support in human-computer interaction

First graphical user interfaces

Whirlwind (MIT, 1951): "real time"-rendering of text and graphics on CRT terminal

SAGE (Semi-Automatic Ground Environment) project (1963): advancement of Whirlwind for military purposes (radar intelligence)

- visualization of large data sets
- "point-and-click" predecessor with light pistol (selection)

First Speech Recognizers

First recognizer: Davies, K.H., Biddulph, R. and Balashek, S. (1952). Automatic Speech Recognition of Spoken Digits, J.Acoust. Soc.Am.

IBM Shoebox (William C. Dersch)

- Recognized and responded to 16 spoken words, including the ten digits from "0" through "9"
- Simple arithmetic calculations
- Demonstrated to the public at the 1962 World's Fair in Seattle and 1964 in New York

Ivan Sutherland

AND A

31

Ph.D. (MIT, 1963): "A Man-machine graphical Communications System"

Ivan Sutherland

Ph.D. (MIT, 1963): "A man-machine graphical communication system"

Sketchpad (1963)

- First interactive graphics application & sophisticated drawing package
- Direct manipulation interface
- Major impact on HCI and user interfaces

Douglas C. Engelbart

"I had the image of sitting at a big CRT screen with all kinds of symbols, new and different symbols, not restricted to our old ones. The computer could be manipulated, and you could be operating all kinds of things to drive the computer"

ONLine System (1968)

- Two persons collaboratively edit a text from two separate consoles
- Multiple windows, on-screen teleconferencing
- need for new input devices for text selection and manipulation

Douglas C. Engelbart

First "usability evaluation":Which device most suitable for CRT displayselection in text-manipulation systems?

Light pen? Joystick? Knee input device? "Mouse" !!

Alan Kay

Smalltalk, Ethernet, laser printer, client-server network model

Dynabook (1977)

- Predecessor of notebooks/PDAs, first laptop with graphical user interface
- "We envision a device as small and portable as possible which could both take in and give out information in quantities approaching that of human sensory systems"
- Further developed and realized later on by Apple as "Newton"

Douglas C. Engelbart

ONLine system demo with the first mouse (1968)

First "Personal Computers"

Xerox Alto (1973):

- GUI: Windows, Icons, Menus, Pointing
- first computer with mouse and ethernet
- WYSIWYG-Editor Bravo/BravoX (what you see is what you get), direct predecessor of MS Word
- meant as a scientific computing device
- \$40.000 commercial failure

Apple II (1977)

- \$1298, meant to be affordable and easy to use
- colors and sound, no GUI
- "open system": extension slots for specific applications (word processing, games, etc.)

First "Personal Computers"

Commodore PET 2001 (1977)

- first industrially manufactured PC
- ▶ \$795
- no extension slots, no color, no sound

IBM 5150 (1981):

- termed and advertised as "IBM PC"
- \$3000 sold well, used in many companies due to IBM's dominant market position
- great marketing, weak technology
 - operating system PC-DOS
 - purely text-based, monochrome display
 - no GUI, no mouse

First GUIs

Xerox Star (1981):

- first operating system with GUI ("star") in a commercial end-user system
- idea of the "invisible computer" -hide away machine from users
- instead: desktop metaphor
 - windows, icons, folders, menues
 - direct data manipulation & graphical control with pointer
 - "progressive disclosure" present common choices to user, hide complex ones (e.g. expanding dialogue box)

First GUIs

Apple Lisa (1983)

- inspired by Xerox Alto
- besides Xerox Start, the first commercial system with keyboard and mouse
- Document-centered view
- \$10.000, commercial failure
- \rightarrow Lisa2 \rightarrow Macintosh XL

Apple Macintosh (1984)

- Consequent GUI: integral part of the OS, no cursor keys
- \$2495 commercial success
- "Killer applications": Finder, MacDraw, MacWrite, DTP, MS Word

37

First GUIs

Microsoft Windows

- GUI on top of PC-/MS-DOS
- I 985:Apple CEO Sculley signed agreement allowing Microsoft to use Mac OS technology, in exchange for further development of MS software for Mac
- I985:Windows 1.01 no applications
- I 987: Windows 2.03 Word, Excel
- 1992: Windows 3.1 first commercial success
- Win 95, 98, NT, 2000, XP, Vista, Windows 7

Today

iPhone 4S with Personal Assistant "Siri"

visions from the past	
The Knowledge Navigator (concept video created by Apple in 1989)	
	Tablet, camera
	Touch, pointing
	Continuous speech
	Dialogue
	Embodied agent
	Collaboration
	Personal assistant, trust
	42

Evolution		~ Outline of this lecture
Year	Paradigm	Implementation
1950s		Switches, punched cards
1970s	Typewriter	Command-line interface
1980s	Desktop	Graphical user interface, direct manipulation
1980s+	Spoken Language	Speech recognition/synthesis, natural language processing, dialogue systems
1990s+	Natural interaction	Perceptual, multimodal, interactive, conversational, tangible, adaptive
2000+	Social interaction	Agent-based, anthropomorphic, social, emotional, affective, collaborative, assistive

