
Human-Computer Interaction

Session 12 Multimodal Interfaces

Evolution of HCI

Year	Paradigm	Implementation
1950s	None	Switches, punched cards
1970s	Typewriter	Command-line interface
1980s	Desktop	Graphical UI (GUI), direct manipulation
1980s+	Spoken Natural Language	Speech recognition/synthesis, Natural language processing, dialogue systems
		proceeding, alalogue cyclonic
1990s+	Natural interaction	Perceptual, gesture-based multimodal, interactive, conversational, tangible, adaptive
1990s+ 2000s+		Perceptual, gesture-based multimodal,

Is this a multimodal user interface?

- □ **NO** all user actions are explicit commands, issued in different interchangable ways
- □ so, use of speech and point & click alternatively, but not integrated, multimodally

What is a *"modality"*?

physiological

sensory modality Capability of sensory perception: visual, auditory, tactil, olfactory, gustatory, vestibular

motoric modality

Capability of acting or communicating: *verbal, manual, mimic, bodily*

technical

Modality as *interaction technique*

Combination $\langle d, L \rangle$ of an interaction *device d* with an interaction *language L*

5

What is a "modality" ?

Definition:

A **modality** is a communicative system that is characterized by a specific way of coding, transmitting, and interpreting information.

- Concerns the transmission of information from the user to the machine (input modalities) as well as from the machine to the user (output modalities)
- An user interface can be called **multimodal**, iff it provides input or output combining multiple modalities, so that the resulting communicative system is more powerful (modalities can be partly redundant in that)

What is a "modality" ?

- Natural or fundamental modalities are part of the communicative faculties of a (social) being - including: speech (sounds), gesture, mimics, body language (proxemics), prosody, etc.
- □ The use of (even the natural) modalities is, at least partially, culturally dependent
 - Exception: expression of emotions through face, prosody, body posture, etc.
- □ Enculturated modalities: learned and habituated specific techniques, e.g. reading & writing or point-and-click

What is "multimodality" ?

Definition:

- *An user interface can be called multimodal, iff it provides input or output combining multiple modalities*
- Goal: resulting multimodal communicative system should be more "powerful" than each single modality alone
- Modalities may be redundant, encoding similar information, but in different ways with different dis-/advantages
- Additional power (and complexity) arises from the way in which the modalities are combined and related to each other (crossmodal relations)

6

Why is multimodality a good thing?

Bandwidth & efficiency of information codings

can communicate more information per time unit

Redundancy & robustness

- less errors by putting same information into different modalities
- mutual disambiguation of modalities
- less stress and abrasion in each modality

Adequancy of information coding/multi-functionality

- different information conveyed in different modalities
 - □ propositional (content) vs. interactional (turn-taking, feedback)
 - □ symbolic vs. iconic vs. indexical

Adaptivity & universal design

- can utilize best modality under changing conditions
- allow different user groups (e.g. blind) in different situations (e.g. noisy)

Why is multimodality a good thing?

Naturalness & Intuitivity

- better adaptation to human user
- interacting can be more automatic/unconscious
- different users prefer different modalities, better acceptance espc. with unexperienced users

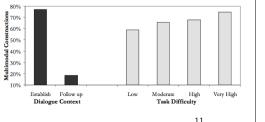
Error-proneness

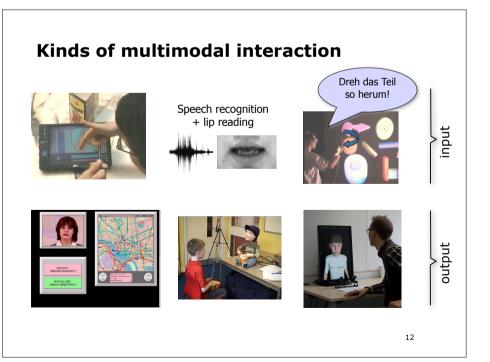
- user intuitively select the modus which is least error-prone, change modality after errors
- user employ simpler instructions/language when interacting multimodally – reduces complexity by distribution of information
 - under cognitive load, users tend to employ multimodal ways of instructions, with less cross-modal coordination

10

□ Study by Oviatt et al. (ICMI'04)

- task: instruct the map system to coordinate emergency resources
- different levels of difficulty




Figure 1. User interface

In cognitively difficult tasks:

- more errors and longer reaction times
- people switch to multimodal (speech+pen) input

Difficulty Message from Headquarters		
Low	Situate a volunteer area near Marquam Bridge	
Moderate	Send a barge from <i>Morrison Bridge barge area</i> to Burnside Bridge dock	
High	Draw a sandbag wall along <i>east riverfront</i> from <i>OMSI</i> to <i>Morrison Bridge</i>	
Very High	Place a maintenance shop near the intersection of I-405 and Hwy 30 just east of Good Samaritan	

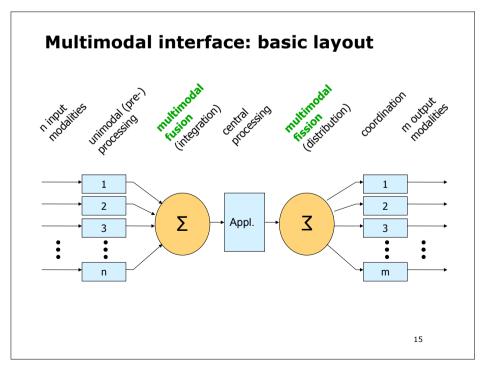
Research Roadmap of Multimodality 2001-2010

Enabling Technologies and Important Contributing Research Areas

2 Nov. 2001
Dagstuhl Seminar
Fusion and Coordination
in Multimodal Interaction
edited by: W. Wahlster

Multimodal Interaction	Multimodal Output
User Modelling	• Smart Graphics
Cognitive Science	Design Theory
Discourse Theory	Embodied Conversational Agents
• Ergonomics	Speech Synthesis
	Interaction User Modelling Cognitive Science Discourse Theory

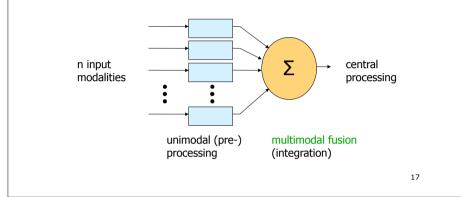
Multimodal Interfaces vs. GUIs


GUIs

- 1. Assume there is a single event stream that controls event loop with sequential processing
- Assume that interface actions (e.g. selection of items) are atomic and unambiguous
- 3. Separable from application software and resides centrally on one machine
- 4. No temporal constraints, architecture not time sensitive beyond parallel mouse operations

Multimodal Interfaces

- 1. Typically process continuous and simultaneous input from parallel incoming streams
- 2. Process input modes using recognition-based technology, good at handling uncertainty and ambiguity
- Large computational and memory requirements, typically distributed (e.g. multi-agent systems)
- 4. Time stamping of input, temporal constraints on mode fusion operations


14

Multimodal input processing

Multimodal input processing

 The sensing, processing and integration of multiple input modalities for the communication between a user and the computer

Multimodal fusion/integration

Two central problems (Srihari, 1995):

segmentation problem

how can a system be made to cope with `open input'? how can continuous input be segmented into units that can be processed in one system cycle?

correspondence problem

how to determine what relates to what across the multiple input modalities?

18

Multimodal fusion/integration

- □ Different approaches based on
 - temporal or structural (syntactical) relations Example: "stell dieses <Zeigegeste> Ding dort hin" → Does the gesture refer to the object (dieses) or the location (dort)?
 - semantic-pragmatic relations
 Example: "drehe diese <ikonische Geste> Leiste so herum"
 Does the rotation gesture refer to the object or the action?
- Common approach: adoption and extension of techniques from natural language parsing, i.e. multimodal grammars/parsing

Language

□ *Symbolic* modality

- words = signs with conventionalized meanings
- modified in context
- Exception: *Onomatopoetika* (Lautmalerei)

□ Speech

- not only spoken language
- additional modalities that bear non-symbolic information: prosody

(for NLP, see previous lectures)

Audio-visual interfaces

- □ process speech + face video
- lip reading of movements of the mouth during speaking
- eye/gaze tracking
- Utilized to increase speech recognition and processing, esp. in noisy situation (e.g. car)
 - cognitively plausible (recall: "McGurk-Effekt")

Gaze trackir

Lip-reading

Video Coma

Bimodal speech rec., Rockwell Scientific Comp.

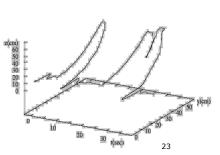
21

Speech Recognition

Gesture-based interfaces

- $\hfill\square$ Use hands to interact with the system
 - direct manipulation: direct coupling and feedback
 - indirect manipulation: system mediates movements
 - gesture communication: hands used to communicate to the system

□ Requires tracking, recognition & interpretation



overview: g-speak

Gesture-based interfaces

- Technology: camera-based, active tracking (data gloves, sensors) or passive tracking (marker-based)
- Segmentation problem: How to filter meaningful parts out of the continuous stream of movement signals?
 - Feature-based: hand tension, symmetries, stops, particular form features, etc.
 - Pattern-based: compare with known holistic patterns

Gesture-based interfaces

□ Communicative Gesture

- Non-manipulative (i.e. not wiping away something)
- meaningful (i.e. not nervous fidgeting)

Gestures are movements (here, of the upper limbs) that are produced as a consequence of a communicative intent.

form resembles its referent (object, event)

Deictic (indexical) Gesture refers to an object in the (extra-gestural) context

Symbolic (emblematic) Gesture arbitrary form, conventionalized meaning within a group of people

Multimodality: Gesture + Speech

There is a close coupling between speech and gesture – summarized in three rules

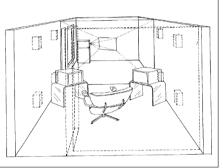
Phonological synchrony

The *stroke* of a gesture precedes the most prominent syllable or is simultaneous with it

Semantic synchrony
 Speech and gesture refer to the same overall meaning at the same time.

□ Pragmatic synchrony

When speech and gesture occur together, they fulfill the same pragmatic functions.


Gesture & Thought

The beginning

□ **MIT Media Room**(1980)

- Ioudspeakers,
- glass projection screen
- TV monitors on either side of user's chair
- joysticks at chair arms
- touch sensitive pad
- position-sensing cube attached to wristband
- □ First projects on multimodal interaction with computers

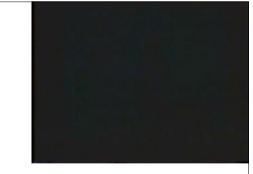
Put-That-There

(Bolt, 1980)

"Create": "Create a blue square there."

"Make that ...":

"Make that blue triangle smaller" "Make that smaller" "Make that like that"


"Move":

"Move the blue triangle to the right of the green square" "Move that there" (User does not even have to know what

"that" is.)

"Delete":

"Delete that green circle" "Delete that"

speech +

pointing gestures

Processing of commands

"Create a blue square there."

→ Effect of complete utterance is a "call" to the create routine that needs the object to be created (with attributes) as well as x,y position input from wrist-borne space sensor.

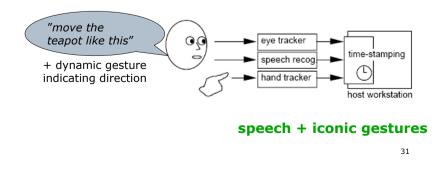
"Call that ...the calendar"

→ Recognizer sends code to host system indicating a naming command ("call") → x,y coordinates of item signal are noted by host → host switches speech recognition to training mode to learn the (possibly new) name to be given to the object

Hard-wired operational, procedural semantics

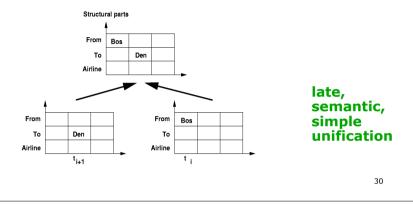
Multimodal fusion/integration

- □ Principled solution to correspondence problem?
 - How to fuse information from multiple modalities?
 - What kind of information about the modalities to fuse?
 - How to integrate with preprocessing of each modality?


□ Different approaches distinguished according to

- what is fused: pre-semantic vs. semantic
- when fused: early vs. late
- how to fuse: grammar-based vs. unification based

29


Example: ICONIC (Koons et al., 1993)

- Integrating simultaneous speech, gestural, and eye movement (for reference resolution for map and blocks world interaction)
- Problems: timing and abstraction
 - All three streams of data are collected on a central workstation and assigned time stamps, used later to realign data

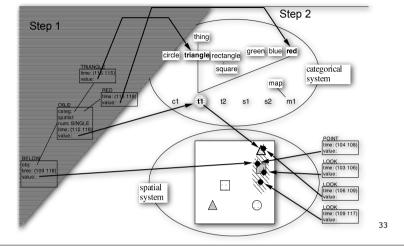
Frame-base integration

- Modeling user interactions as frames with a fixed set of slots for attribute-value pairs
- Modalities fill slots until whole matrix filled, use of dedicated procedures attachted to slots
- □ Fixed structure, limited type of interactions

Example: ICONIC (Koons et al., 1993)

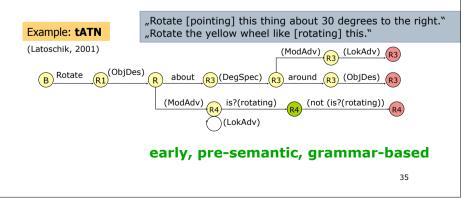
Step 1 - Parsing

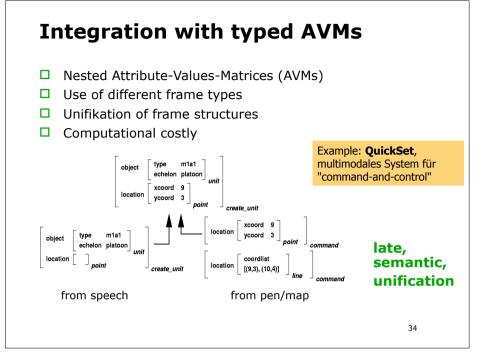
- Parse input data stream
- Generate frame-based description of the modality-specific data

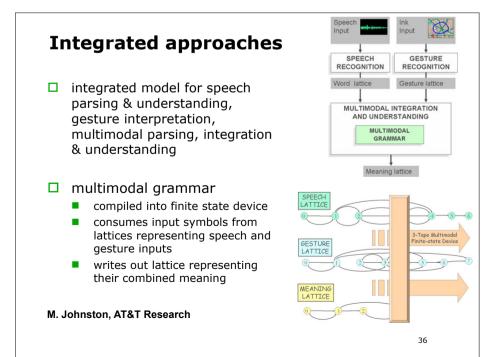

Step 2 - Evaluation

- Encode and evaluate the frames based on two models
- Every frame has method that controls search for values in KB
- □ Knowledge base comprises two representational systems, objects are represented in both
 - categorical system (semantic network)
 - spatial system (locations)

Example: ICONIC (Koons et al., 1993)


"...below the red triangle"


- finds values for each frame in space/category systems
- Integrates spatial values from speech, gesture, eye



Integration with transition networks

- Parsing multimodal expression with state transition networks (STN, ATN)
- □ Alphabet of input symbols, e.g. words, gestures
- Problem: Multimodal actions are not sequential; need for flexible temporal relations between input symbols

Other input modalities

similar approaches have been used to include additional modalities in multimodal interfaces

□ gaze

- increasingly seen as modality itself
- establishes focus of attention, regulates turn-taking, facilitates reference resolution, reflects internal (cognitive) state

□ facial expression

- emotional state (direct reflection of affective state and appraisal of perceived events)
- modulates communicative acts (e.g. certainty, irony, fun)

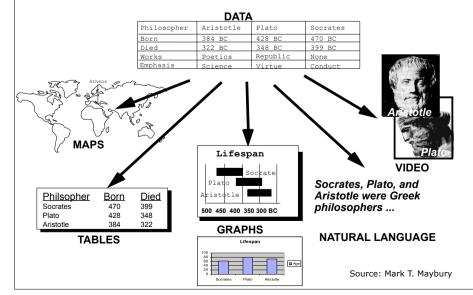
Multimodal output generation

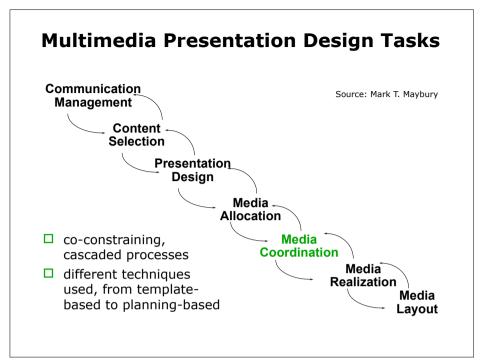
38

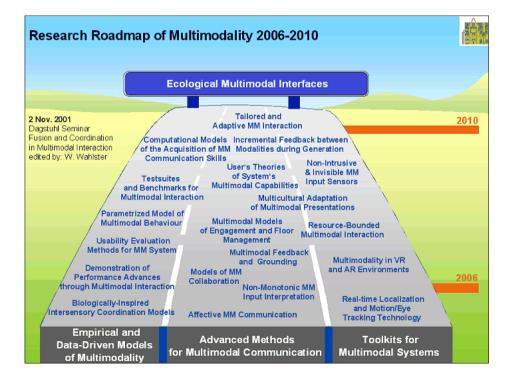
Multimodal fission

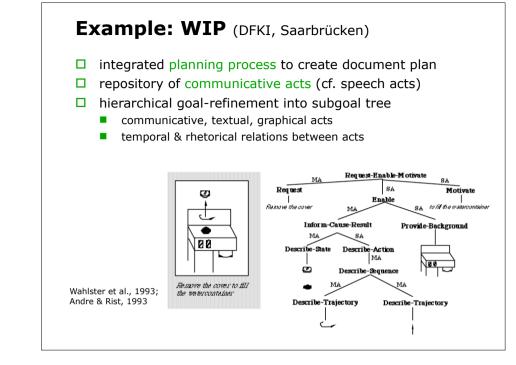
Used in different domains

Multimedia: present information across different media that allow different modalities, usually those known from desktop computers: text, graphics, animation, sounds, speech, videos, ...




Embodied approach: system embodied or interfaced via a humanoid figure/robot that serves as communication partner, using natural human modalities also for output generation: visual speech, prosody, hand gesture, facial expressions, body posture, gaze, head gesture, ...




Multimedia Presentation Generation

"No Presentation without Representation"

Next session: agent-based interfaces 44