
gentsSociable

Dr. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

Spezielle Themen der
Künstlichen Intelligenz

1. Termin: Einführung & Wiederholung

gentsSociable

Administrativa

Dr.-Ing. Stefan Kopp
‣ skopp@techfak.uni-bielefeld.de
‣ Sprechstunde: Fr 13-14, Q1-144
‣ Tel: (106-)12144

Semesterapparat: Universitätsbibliothek, FB Informatik, „Kopp“

Webseite: www.techfak.uni-bielefeld.de/~skopp/Lehre/STdKI_SS10

Übungen:
‣ Thies Pfeiffer
‣ Ramin Yaghoubzadeh

2

gentsSociable
http://www.techfak.uni-bielefeld.de/ags/soa/

gentsSociable

Leistungspunkte

Vorlesung: 6 LPs für
‣ regelmäßige Teilnahme an der Vorlesung
‣ regelmäßige Teilnahme an den Übungen
‣ erfolgreiches Bearbeiten der Übungsaufgaben

‣ erfolgreiche Abschlussprüfung/Klausur → benotete EL

Modul „Vertiefung Künstliche Intelligenz“ = 10 LP
‣ +4 LP und EL aus weiterem Seminar

3 gentsSociable

Methoden der der KI

Grundlagen und Überblicke in
‣ symbolischer Wissensrepräsentation

- Logik, Frames, semantische Netze, KL-ONE

‣ Suche
- blinde und informierte
- Means-Ends-Analysis, Goal-Trees, CSP

‣ Logik und Inferenz
- Prädikatenlogik, Resolution, Skolemisierung,

Unifikation, Indexing

‣ spezielle Schlußverfahren
- abduktive und induktive
- probabilistische und nicht-monotone
- räumliche und temporale

4

 Umgebung /Environment

Affect

World

Recognize

Input

Apply

Method
Change

Rep.

Select

Method

Internal Representation!

General

Knowledge

Method

Store

General Intelligent Agent

gentsSociable

Spezielle Methoden der KI

Fortgeschrittene Techniken zur
Realisierung künstlichen intelligenten
Verhaltens in der Realität

Reale Domänen schwierig weil oft
nachteilig in Bezug auf
‣ Größe
‣ Struktur
‣ Unbekanntheit & Vagheit
‣ Beobachtbarkeit
‣ Beeinflussbarkeit
‣ Dynamik & Vorhersagbarkeit

5 gentsSociable

Spezielle Methoden der KI

Fortgeschrittene Techniken zur Realisierung
künstlichen intelligenten Verhaltens in der
Realität

Vorlesung: Methoden geeignet für
verschiedene Domänen
‣ Search, Reasoning & Planning

‣ Constraint Satisfaction

‣ Game-playing

‣ Uncertainty & Bayesian Belief Networks
‣ (Partially Observable) Markov Decision Problems

‣ Learning

...with applications in actual research projects

6

gentsSociable

Literatur

Russell & Norvig: Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd Edition, 2003
(~2nd part, Ch.11-18)

Darwiche: Modeling and Reasoning with Bayesian
Networks. Cambridge Univ. Press, 2009

7 gentsSociable

Weiterführende Literatur

Judea Pearl, Probabilistic reasoning in
intelligent systems, Morgan Kaufmann,
1989

Finn V. Jensen, Bayesian networks and
decision graphs, , Springer, 2001

Steffen L. Lauritzen, Graphical models,
Oxford, 2002

Günther Görz (Ed.), Handbuch der
künstlichen Intelligenz, 4. Auflage,
Oldenbourg, 2003

8

gentsSociable

Dr. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

Search & Exploration (recap´)

9 gentsSociable

Search problem

10

 Defined by:
• Specification of start state
• Specification of goal state
• Set of operators to go from one state

into another

 Solution:
• specific state meeting the

specification of goal state
• or: sequence of operators that lead

from state state into goal state
(path in search space)

Different requirements
• finding one solution
• finding all solutions
• finding optimale solution
• proving no solution to exist

ZIELZUSTAND

STARTZUSTAND

gentsSociable11 gentsSociable

Problem-solving by searching

12

(Newell & Simon)

 Umgebung /Environment

Affect

World

Recognize

Input

Apply

Method
Change

Rep.

Select

Method

Internal Representation!

General

Knowledge

Method

Store

control strategy

operators

database (complete, offline)
or world (incomplete, online)

`as-if´-acting

gentsSociable

Problem-solving agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) return an
action

 static: seq, an action sequence
 state, some description of the current world state
 goal, a goal
 problem, a problem formulation

 state ! UPDATE-STATE(state, percept)
 if seq is empty then
 goal ! FORMULATE-GOAL(state)
 problem ! FORMULATE-PROBLEM(state,goal)
 seq ! SEARCH(problem)
 action ! FIRST(seq)
 seq ! REST(seq)
 return action

13 gentsSociable

Problem types

Single-state problem
‣ Environment is static, deterministic, and fully observable

‣ Agent knows exactly which state it is now and
will be in

‣ Solution: sequence of action that need to be executed (open-loop)

Sensorless (conformant) problem
‣ Partial knowledge of states, but known actions

‣ Agent may have no idea where it is, each action may lead to one of
several possible states

‣ Solution (if any): sequence of action that will do the job in any case

14

gentsSociable

Contingency problem
‣ Environment is non-deterministic, i.e. actions are uncertain, or

partially observable

‣ Each percept provides new, but partial information after each action
(contingency that must be planned for)

‣ Solution: no fixed action sequence, interleave search and execution
(closed-loop)

Exploration problem

‣ Environment and actions are unknown up-front

‣ Agent must act to discover states and actions

‣ Extreme case of contingency problem

15

Problem types

gentsSociable

Example: vacuum world

• Single-state, start in #5.
Solution?

Task: Clean the room (#7 or #8)

gentsSociable

Example: vacuum world

• Single-state, start in #5.
Solution? [Right, Suck]

• Sensorless, start in one
of {1,2,3,4,5,6,7,8}, e.g.
Right goes to {2,4,6,8} and
[Right, Suck] to {4,8}
Solution?

Task: Clean the room (#7 or #8)

gentsSociable

Example: vacuum world

• Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]
Search in sets of states
(=belief states)

• Contingency problem
• Non-deterministic: Suck may dirty a clean carpet
• Partially observable: location, dirt at current location
• Percept: [L, Clean], i.e., start in #5 or #7

Solution?

gentsSociable

Example: vacuum world

• Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

• Contingency
• Nondeterministic: Suck may dirty a clean carpet
• Partially observable: location, dirt at current location.
• Percept: [L, Clean], i.e., start in #5 or #7 or ??

Solution? [Right, if dirt then Suck, Left, if dirt then Suck]
actions based on contingencies arising during execution

gentsSociable

Example: Romania

• Problem:
• on holiday in Romania; currently in Arad; flight leaves

tomorrow from Bucharest

• Formulate goal:
• be in Bucharest in time

• Formulate problem:
• states: various cities
• actions: drive between cities

• Find solution:
• sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

gentsSociable

Example: Romania

gentsSociable

State space

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., In(Arad)
2. actions or successor function at state x:

S(x) = set of action–state pairs
• e.g., S(In(Arad)) = {<Go(Zerind), In(Zerind)>, … }

3. goal test, is given state x goal state?
• explicit, e.g., x = In(Bucharest)
• implicit, e.g., HasAirport(x)

4. path cost (additive)
• e.g., sum of distances, number of actions executed, etc.
• step cost c(x,a,y) of getting from x to y by action a, assumed to be ≥ 0

• Solution = action sequence leading from initial to goal state

gentsSociable

Formulating the state space

Real world is usually too complex ! state space must be abstracted

‣ (Abstract) state = set of real/virtual states/properties

‣ (Abstract) action = complex combination of real/virtual actions

- abstraction valid if path between (abstract) search space states reflected in
the world (realizability)

‣ (Abstract) solution = set of paths that reflect actual solutions in the
real/virtual world

Needless to say, each abstract state-space formulation should be easier than
the real problem to enable searching

23 gentsSociable

Vacuum world state space graph

• states?
• actions?
• goal test?
• path cost?

gentsSociable

Vacuum world state space graph

• states? integer dirt and robot location (n*2n states)
• actions? Left, Right, Suck
• goal test? no dirt at all locations
• path cost? 1 per action (step cost)

gentsSociable

Simple tree search algorithm (pseudo-code)

26

function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 loop do
 if no candidates for expansion then return failure
 choose leaf node for expansion according to strategy
 if node contains goal state then return solution
 else expand the node and add resulting nodes to the search tree
 end

gentsSociable

entry1

column7 door21 door14

entry1 spot1 spot3 stairs5 entry1 spot1 entry1 outlook4

Exampe: simple tree search

function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 loop do
 if no candidates for expansion then return failure
 choose leaf node for expansion according to strategy
 if node contains goal state then return solution
 else expand the node and add resulting nodes to the search tree
 end

1. the initial state entry1

27 gentsSociable

entry1

column7 door21 door14

entry1 spot1 spot3 stairs5 entry1 spot1 entry1 outlook4

function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 loop do
 if no candidates for expansion then return failure
 choose leaf node for expansion according to strategy
 if node contains goal state then return solution
 else expand the node and add resulting nodes to the search tree
 end

Simple tree search example

2. after expanding entry1

28

gentsSociable

entry1

column7 door21 door14

entry1 spot1 spot3 stairs5 entry1 spot1 entry1 outlook4

function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 loop do
 if no candidates for expansion then return failure
 choose leaf node for expansion according to strategy
 if node contains goal state then return solution
 else expand the node and add resulting nodes to the search tree
 end

Simple tree search example

3. after expanding column7

29 gentsSociable

state: (representation of) a world configuration

node: data structure to represent part of the search tree

‣ includes state, parent node, action, path cost g(x), depth

‣ fringe set of generated nodes not yet expanded

An Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding
states

State space vs. search tree

30

gentsSociable

Tree search algorithm
function TREE-SEARCH(problem,fringe) return a solution or failure
 fringe ! INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if EMPTY?(fringe) then return failure
 node ! REMOVE-FIRST(fringe)
 if GOAL-TEST[problem] applied to STATE[node] succeeds
 then return SOLUTION(node)
 fringe ! INSERT-ALL(EXPAND(node, problem), fringe)

function EXPAND(node,problem) return a set of nodes
 successors ! the empty set
 for each <action, result> in SUCCESSOR-FN[problem](STATE[node]) do
 s ! a new NODE
 STATE[s] ! result
 PARENT-NODE[s] ! node

 ACTION[s] ! action
 PATH-COST[s] ! PATH-COST[node] + STEP-COST(node, action,s)
 DEPTH[s] ! DEPTH[node]+1
 add s to successors
 return successors 31 gentsSociable

Search strategies

The search strategy defines the order of node expansion

Evaluated along the following dimensions:

‣ completeness: does it always find a solution if one exists?
‣ optimality: does it always find a least-cost solution?
‣ time complexity: how long does it take? (#nodes expanded)
‣ space complexity: how much memory is needed? (#nodes stored)

Time and space complexity depend on problem size, measured in
terms of

‣ b: branching factor or maximum #successors of any node
‣ d: depth of the least-cost solution (root node at d=0)
‣ m: maximum depth of any path in state space (may be ∞)

32

gentsSociable

Uninformed search strategies

Use only information available in problem definition (blind search)

‣ generate successors, distinguish goal from non-goal state

‣ when strategy can determine whether one non-goal state is
better than another non-goal state → informed search

Categories defined by expansion algorithm (and fringe organization):

‣ Breadth-first search

‣ Uniform-cost search

‣ Depth-first search

‣ Depth-limited search

‣ Iterative deepening search.

‣ Bidirectional search

33 gentsSociable

Breadth-First (BF) search

Expand shallowest unexpanded node
Implementation:
‣ fringe is a FIFO queue,

i.e., new successors go at end

B

A

D E

C

F G

34

gentsSociable

B

A

D E

C

F G

Breadth-First (BF) search

Expand shallowest unexpanded node
Implementation:
‣ fringe is a FIFO queue,

i.e., new successors go at end

35 gentsSociable

B

A

D E

C

F G

Breadth-First (BF) search

Expand shallowest unexpanded node
Implementation:
‣ fringe is a FIFO queue,

i.e., new successors go at end

36

gentsSociable

B

A

D E

C

F G

Breadth-First (BF) search

Expand shallowest unexpanded node
Implementation:
‣ fringe is a FIFO queue,

i.e., new successors go at end

37 gentsSociable

Properties of BF search
Complete? Yes (if b is finite)
Time? 1+b+b2+b3+… +bd +(bd+1-b) = O(bd+1)
Space? O(bd+1) (keeps every node in memory)

Optimal? Yes (if step costs grow with depth → shallowest node is optimal)

DEPTH NODES TIME MEMORY

2 1100 0.11 seconds 1 megabyte

4 111100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3523 years 1 exabyte

b = 10
10.000 nodes/sec
1.000 byte/node 38

‣ Space is the
bigger problem

‣ Exponential
search problems
cannot be solved
by uninformed
search methods
for any but the
smallest instances

gentsSociable

Uniform-cost search

Expand node with lowest total path cost g(n)

fringe = queue ordered by path cost

‣ equivalent to breadth-first if step costs are all equal

Complete? Yes, if every step cost ≥ ε > 0
Optimal? Yes – nodes expanded in increasing order of g(n)

Time? ~ #nodes with cost g ≤ cost of optimal solution C*
‣ at depth of about C*/ε ! O(bceiling(C*/ !))

Space? O(bceiling(C*/ !))

39 gentsSociable

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front
(=stack)

B

A

D E

C

F G

H I J K L M N O

40

gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

41 gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

42

gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

43 gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

44

gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

45 gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

46

gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

47 gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

48

gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

49 gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

50

gentsSociable

B

A

D E

C

F G

H I J K L M N O

Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue,

i.e., new successors go at front

51 gentsSociable

Properties of DF search

Complete? No, fails in infinite-depth spaces or spaces with loops

‣ modify to avoid repeated states along path makes it complete in
finite spaces

Time? O(bm), i.e. all nodes expanded in worst case

‣ but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e. linear space complexity

‣ Backtracking search uses even less memory
- One successor instead of all b.

Optimal? No, returns left-most goal state

52

gentsSociable

Depth-limited search (DLS)

is DF-search with depth limit l

‣ i.e. nodes at depth l treated as if having no successors
‣ problem knowledge can be used to define good limits

solves the infinite-path problem, but adds incompleteness

‣ If l < d then incompleteness results

‣ If l > d then complete, but still not optimal

Time complexity: O(bl)

Space complexity: O(bl)

Can be directly implemented in a recursive fashion

53 gentsSociable

Recursive depth-limited search algorithm

function DEPTH-LIMITED-SEARCH(problem,limit) return a solution or failure/cutoff
 return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),problem,limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or failure/cutoff
 cutoff_occurred? ! false
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 else if DEPTH[node] == limit then return cutoff
 else for each successor in EXPAND(node, problem) do
 result ! RECURSIVE-DLS(successor, problem, limit)
 if result == cutoff then cutoff_occurred? ! true
 else if result " failure then return result
 if cutoff_occurred? then return cutoff else return failure

54

gentsSociable

Iterative deepening search (IDS)

A general strategy to find best depth limit l

Goal is found at depth d, the depth of the shallowest goal-node

Combines benefits of DF-search and BF-search

function ITERATIVE_DEEPENING_SEARCH(problem) return a solution or failure
 inputs: problem
 for depth ! 0 to ! do
 result ! DEPTH-LIMITED_SEARCH(problem, depth)
 if result " cutoff then return result

55 gentsSociable

IDS-search example

limit = 0

56

gentsSociable

IDS-search example

limit = 1

57 gentsSociable

IDS-search example

limit = 2

58

gentsSociable

IDS-search example

limit = 3

59 gentsSociable

Properties of IDS

Complete? Yes, if b is finite

Time? sub-optimal because nodes are generated multiple times, but this
is not so costly since most nodes are in the bottom level

! (d+1)1 + d b + (d-1)b2 + … 2 b(d-1) + 1 bd = O(bd)

Space? O(bd)

Optimal? Yes, if path cost monotonically increases with depth

60

gentsSociable

Number of nodes generated in a breadth-first search to depth d with
branching factor b:
‣ NBFS = b0 + b1 + b2 + … + bd-1 + bd + (bd+1-b) = O(bd+1)

Number of nodes generated in an iterative deepening search to depth d
with branching factor b:

‣ NIDS = (d+1)1 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd = O(bd)

Example for b = 10, d = 5:
‣ NBFS = 10 + 100 + 1.000 + 10.000 + 100.000 + 999.999 = 1.111.111

‣ NIDS = 50 + 400 + 3.000 + 20.000 + 100.000 = 123.450

" IDS preferred search method for large search spaces and unknown
depth of solution

Properties of IDS vs. BFS

61 gentsSociable

Repeated states!

Failure to detect repeated states can turn solvable problems into
unsolvable ones

62

state space
of size d+1

search tree with repeated
states of size 2d

Example: simple state
space generates an
exponentially larger
search tree

gentsSociable

Tree search ! Graph search algorithms

function TREE-SEARCH(problem,fringe) return a solution or failure
 closed ! an empty set
 fringe ! INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if EMPTY?(fringe) then return failure
 node ! REMOVE-FIRST(fringe)
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

 if STATE[node] is not in closed then
 add STATE[node] to closed

 fringe ! INSERT-ALL(EXPAND(node, problem), fringe)

63

closed list stores all expanded nodes

gentsSociable

Summary of uninformed algorithms

Criterion Breadth-
First

Uniform-
cost

Depth-
First

Depth-
limited

Iterative
deepening

Bidirection
al search

Complete? YES* YES* NO YES,
if limit # d

YES YES*

Time bd+1 bC*/e bm bl bd bd/2

Space bd+1 bC*/e bm bl bd bd/2

Optimal? YES* YES* NO NO YES YES

64

gentsSociable

Informed search

General approach of informed search:

‣ „best-first search“: node n is selected for expansion
based on an evaluation function f(n).

‣ use problem-specific knowledge beyond problem definition

idea: evaluation function hints to costs of the solution, i.e. the path
from start to goal via node n

‣ Choose node which appears best („seemingly-best-first“)

Implementation:

‣ fringe is queue sorted in increasing order of evaluation f(n)

special cases: Greedy search, A* search

65 gentsSociable

Heuristic evaluation function

Heuristic [dictionary]:
“A rule of thumb, simplification, or educated guess that reduces or limits the search
for solutions in domains that are difficult and poorly understood.”

most common and easy way to impart additional problem knowledge to
a search algorithm

h(n) = estimated cost of the cheapest path from node n to goal node

‣ constraint: if n is goal, then h(n)=0

66

gentsSociable

Greedy best-first search

Evaluation function f(n) = h(n)
= estimate of cost from current state n to goal state

Greedy best-first search expands the node that appears to be closest
to goal, i.e. executes the action that takes away as much as possible of
the remaining costs (hence greedy)

Example:
hSLD(n) := straight-line distance from n to Bucharest

gentsSociable

Romania with step costs in km

gentsSociable

Greedy best-first search example

gentsSociable

Greedy best-first search example

gentsSociable

Greedy best-first search example

gentsSociable

Greedy best-first search example

Finds solution without expanding a node not part of the
solution, i.e. search costs are minimal

gentsSociable

Properties of greedy best-first search

Complete?
no–can get stuck in loops, e.g., Iasi ! Neamt ! Iasi ! Neamt ! ...

Time?
O(bm), but a good heuristic can give dramatic improvement

Space?
O(bm) -- keeps all nodes in memory

Optimal?
no! path via Sibiu and Fagaras is 32km longer than path through
Rimnicu Vilcea and Pitesti.

gentsSociable

A* search

Best-known form of best-first search

Idea:

‣ use adequate heuristics

‣ avoid expanding paths that are already expensive

Evaluation function f(n)=g(n) + h(n)

‣ g(n) the cost (so far) to reach the node

‣ h(n) estimated cost to get from the node to the goal

‣ f(n) estimated total cost of path through n to goal

74

gentsSociable

A* search example

gentsSociable

A* search example

gentsSociable

A* search example

gentsSociable

A* search example

gentsSociable

A* search example

gentsSociable

A* search example

gentsSociable

A* uses an admissible heuristic

heuristic h(n) is admissible if for every node n: h(n) " h*(n),
where h*(n) is the true cost to reach the goal state from n.

an admissible heuristic never over-estimates the cost to reach
the goal, i.e., it is optimistic

Example: hSLD(n) (never overestimates the actual road
distance)

Theorem: If h(n) is admissible, A* using TREE-SEARCH is
optimal

gentsSociable

Optimality of A* - standard proof

Suppose suboptimal goal G2
generated, in the fringe
Let n be an unexpanded node on a
shortest path to optimal goal G.

82

f(G2) = g(G2), since h(G2)=0
f(G2) > C, with C cost of optimal solution
f(n) = g(n)+h(n) <= C, since h(n) admissible
thus f(n) <= C < f(G2), so n will be expanded before G2

gentsSociable

BUT … A* graph search?

Because repeated states are prevented in graph search, can
discard optimal path to a repeated state if not the first one
generated

Two solutions:

‣ add extra book-keeping, i.e., remove the more expensive of two
paths found to the same node

‣ ensure that optimal path to any repeated state is always the
first one followed

" holds with extra requirement on h(n): consistency

83 gentsSociable

A heuristic is consistent if for every node n and every successor n' of n
generated by any action a:

Theorem: If h(n) is consistent, A*
using GRAPH-SEARCH is optimal

If h(n) is consistent, the values of f(n)
along any path are non-decreasing

Consistency (a.k.a. monotonicity)

!

h(n) " c(n,a,n') + h(n')

!

f (n') = g(n') + h(n')
= g(n) + c(n,a,n') + h(n')
" g(n) + h(n)
" f (n)

84

gentsSociable

Optimality of A*

A* expands nodes in order of increasing f value, gradually adds "f-contours"
of nodes

• contour i has all nodes with f<=fi, where fi < fi+1

• uniform-cost search = A* with h(n)=0 : contours are circles
the more correct the heuristics, the more the contours „focus“ on optimal
path

gentsSociable

Properties of A*

Complete? Yes (unless there are infinitely many nodes with f <= f(G))

Time? exponential with path length

Space? all nodes are stored

Optimal? Yes
‣ Cannot expand fi+1 until fi is finished.
‣ A* expands all nodes with f(n) < C* (cost of optimal solution)

‣ A* expands some nodes with f(n) = C* (on „goal contour“)

‣ A* expands no nodes with f(n) > C*

A* is optimally efficient for given heuristic, no other algorith expands
fewer nodes (except from ties)

86

gentsSociable

Outlook

Further search algorithms

‣ IDA*: Iterative deepening A*
- f-cost used as cut-off (instead of depth)

‣ RBFS: Recursive best-first search
- recursive DF search with best alternative f-cost as limit for back-tracking

‣ MA* / SMA*: (Simplified) Memory bounded A*
- limited memory
- if memory is full, drops worst leaf node (highest f-cost) and backs up value

of forgotten node to its parent
- regenerates subtree not until all other paths turned out to be worse
- ...can become a problem for computation time, if required often

87

