
POMDP Tutorial

Preliminaries: Problem Definition
• Agent model, POMDP, Bayesian RL

WORLD

bBelief Policy
 π

ACTORACTOR

Transition
Dynamics

Action
Observation

Markov Decision Process

-X: set of states [xs,xr]

• state component

• reward component

--A: set of actions

-T=P(x’|x,a): transition
and reward probabilities

-O: Observation function

-b: Belief and info. state

-π: Policy

Sequential decision making with uncertainty in a changing world

• Dynamics- The world and agent change over time. The
agent may have a model of this change process

• Observation- Both world state and goal achievement are
accessed through indirect measurements (sensations of
state and reward)

• Beliefs - Understanding of world state with uncertainty
• Goals- encoded by rewards! => Find a policy that can

maximize total reward over some duration
• Value Function- Measure of goodness of being in a belief

state
• Policy- a function that describes how to select actions in

each belief state.

Markov Decision Processes (MDPs)

In RL, the environment is a modeled as an MDP,
defined by

S – set of states of the environment
A(s) – set of actions possible in state s within S
P(s,s',a) – probability of transition from s to s' given a
R(s,s',a) – expected reward on transition s to s' given a
g – discount rate for delayed reward

 discrete time, t = 0, 1, 2, . . .

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a

MDP Model

Agent

Environment

s0 r0

a0 s1
a1

r1
s2 a2

r2
s3

State Reward Action

Process:
• Observe state st in S
• Choose action at in At

• Receive immediate
reward rt

• State changes to st+1

MDP Model <S, A, T, R>

Find a policy π : s∈ S → a∈ A(s) (could be stochastic)

 that maximizes the value (expected future reward) of each s :

and each s,a pair:

The Objective is to Maximize
Long-term Total Discounted Reward

V (s) = E {r + γ r + γ r + s =s, π }
rewards

These are called value functions - cf. evaluation functions

t +1 t +2 t +3 t. . .2π

Q (s,a) = E {r + γ r + γ r + s =s, a =a, π }t +1 t +2 t +3 t t. . .2π

Policy & Value Function

• Which action, a, should the agent take?
– In MDPs:

• Policy is a mapping from state to action, π: S → A

• Value Function Vπ,t(S) given a policy π
– The expected sum of reward gained from starting in

state s executing non-stationary policy π for t steps.

• Relation
– Value function is evaluation for policy based on the

long-run value that agent expects to gain from
executing the policy.

Optimal Value Functions and Policies

There exist optimal value functions:

And corresponding optimal policies:

V
*
(s) = max

!
V

!
(s) Q

*
(s,a) = max

!
Q

!
(s,a)

!
*
(s) = argmax

a
Q
*
(s,a)

π* is the greedy policy with respect to Q*

Optimization (MDPs)

• Recursively calculate expected long-term reward for each state/belief:

• Find the action that maximizes the expected reward:

() () () ()* *

1

'

max , , , ' '
t t

a
s S

V s R s a T s a s V s! "
#

$ %
= +& '

()
*

() () ()1

'

* argmax (,) , , ' * '
t t

a s S

s R s a T s a s V s! " #
$

% &
= +' (

) *
+

Policies are not actions

• There is an important difference between policies
and action choices

• A Policy is a (possibly stochastic) mapping
between “states” and actions (where states can be
beliefs or information vectors). Thus a policy is a
strategy, a decision rule that can encode action
contingencies on context, etc.

Example of Value Functions

4Grid Example

Policy Iteration

Classic Example: Car on the hill

Goal: Top of the hill, final
velocity =0 in minimum time

Optimal Value function

Optimal
Trajec.

Ball-Balancing
• RL applied to a real physical system-illustrates online learning
• An easy problem...but learns as you watch

Smarts Demo

• Rewards ?
• Environment state space?
• Action state space ?
• Role of perception?
• Policy?

1-Step Model-free Q-Learning

(Watkins, 1989)

On each state transition:

Q(s
t
,a

t
)! Q(s

t
,a

t
) + " r

t+1 + # max
a
Q(s

t +1,a) $Q(st ,at)[]

TD Error

lim
t!"

Q(s,a)! Q
*
(s,a)

lim
t!"

#
t
! #

*

a table
entry

s
t
a
t

r
t +1
s
t +1

Update:

Assumes finite MDP

Optimal behavior found without a
model of the environment!

A model of the environment is not necessary to learn to act in a stationary domain

RL Theory: Generalized Policy Iteration

Policy
!

Value
Function
V, Q

policy
evaluation

policy
improvement

! * V
*
, Q

*

value
learning

greedification

Rooms Example

HALLWAYS

O2

O1

4 rooms
4 hallways

8 multi-step options

Given goal location,
quickly plan shortest route

up

down

rightleft

(to each room's 2 hallways)
G?

G?

4 unreliable
primitive actions

Fail 33%
of the time

Goal states are given
a terminal value of 1 γ = .9

All rewards zero

ROOM

Action representation matters: Value functions learned
faster for macro-actions

Iteration #1 Iteration #2 Iteration #3

with primitive actions (cell-to-cell)

Iteration #1 Iteration #2 Iteration #3

with behaviors (room-to-room)

V (goal)=1

V (goal)=1

MDP Model

Agent

Environment

s0 r0

a0 s1
a1

r1
s2 a2

r2
s3

State Reward Action

Process:
• Observe state st in S
• Choose action at in At

• Receive immediate
reward rt

• State changes to st+1

MDP Model <S, A, T, R>

Case #1: Uncertainty about the action outcome

Case #2: Uncertainty about the world state due to
 imperfect (partial) information

POMDP: UNCERTAINTY

A broad perspective

GOAL = Selecting appropriate actions

WORLD + AGENT

ACTIONS

 OBSERVATIONSBelief
state

STATE
AGENT

POMDP parameters:
 Initial belief: b0(s)=Pr(S=s)
 Belief state updating: b’(s’)=Pr(s’|o, a, b)
 Observation probabilities: O(s’,a,o)=Pr(o|s’,a)
 Transition probabilities: T(s,a,s’)=Pr(s’|s,a)
 Rewards: R(s,a)

What are POMDPs?

Components:
Set of states: s∈S
Set of actions: a∈A
Set of observations: o∈Ω

0.5
0.5

1

MDP

S2
Pr(o1)=0.9
Pr(o2)=0.1

S1
Pr(o1)=0.5
Pr(o2)=0.5

a1

a2
S3

Pr(o1)=0.2
Pr(o2)=0.8

Belief state

• Probability distributions over
states of the underlying MDP

• The agent keeps an internal
belief state, b, that summarizes
its experience. The agent uses
a state estimator, SE, for
updating the belief state b’
based on the last action at-1, the
current observation ot, and the
previous belief state b.

• Belief state is a sufficient
statistic (it satisfies the Markov
proerty)

SE !

Agent

World

Observation

Action

b

1D belief space for a 2 state POMDP
with 3 possible observations

() ()
() () ()

() () ()

| , | ,

' P | , ,
| , | ,

i

j i

j j i i

s S

j j

j j i i

s S s S

P o s a P s s a b s

b s s o a b
P o s a P s s a b s

!

!

!

= =

"

" "

Zi = Observations

A POMDP example: The tiger problem

S0
“tiger-left”

Pr(o=TL | S0, listen)=0.85
Pr(o=TR | S1, listen)=0.15

S1
“tiger-right”

Pr(o=TL | S0, listen)=0.15
Pr(o=TR | S1, listen)=0.85

Actions={ 0: listen,
 1: open-left,
 2: open-right}

Reward Function
 - Penalty for wrong opening: -100
 - Reward for correct opening: +10
 - Cost for listening action: -1

Observations
 - to hear the tiger on the left (TL)
 - to hear the tiger on the right(TR)

POMDP ≡ Continuous-Space Belief MDP

• a POMDP can be seen as a continuous-space “belief MDP”, as the
agent’s belief is encoded through a continuous “belief state”.

• We may solve this belief MDP like before using value iteration
algorithm to find the optimal policy in a continuous space. However,
some adaptations for this algorithm are needed.

S0 S1

A1

O1

S3

A3

O3

S2

A2

O2

Belief MDP

• The policy of a POMDP maps the current belief state into an action. As the
belief state holds all relevant information about the past, the optimal policy of
the POMDP is the the solution of (continuous-space) belief MDP.

• A belief MDP is a tuple <B, A, ρ, P>:
B = infinite set of belief states
A = finite set of actions
ρ(b, a) = (reward function)

P(b’|b, a) = (transition function)

Where P(b’|b, a, o) = 1 if SE(b, a, o) = b’,
 P(b’|b, a, o) = 0 otherwise;

() (),
s S

b s R s a

!

"

(' | , ,) (| ,)
o O

P b b a o P o a b

!

"

A POMDP example: The tiger problem

S0
“tiger-left”

Pr(o=TL | S0, listen)=0.85
Pr(o=TR | S1, listen)=0.15

S1
“tiger-right”

Pr(o=TL | S0, listen)=0.15
Pr(o=TR | S1, listen)=0.85

Actions={ 0: listen,
 1: open-left,
 2: open-right}

Reward Function
 - Penalty for wrong opening: -100
 - Reward for correct opening: +10
 - Cost for listening action: -1

Observations
 - to hear the tiger on the left (TL)
 - to hear the tiger on the right(TR)

Tiger Problem (Transition Probabilities)
•

1.00.0Tiger: right

0.01.0Tiger: left

Tiger: rightTiger: leftProb. (LISTEN)

Tiger: rightTiger: leftProb. (LEFT)

0.50.5Tiger: right

0.50.5Tiger: left

Tiger: rightTiger: leftProb. (RIGHT)

0.50.5Tiger: right

0.50.5Tiger: left

Problem reset

Doesn’t change

Tiger location

Tiger Problem (Observation Probabilities)
•

0.850.15Tiger: right

0.150.85Tiger: left

O: TRO: TLProb. (LISTEN)

0.50.5Tiger: right

0.50.5Tiger: left

O: TRO: TLProb. (LEFT)

O: TRO: TLProb. (LEFT)

0.50.5Tiger: right

0.50.5Tiger: left

Any observation

Without the listen action

Is uninformative

Tiger Problem (Immediate Rewards)
•

Tiger: right

Tiger: left

Reward (LISTEN)

-1

-1

Tiger: right

Tiger: left

Reward (LEFT)

+10

-100

Tiger: right

Tiger: left

Reward (RIGHT)

-100

+10

The tiger problem: State tracking

S1
“tiger-left”

S2
“tiger-right”

Belief vector

b0

Belief

The tiger problem: State tracking

S1
“tiger-left”

S2
“tiger-right”

Belief vector

b0

Belief

obs=hear-tiger-left
action=listen

The tiger problem: State tracking

b1

obs=growl-left

S1
“tiger-left”

S2
“tiger-right”

Belief vector

Belief

b0

action=listen

()

() () ()

()baoP

sbassPasoP

sb
Ss

jjii

i

j

,|

,|,| 0

1

!
"

=

Tiger Example Optimal Policy t=1

• Optimal Policy for t=1
α0(1)=(-100.0, 10.0) α1(1)=(-1.0, -1.0) α0(1)=(10.0, -100.0)

 [0.00, 0.10] [0.10, 0.90] [0.90, 1.00]

rightleft listen

Belief Space:

open-rightopen-left listen

S1
“tiger-left”

S2
“tiger-right”

Optimal policy:

Tiger Example Optimal Policy for t=2

• For t=2
 [0.00, 0.02] [0.02, 0.39] [0.39, 0.61] [0.61, 0.98] [0.98, 1.00]

listenlistenlistenlisten listen

rightleft listen

TL/TR TR TL TLTR TL/TRTL/TR

Can we solving this Belief MDP?

• The Bellman equation for this belief MDP is

• In general case: Very Hard to solve continuous space MDPs. Unfortunately,
DP updates cannot be carried out because there are uncountably many of belief
states. One cannot enumerate every equation of value function. To conduct DP
steps implicitly, we need to discuss the properties of value functions.

• Some special properties can be exploited first to simplify this problem
– Policy Tree
– Piecewise linear and convex property

• And then find an approximation algorithm to construct the optimal t-step
discounted value function over belief space using value iteration…

() () () () ()* *max , Pr | , a

o
a A

s S o O

V b b s R s a o b a V b!
"

" "

$
= +% &

' (
))

Policy Tree

• With one step remaining, the agent must take a single action. With 2 steps to go, it takes
an action, make an observation, and makes the final action. In general, an agent t-step
policy can be represented as a policy tree.

A

A A A

O1
O2

Ok

A

A A A

O1
O2

Ok

T steps to go

T-1 steps to go

2 steps to go

(T=2)

1 step to go
(T=1)

Value Function for policy tree p

• If p is one-step policy tree, then the value of executing that action in
state s is

Vp(s) = R(s, a(p)).
• More generally, if p is a t-step policy tree, then

Vp(s) = R(s, a(p)) + r (Expected value of the future)
 = R(s, a(p)) + r

• Thus, Vp(s) can be thought as a vector associated with the policy trees
p since its dimension is the same as the number of states. We often
use notation αp to refer to this vectors.

() ()() () ()
'

(' | , , ') ', , '
i

i

i o p

s S o

T s s a p s T s a p o V s
! !"

#

() () ()1 2
, ,...,p p p p nV s V s V s! =

Value Function Over Belief Space

• As the exact world cannot be observed, the agent must compute an expectation over
world states of executing policy tree p from belief state b:

Vp(b) =

• If we let , then

• To construct an optimal t-step policy, we must maximize over all t-step policy trees P:

• As Vp(b) is linear in b for each p∈P, Vt(b) is the upper surface of those functions. That
is, Vt(b) is piecewise linear and convex.

() ()p

s S

b s V s
!

"

() () ()1 2
, ,...,p p p p nV s V s V s! =

()p pV b b !=

() maxt p
p P

V b b !
"

=

Illustration: Piecewise Linear Value Function
• Let Vp1Vp2 and Vp3 be the value functions induced by policy trees

p1, p2, and p3. Each of these value functions are the form

• Which is a multi-linear function of b. Thus, for each value function
can be shown as a line, plane, or hyperplane, depending on the
number of states, and the optimal t-step value

•

• Example– in the case of two states (b(s1) = 1- b(s2)) – be illustrated
as the upper surface in two dimensions:

()
i ip pV b b !=

() max
i

i

t p
p P

V b b !
"

=

Picture: Optimal t-step Value Function

Belief

S=S0
S=S1

0 1

Vp1 Vp3

Vp2

B(s0)

Optimal t-Step Policy
• The optimal t-step policy is determined by projecting the optimal value

function back down onto the belief space.

• The projection of the optimal t-step value function yields a partition into
regions, within each of which there is a single policy tree, p, such that
is maximal over the entire region. The optimal action in that region a(p), the
action in the root of the policy tree p.

Belief
0

Vp1
Vp3

Vp2

B(s0) 1

A(p1) A(p2) A(p3)

First Step of Value Iteration

• One-step policy trees are just actions:
• To do a DP backup, we evaluate every possible 2-step policy tree

a0 a1

a0

a0 a0

O0 O1

a0

a0 a1

O0 O1

a0

a1 a0

O0 O1

a0

a1 a1

O0 O1

a1

a0 a0

O0 O1

a1

a0 a1

O0 O1

a1

a1 a0

O0 O1

a1

a1 a1

O0 O1

Pruning

• Some policy trees are dominated and are never useful

• They are pruned and not considered on the next step.
• The key idea is to prune before evaluating (Witness and Incremental

Pruning do this)

Belief
0 B(s0) 1

Vp1
Vp3

Vp2

Value Iteration (Belief MDP)

• Keep doing backups until the value function doesn’t change much
anymore

• In the worst case, you end up considering every possible policy tree

• But hopefully you will converge before this happens

More General POMDP: Model uncertainty

s b

actions
s b +a

rewards

s’ b’

actions
s’ b’ +a’

rewards

s’’ b’’

decision
a

outcome
r, s’, b’

Meta-level Model
P(r,s’b’|s b,a)

a

a’

r

r’

decision
a’

outcome
r’, s’’, b’’

Meta-level Model
P(r’,s’’b’’|s’ b’,a’)

Meta-level MDP

Choose action
to maximize

long term reward

meta-level state

Belief state b=P(θ)

Tree required to compute optimal
solution grows exponentially

Multi-armed Bandit Problem

Bandit “arms”

m1 m2 m3
(unknown reward

probabilities)
Most complex problem for which optimal solution fully
specified - Gittins index

-More general than it looks
-“Projects” with separable state spaces
-Projects only change when worked on.

-Key Properties of Solution
-Each project’s value can be separately computed
-Optimal policy permanantly retires projects less valuable
projects

Arm1 Arm2

Learning in a 2-
armed bandit

Action dependent tree of Beta
sufficient statistics

Problem difficulty
Policies must specify actions
For all possible
information states

Value Function

The reason information is valuable is the ability to use the
information to follow the optimal policy: By distinguishing the
arms, future best actions have higher expected payoffs.

Optimal value function for learning while acting for k step
look-ahead

More reading…

• Planning and acting in partially Observable stochastic domains
Leslie P. Kaelbling

• Optimal Policies for partially Observable Markov Decision Processes
Anthony R.Cassandra 1995

• Hierarchical Methods for Planning under Uncertainty Joelle Pineau
• POMDP’s tutorial in Tony's POMDP Page

http://www.cs.brown.edu/research/ai/pomdp/

