

Human-Computer Interaction

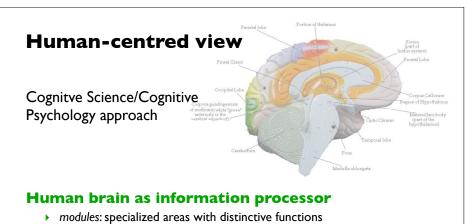
Aims at increasing the quality and efficiency of tasks that involve the human and the computer by improving the interaction between them

Concerned with the design, evaluation and implementation of interactive systems for human use.

Human-centred view

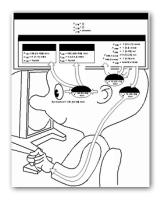
When interacting with a machine, the human processes information...

Perceptually

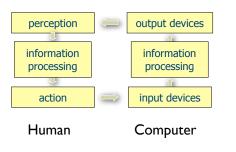

sees information on display, hears audio feedback, feels haptic feedback, etc.

Conceptually

tries to understand system from the information perceived, tries to remember relevant information, reasons what should be done next


Motor-physically

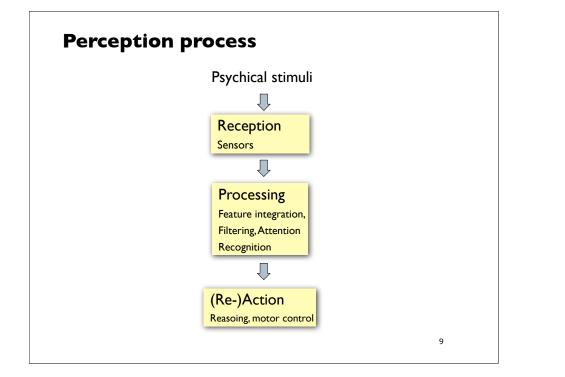
presses buttons, moves mouse, adjusts levers, exerts forces, etc.

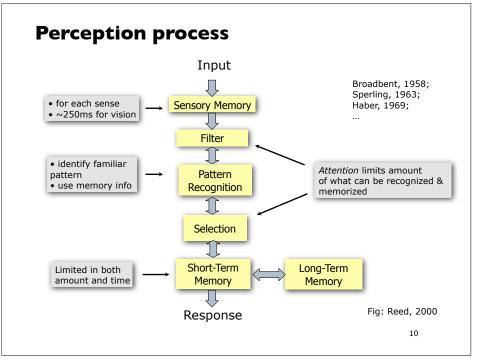


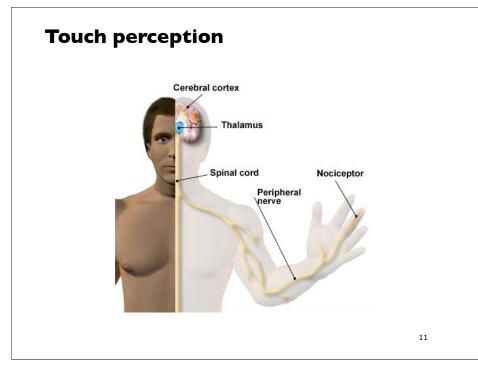
- input/output: visual, auditory, haptic, movement, force
- memories: sensory, short-term, long-term, working
- processes: reasoning, problem-solving, skills and routines, experiences, errors
- regulators: influenced by emotions and motivations

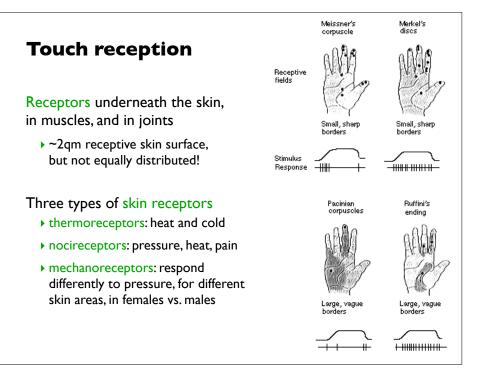
Psychology of HCI (Card, Moran & Newell; 1983)

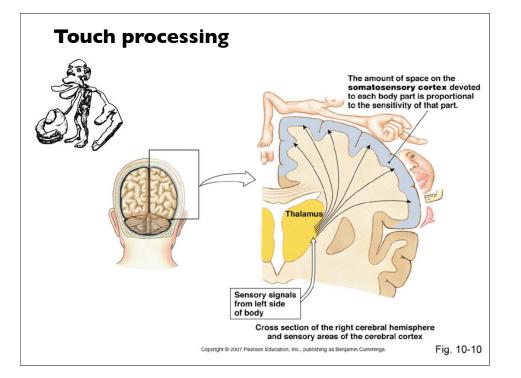
HCI = two information processors coupled in goal-directed action

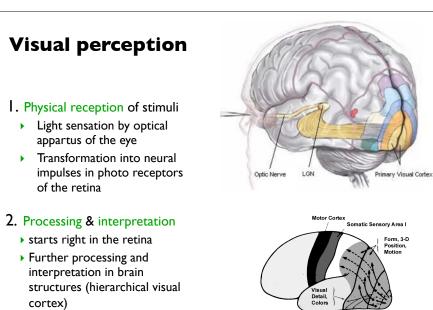


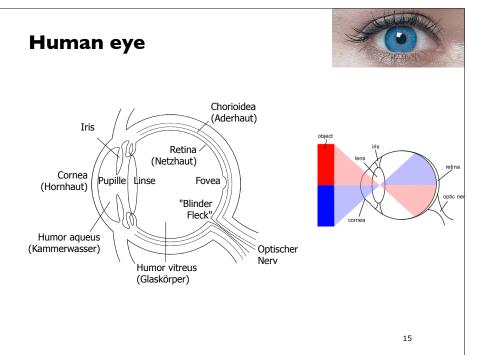

Psychological basis: Perception

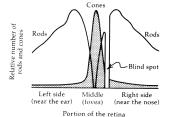

7


5

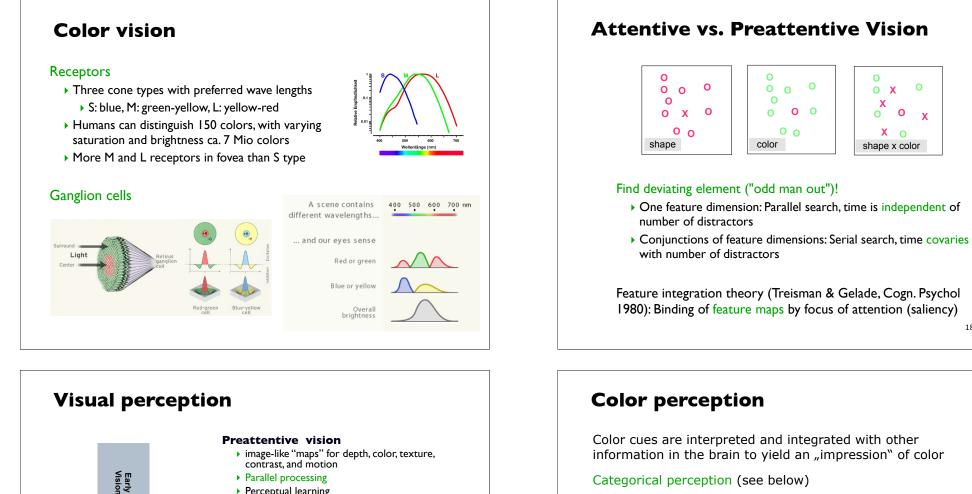

6







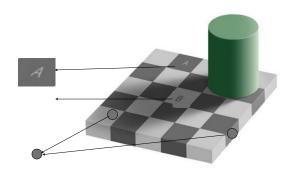
Bipolar c Amacrine Horizontal	Ganglion cel	Human eye			
of the second second	Light	Rods (Stäbchen) Black-white sight 125 Millions not at Fovea dark weak very good	Cones (Zäpfchen) Color sight 7 Millions everywhere, conentrated at Fovea well illuminated very good weak	Function Number Distribution Lighting conds. Resolution Sensitivity	
ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	Front of the eye	125 Millions not at Fovea dark weak	7 Millions everywhere, conentrated at Fovea well illuminated very good	Number Distribution Lighting conds. Resolution	



Rods dominate peripheral vision
 details better seen in foveal region
 more sensitive with peripheral vision
 visual system compensates blind spot

Primary Visual Cortex

Seconda


Visual Areas

Perceptual learning "Middle Vision" • Serial processing within a focus of attention Cue integration Figure and ground segmentation Recognition Generates judgements ("names") Invariances with respect to position, pose, illumination, etc Learning of categories **Guidance and Control** Eye-hand coordination Body posture Movement control and stabilization 19

Attention and Cue Integration

Recognition

18

Use of color in HCI

Color-coding: use of colour improves effectiveness of

- recognition process
- detection of patterns
- search (scanning)

Use color carefully:

- segmentation: powerful way of dividing a display into separate regions, items belonging to each other should have the same color
- ▶ amount of color: too many will increase search time
- task demands: most powerful in search tasks, less powerful in categorization/memorization
- users: more valuable to novice than to experts, limited value for the color-blind

21

Depth perception

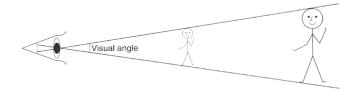


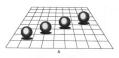
Fig.: Dix et al., 1998

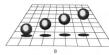
Visual angle depends on size + distance of stimulus

But (same) objects with different visual angles are perceived as being of same physical size

 \rightarrow How? Brain needs to take depth information into account

22

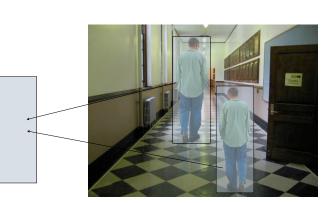

Depth perception

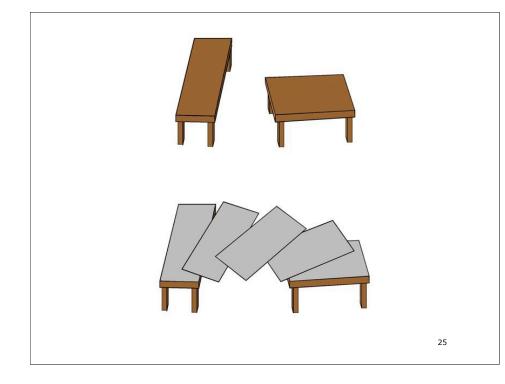

Primary depth cues

- b difference of left-/right-eye images
- Process of matching these images
- Process of shaping the lens
- inward movement of eyes to focus (2-7m)

Secondary depth cues

- Light & shade
- Linear perspective
- Height over horizontal plane
- Motion parallax
- Overlap & occlusion
- Relative size
- Texture gradient





23

Recognizing structure

The brain looks for structure to make visual impressions clearer, simpler, better understandable

Gestalt psychology assumes "Prägnanz" to be a basic principle of perception: more concise forms provide better conditions for perception and memory

(Max Wertheimer)

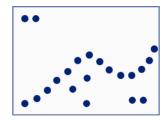
"Gestalt qualities" are given, if some structure is recognizable that eases perception

 the more difficult the order, i.e. the harder to group elemens together, the more reduced the Gestalt and perceptive qualities

Gestalt principles (examples)

proximity - how elements tend to be grouped together depending on their closeness.

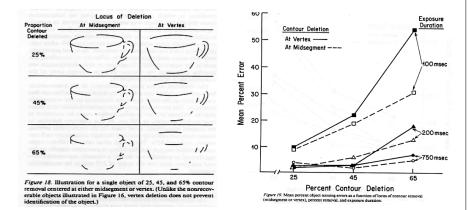
similarity - how items that are similar in some way tend to be grouped together. Similarity can be shape, colour, etc.



Gestalt principles (examples)

closure - how items are grouped together if they tend to complete a pattern.

good continuation - we tend to assign objects to an entity that is defined by smooth lines or curves.


-	ciples in HC		
NameAddr1Addr2CityStatePhoneFax	Name Addr1 Addr2 City State Phone Fax	Name Addr1 Addr2 City State Phone Fax	
			29

Integration with visual context TAE CAT ABC 2004

Recognizing form

Comparison with patterns stored in LTM, but processed & stored in terms of?

- Templates (Philipps, 1974)
- Features (Gibson, 1969; Egeland, 1975; ...)
- Features + structure (Marr, 1978; Biederman, 1987)

Reading - applied pattern recognition

Not a sequential process

- > Saccades & fixations, perception occurs during fixations
- Words are patterns too, can be recognized as quickly as letters
- Recognition on three interacting levels in parallel: features, letters, words (McClelland & Rumelhardt, 1981; Massaro & Cohen, 1991)

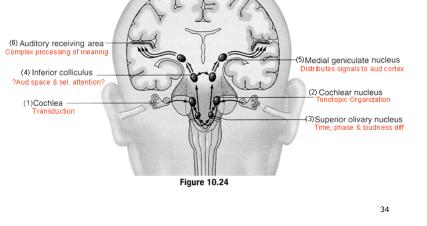
Word superiority effect (Reicher, 1969):

- > Stimulus: I letter, 4-letter word, 4-letter non-word
- Question: which of 2 alternative characters was at a certain position? Most accuracte in word condition!

Speed ~ 250 words per minute

- Dark characters on light backround easier to read
- Negative contrast improves reading in display with low freq.

Reading


Both bottom-up and top-down process, guided by context and expectations

"Luat enier sidtue an eienr elgnhcsien uvrsnäiett, ist es eagl in wcheler rhnfgeeloie die bstuchbaen in eniem wrot snid. das eniizg whictgie ist, dsas der etrse und der lztete bstuchbae am rtigeichn paltz snid. der rset knan tatol deiuranchnedr sien und man knan es ienrmomch onhe porbelm Iseen. das legit daarn, dsas wir nhcit jeedn bstuchbaen aeilln Iseen, srednon das wrot als gzanes."

The quick brown fox jumps over the the lazy dog.

33

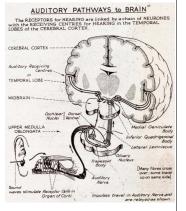
Auditory perception Auditory Pathways and Hypothesized Functions

Auditory perception

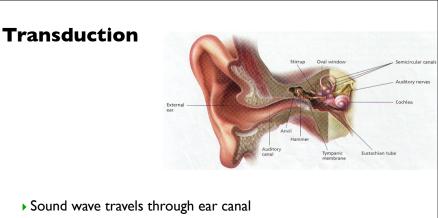
I.Transduction

 translates sound waves into neural impulses

2. Auditory grouping


segregation & integration of sound streams

3.Scene analysis & organisation

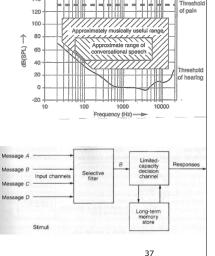

• extraction of perceptual properties

4.Interpretation

• experience of the auditory environment

(McAdams & Bigand, 1993)

- Transformation of ear drum vibrations into bone movements (ossicls) and amplification
- > Transmission into cochlea (inner ear), filled with liquid
- > Delicate hair cells bend and cause neural impulses


Auditory processing

Features processed:

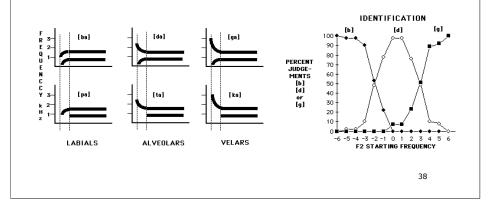
- Loudness (= amplitude)
- Whisper (15 dB), conversation (60), car horn (110), rock concert (120+)
- Frequency (= pitch)
 - Human hearing range: 20 Hz 15.000 Hz
- Timbre (type or quality of sound)

Final perception in auditory cortex

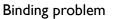
- Directed hearing from temporal and intensity differences at the ears, helps to separate sound sources
- Filtering (,,cocktail party effect")
- Impression of non-existent sounds (tinitus)

Categorical perception

Experience of percept invariances in sensory phenomena


- within-category differences perceived smaller than the between-category differences, even when the physical differences are actually the same
- First noted in speech perception (A. Lieberman): when people listen to sounds that vary along voicing continuum, they hear only /ba/s and /pa/s, nothing in between

Not peculiar to speech, occurs whenever perceived withincategory differences are compressed and/or between-category differences are separated


- > innate (speech, colors) and learned
- special case of the effect that stimuli to which you learn to make a different response become more distinctive, and stimuli to which you learn to make the same response become more similar

Categorical perception

When hearing similar sounds (ba, da, ga), that differ slightly in the starting frequency of an harmonic (2nd formant, F2), humans seem to perceive and discriminate between clear categories

Multisensory perception

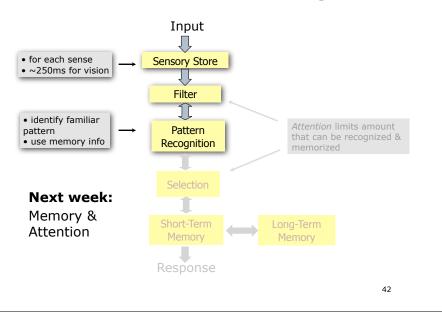
- how to bind different perceptual features together?
- possibly based on location, synchronization, labels, etc.
- combination of modality-specific brain areas and fusion areas

Example: "McGurk effect"

> stimuli that can be visually or audibly confused

brain computes the "most reasonable" integration

Consequences for HCI?


Human Factors Engineering

Perceptual principles of display design

- 1. **Make displays legible** (or audible), the characters or objects being displayed must be discernible
- 2. Avoid absolute judgment limits. Do not ask the user to determine the level of a variable based on a single sensory variable
- 3. **Top-down processing**. Signals are perceived in accordance with what is expected based on past experience. Signals contrary to expectation need more physical evidence to be understood
- 4. **Redundancy gain**. Present a signal more than once, possibly in alternative physical forms (as redundancy does not imply repetition)
- 5. **Similarity causes confusion**. Use discriminable elements, remove unnecessary similar features and highlight dissimilar features

41

Human Information Processing

