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Leistungspunkte

Vorlesung: 6 LPs für
‣ regelmäßige Teilnahme an der Vorlesung
‣ regelmäßige Teilnahme an den Übungen
‣ erfolgreiches Bearbeiten der Übungsaufgaben

‣ erfolgreiche  Abschlussprüfung/Klausur → benotete EL

Modul „Vertiefung Künstliche Intelligenz“ = 10 LP
‣ +4 LP und EL aus weiterem Seminar
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Methoden der der KI

Grundlagen und Überblicke in
‣ symbolischer Wissensrepräsentation

- Logik, Frames, semantische Netze, KL-ONE

‣ Suche
- blinde und informierte
- Means-Ends-Analysis, Goal-Trees, CSP

‣ Logik und Inferenz
- Prädikatenlogik, Resolution, Skolemisierung, 

Unifikation, Indexing

‣ spezielle Schlußverfahren
- abduktive und induktive
- probabilistische und nicht-monotone
- räumliche und temporale
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Spezielle Methoden der KI

Fortgeschrittene Techniken zur 
Realisierung künstlichen intelligenten 
Verhaltens in der Realität

Reale Domänen schwierig weil oft 
nachteilig in Bezug auf
‣ Größe
‣ Struktur
‣ Unbekanntheit & Vagheit
‣ Beobachtbarkeit
‣ Beeinflussbarkeit
‣ Dynamik & Vorhersagbarkeit
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Spezielle Methoden der KI

Fortgeschrittene Techniken zur Realisierung 
künstlichen intelligenten Verhaltens in der 
Realität

Vorlesung: Methoden geeignet für 
verschiedene Domänen
‣ Search, Reasoning & Planning

‣ Constraint Satisfaction

‣ Game-playing

‣ Uncertainty & Bayesian Belief Networks
‣ (Partially Observable) Markov Decision Problems

‣ Learning

...with applications in actual research projects
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Dr. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

Search & Exploration (recap´)
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Search problem
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 Defined by:
• Specification of start state
• Specification of goal state
• Set of operators to go from one state 

into another

 Solution:
• specific state meeting the 

specification of goal state
• or: sequence of operators that lead 

from state state into goal state 
(path in search space)

Different requirements
• finding one solution
• finding all solutions
• finding optimale solution
• proving no solution to exist

ZIELZUSTAND

STARTZUSTAND
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Problem-solving by searching
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(Newell & Simon)

 Umgebung /Environment

Affect

World

Recognize

Input

Apply

Method
Change

Rep.

Select

Method

Internal Representation!    

General

Knowledge

Method

Store

control strategy

operators

database (complete, offline)
or world (incomplete, online)

`as-if´-acting



gentsSociable

Problem-solving agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) return an 
action

 static: seq, an action sequence
  state, some description of the current world state
  goal, a goal
  problem, a problem formulation

 state ! UPDATE-STATE(state, percept)
 if seq is empty then
  goal ! FORMULATE-GOAL(state)
  problem ! FORMULATE-PROBLEM(state,goal)
  seq ! SEARCH(problem)
 action ! FIRST(seq)
 seq ! REST(seq)
 return action
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Problem types

Single-state problem 
‣ Environment is static, deterministic, and fully observable

‣ Agent knows exactly which state it is now and
will be in

‣ Solution: sequence of action that need to be executed (open-loop)

Sensorless (conformant) problem
‣ Partial knowledge of states, but known actions 

‣ Agent may have no idea where it is, each action may lead to one of 
several possible states 

‣ Solution (if any): sequence of action that will do the job in any case

14

gentsSociable

Contingency problem
‣ Environment is non-deterministic, i.e. actions are uncertain, or 

partially observable 

‣ Each percept provides new, but partial information after each action 
(contingency that must be planned for)

‣ Solution: no fixed action sequence, interleave search and execution 
(closed-loop)

Exploration problem 

‣ Environment and actions are unknown up-front

‣ Agent must act to discover states and actions

‣ Extreme case of contingency problem
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Problem types

gentsSociable

Example: vacuum world

• Single-state, start in #5. 
Solution?

Task: Clean the room (#7 or #8)
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Example: vacuum world

• Single-state, start in #5. 
Solution? [Right, Suck]

• Sensorless, start in one 
of {1,2,3,4,5,6,7,8}, e.g. 
Right goes to {2,4,6,8} and
[Right, Suck] to {4,8}
Solution?

Task: Clean the room (#7 or #8)
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Example: vacuum world

• Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution? 
[Right,Suck,Left,Suck]
Search in sets of states
(=belief states)

• Contingency problem
• Non-deterministic: Suck may dirty a clean carpet
• Partially observable: location, dirt at current location
• Percept: [L, Clean], i.e., start in #5 or #7

Solution? 
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Example: vacuum world

• Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution? 
[Right,Suck,Left,Suck]

• Contingency 
• Nondeterministic: Suck may dirty a clean carpet
• Partially observable: location, dirt at current location.
• Percept: [L, Clean], i.e., start in #5 or #7 or ??

Solution? [Right, if dirt then Suck, Left, if dirt then Suck]
actions based on contingencies arising during execution
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Example: Romania

• Problem:
• on holiday in Romania; currently in Arad; flight leaves 

tomorrow from Bucharest

• Formulate goal:
• be in Bucharest in time

• Formulate problem:
• states: various cities
• actions: drive between cities

• Find solution:
• sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Example: Romania
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State space

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., In(Arad)
2. actions or successor function at state x:

S(x) = set of action–state pairs 
• e.g., S(In(Arad)) = {<Go(Zerind), In(Zerind)>, … }

3. goal test, is given state x goal state?
• explicit, e.g., x = In(Bucharest)
• implicit, e.g., HasAirport(x)

4. path cost (additive)
• e.g., sum of distances, number of actions executed, etc.
• step cost c(x,a,y) of getting from x to y by action a, assumed to be ≥ 0

• Solution = action sequence leading from initial to goal state

gentsSociable

Formulating the state space

Real world is usually too complex ! state space must be abstracted

‣ (Abstract) state = set of real/virtual states/properties

‣ (Abstract) action = complex combination of real/virtual actions

- abstraction valid if path between (abstract) search space states reflected in 
the world (realizability)

‣ (Abstract) solution = set of paths that reflect actual solutions in the 
real/virtual world

Needless to say, each abstract state-space formulation should be easier than 
the real problem to enable searching
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Vacuum world state space graph

• states?
• actions?
• goal test?
• path cost?
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Vacuum world state space graph

• states? integer dirt and robot location (n*2n states)
• actions? Left, Right, Suck
• goal test? no dirt at all locations
• path cost? 1 per action (step cost)
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Simple tree search algorithm (pseudo-code)
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function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 loop do 
  if no candidates for expansion then return failure
  choose leaf node for expansion according to strategy
  if node contains goal state then return solution
  else expand the node and add resulting nodes to the search tree
 end

gentsSociable

entry1

column7 door21 door14

entry1 spot1 spot3 stairs5 entry1 spot1 entry1 outlook4

Exampe: simple tree search

function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 loop do 
  if no candidates for expansion then return failure
  choose leaf node for expansion according to strategy
  if node contains goal state then return solution
  else expand the node and add resulting nodes to the search tree
 end

1. the initial state entry1
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entry1

column7 door21 door14

entry1 spot1 spot3 stairs5 entry1 spot1 entry1 outlook4

function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 loop do 
  if no candidates for expansion then return failure
  choose leaf node for expansion according to strategy
  if node contains goal state then return solution
  else expand the node and add resulting nodes to the search tree
 end

Simple tree search example

2. after expanding entry1

28
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entry1

column7 door21 door14

entry1 spot1 spot3 stairs5 entry1 spot1 entry1 outlook4

function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 loop do 
  if no candidates for expansion then return failure
  choose leaf node for expansion according to strategy
  if node contains goal state then return solution
  else expand the node and add resulting nodes to the search tree
 end

Simple tree search example

3. after expanding column7
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state: (representation of) a world configuration

node: data structure to represent part of the search tree 

‣ includes state, parent node, action, path cost g(x), depth

‣ fringe set of generated nodes not yet expanded

An Expand function creates new nodes, filling in the various fields and 
using the SuccessorFn of the problem to create the corresponding 
states

State space vs. search tree

30
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Tree search algorithm
function TREE-SEARCH(problem,fringe) return a solution or failure
 fringe ! INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
  if EMPTY?(fringe) then return failure
  node ! REMOVE-FIRST(fringe)
  if GOAL-TEST[problem] applied to STATE[node] succeeds
   then return SOLUTION(node)
  fringe ! INSERT-ALL(EXPAND(node, problem), fringe)

function EXPAND(node,problem) return a set of nodes
 successors ! the empty set
 for each <action, result> in SUCCESSOR-FN[problem](STATE[node]) do
  s ! a new NODE
  STATE[s] ! result
  PARENT-NODE[s] ! node

  ACTION[s] ! action
  PATH-COST[s] ! PATH-COST[node] + STEP-COST(node, action,s)
  DEPTH[s] ! DEPTH[node]+1
  add s to successors
 return successors 31 gentsSociable

Search strategies

The search strategy defines the order of node expansion 

Evaluated along the following dimensions:

‣ completeness: does it always find a solution if one exists?
‣ optimality: does it always find a least-cost solution?
‣ time complexity: how long does it take? (#nodes expanded)
‣ space complexity: how much memory is needed? (#nodes stored)

Time and space complexity depend on problem size, measured in 
terms of 

‣ b: branching factor or maximum #successors of any node
‣ d: depth of the least-cost solution (root node at d=0)
‣ m: maximum depth of any path in state space (may be ∞)
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Uninformed search strategies

Use only information available in problem definition (blind search)

‣ generate successors, distinguish goal from non-goal state

‣ when strategy can determine whether one non-goal state is 
better than another non-goal state → informed search

Categories defined by expansion algorithm (and fringe organization):

‣ Breadth-first search

‣ Uniform-cost search

‣ Depth-first search

‣ Depth-limited search

‣ Iterative deepening search.

‣ Bidirectional search
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Breadth-First (BF) search

Expand shallowest unexpanded node
Implementation:
‣ fringe is a FIFO queue, 

i.e., new successors go at end

B

A

D E

C

F G
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Breadth-First (BF) search

Expand shallowest unexpanded node
Implementation:
‣ fringe is a FIFO queue, 

i.e., new successors go at end
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Breadth-First (BF) search

Expand shallowest unexpanded node
Implementation:
‣ fringe is a FIFO queue, 

i.e., new successors go at end
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Breadth-First (BF) search

Expand shallowest unexpanded node
Implementation:
‣ fringe is a FIFO queue, 

i.e., new successors go at end
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Properties of BF search
Complete? Yes (if b is finite)
Time? 1+b+b2+b3+… +bd +(bd+1-b) = O(bd+1)
Space? O(bd+1) (keeps every node in memory)

Optimal? Yes (if step costs grow with depth → shallowest node is optimal)

DEPTH NODES TIME MEMORY

2 1100 0.11 seconds 1 megabyte

4 111100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3523 years 1 exabyte

b = 10
10.000 nodes/sec
1.000 byte/node 38

‣ Space is the 
bigger problem 

‣ Exponential 
search problems 
cannot be solved 
by uninformed 
search methods 
for any but the 
smallest instances
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Uniform-cost search

Expand node with lowest total path cost g(n)

fringe = queue ordered by path cost

‣ equivalent to breadth-first if step costs are all equal

Complete? Yes, if every step cost ≥ ε > 0
Optimal? Yes – nodes expanded in increasing order of g(n) 

Time? ~ #nodes with cost g ≤ cost of optimal solution C*
‣ at depth of about C*/ε ! O(bceiling(C*/ !))

Space?  O(bceiling(C*/ !))
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front 
(=stack)

B

A

D E

C

F G

H I J K L M N O
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Depth-First (DF) search

Expand deepest unexpanded node
Implementation:
‣ fringe is a LIFO queue, 

i.e., new successors go at front
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Properties of DF search

Complete? No, fails in infinite-depth spaces or spaces with loops

‣ modify to avoid repeated states along path makes it complete in 
finite spaces

Time? O(bm), i.e. all nodes expanded in worst case

‣ but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e. linear space complexity

‣ Backtracking search uses even less memory
- One successor instead of all b.

Optimal? No, returns left-most goal state

52
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Depth-limited search (DLS)

is DF-search with depth limit l

‣ i.e. nodes at depth l treated as if having no successors
‣ problem knowledge can be used to define good limits

solves the infinite-path problem, but adds incompleteness

‣ If l < d then incompleteness results

‣ If l > d then complete, but still not optimal

Time complexity: O(bl)

Space complexity: O(bl)

Can be directly implemented in a recursive fashion
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Recursive depth-limited search algorithm

function DEPTH-LIMITED-SEARCH(problem,limit) return a solution or failure/cutoff
 return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),problem,limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or failure/cutoff
 cutoff_occurred? ! false
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 else if DEPTH[node] == limit then return cutoff
 else for each successor in EXPAND(node, problem) do
  result ! RECURSIVE-DLS(successor, problem, limit)
  if result == cutoff  then cutoff_occurred? !  true
  else if result " failure then return result
 if cutoff_occurred? then return cutoff else return failure
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Iterative deepening search (IDS)

A general strategy to find best depth limit l

Goal is found at depth d, the depth of the shallowest goal-node

Combines benefits of DF-search and BF-search

function ITERATIVE_DEEPENING_SEARCH(problem) return a solution or failure
 inputs: problem
 for depth ! 0 to ! do
  result ! DEPTH-LIMITED_SEARCH(problem, depth)
  if result " cutoff then return result
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IDS-search example

limit = 0

56
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IDS-search example

limit = 1
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IDS-search example

limit = 2

58
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IDS-search example

limit = 3
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Properties of IDS

Complete? Yes, if b is finite

Time? sub-optimal because nodes are generated multiple times, but this 
is not so costly since most nodes are in the bottom level

! (d+1)1 + d b + (d-1)b2 + … 2 b(d-1) + 1 bd = O(bd)

Space? O(bd)

Optimal? Yes, if path cost monotonically increases with depth

60
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Number of nodes generated in a breadth-first search to depth d with 
branching factor b: 
‣ NBFS = b0 + b1 + b2 + … + bd-1 + bd + (bd+1-b) = O(bd+1)

Number of nodes generated in an iterative deepening search to depth d 
with branching factor b: 

‣ NIDS = (d+1)1 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd  = O(bd)

Example for b = 10, d = 5:
‣ NBFS = 10 + 100 + 1.000 + 10.000 + 100.000 + 999.999 = 1.111.111

‣ NIDS = 50 + 400 + 3.000 + 20.000 + 100.000 = 123.450

" IDS preferred search method for large search spaces and unknown 
depth of solution

Properties of IDS vs. BFS
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Repeated states!

Failure to detect repeated states can turn solvable problems into 
unsolvable ones

62

state space 
of size d+1

search tree with repeated
states of size 2d

Example: simple state 
space generates an
exponentially larger
search tree
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Tree search ! Graph search algorithms

function TREE-SEARCH(problem,fringe) return a solution or failure
 closed ! an empty set
 fringe ! INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
  if EMPTY?(fringe) then return failure
  node ! REMOVE-FIRST(fringe)
  if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

     if STATE[node] is not in closed then
   add STATE[node] to closed

   fringe ! INSERT-ALL(EXPAND(node, problem), fringe)

63

closed list stores all expanded nodes
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Summary of uninformed algorithms

Criterion Breadth-
First

Uniform-
cost

Depth-
First

Depth-
limited

Iterative 
deepening

Bidirection
al search

Complete? YES* YES* NO YES, 
if limit # d

YES YES*

Time bd+1 bC*/e bm bl bd bd/2

Space bd+1 bC*/e bm bl bd bd/2

Optimal? YES* YES* NO NO YES YES
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Informed search

General approach of informed search:

‣ „best-first search“: node n is selected for expansion 
based on an evaluation function f(n).

‣ use problem-specific knowledge beyond problem definition

idea: evaluation function hints to costs of the solution, i.e. the path 
from start to goal via node n 

‣ Choose node which appears best („seemingly-best-first“)

Implementation:

‣ fringe is queue sorted in increasing order of evaluation f(n)

special cases: Greedy search, A* search
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Heuristic evaluation function

Heuristic [dictionary]: 
“A rule of thumb, simplification, or educated guess that reduces or limits the search 
for solutions in domains that are difficult and poorly understood.”

most common and easy way to impart additional problem knowledge to 
a search algorithm

h(n) = estimated cost of the cheapest path from node n to goal node

‣ constraint: if n is goal, then h(n)=0

66
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Greedy best-first search

Evaluation function f(n) = h(n)
= estimate of cost from current state n to goal state

Greedy best-first search expands the node that appears to be closest 
to goal, i.e. executes the action that takes away as much as possible of 
the remaining costs (hence greedy) 

Example: 
hSLD(n) := straight-line distance from n to Bucharest

gentsSociable

Romania with step costs in km
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search example

gentsSociable

Greedy best-first search example

Finds solution without expanding a node not part of the 
solution, i.e. search costs are minimal
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Properties of greedy best-first search

Complete?
no–can get stuck in loops, e.g., Iasi ! Neamt ! Iasi ! Neamt ! ...

Time?
O(bm), but a good heuristic can give dramatic improvement

Space?
O(bm) -- keeps all nodes in memory

Optimal?
no! path via Sibiu and Fagaras is 32km longer than path through 
Rimnicu Vilcea and Pitesti.
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A* search

Best-known form of best-first search

Idea: 

‣ use adequate heuristics

‣ avoid expanding paths that are already expensive

Evaluation function f(n)=g(n) + h(n)

‣ g(n) the cost (so far) to reach the node

‣ h(n) estimated cost to get from the node to the goal

‣ f(n) estimated total cost of path through n to goal

74
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A* search example
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A* search example
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A* search example
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A* search example
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A* search example

gentsSociable

A* search example
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A* uses an admissible heuristic

heuristic h(n) is admissible if for every node n: h(n) " h*(n), 
where h*(n) is the true cost to reach the goal state from n.

an admissible heuristic never over-estimates the cost to reach 
the goal, i.e., it is optimistic

Example: hSLD(n) (never overestimates the actual road 
distance)

Theorem: If h(n) is admissible, A* using TREE-SEARCH is 
optimal
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Optimality of A* - standard proof

Suppose suboptimal goal G2 
generated, in the fringe
Let n be an unexpanded node on a 
shortest path to optimal goal G.

82

f(G2 ) = g(G2 ), since h(G2 )=0
f(G2 ) > C, with C cost of optimal solution
f(n) = g(n)+h(n) <= C, since h(n) admissible
thus  f(n) <= C < f(G2),  so n will be expanded before G2
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BUT … A* graph search?

Because repeated states are prevented in graph search, can 
discard optimal path to a repeated state if not the first one 
generated

Two solutions:

‣ add extra book-keeping, i.e., remove the more expensive of two 
paths found to the same node

‣ ensure that optimal path to any repeated state is always the 
first one followed

"  holds with extra requirement on h(n): consistency
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A heuristic is consistent if for every node n and every successor n' of n 
generated by any action a:

Theorem: If h(n) is consistent,  A* 
using GRAPH-SEARCH is optimal 

If h(n) is consistent, the values of f(n) 
along any path are non-decreasing

Consistency (a.k.a. monotonicity)

! 

h(n) " c(n,a,n') + h(n')

! 

f (n') = g(n') + h(n')
= g(n) + c(n,a,n') + h(n')
" g(n) + h(n)
" f (n)
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Optimality of A*

A* expands nodes in order of increasing f value, gradually adds "f-contours" 
of nodes 

• contour i has all nodes with f<=fi, where fi < fi+1 

• uniform-cost search = A* with h(n)=0 : contours are circles
the more correct the heuristics, the more the contours „focus“ on optimal 
path
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Properties of A*

Complete? Yes (unless there are infinitely many nodes with f <= f(G) )

Time? exponential with path length

Space? all nodes are stored

Optimal? Yes
‣ Cannot expand fi+1 until fi is finished.
‣ A* expands all nodes with f(n) < C* (cost of optimal solution)

‣ A* expands some nodes with f(n) = C* (on „goal contour“)

‣ A* expands no nodes with f(n) > C* 

A* is optimally efficient for given heuristic, no other algorith expands 
fewer nodes (except from ties)
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Outlook

Further search algorithms

‣ IDA*: Iterative deepening A* 
- f-cost used as cut-off (instead of depth)

‣ RBFS: Recursive best-first search
- recursive DF search with best alternative f-cost as limit for back-tracking

‣ MA* / SMA*: (Simplified) Memory bounded A*
- limited memory
- if memory is full, drops worst leaf node (highest f-cost) and backs up value 

of forgotten node to its parent
- regenerates subtree not until all other paths turned out to be worse
- ...can become a problem for computation time, if required often
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