Spezielle Themen der
 Künstlichen Intelligenz

10.Termin

Bayesian Networks Inference Algorithms

CIT $\bar{\equiv} \mathrm{C}$

Reasoning with Bayesian networks

Four general types of queries one can pose:

- probability of evidence: how likely is a variable instantiation $\mathbf{e} \rightarrow \operatorname{Pr}(\mathbf{e})=$?
- prior and posterior marginals: how probable is an instantiation of a limited set of variables $\rightarrow \operatorname{Pr}\left(x_{1}, \ldots, x_{m}\right)=$? or $\operatorname{Pr}\left(x_{1}, \ldots, x_{m} \mid \mathbf{e}\right)=$?
- most probable explanation (MPE): what is the most probable instantiation of all network var's given some evidence $\mathbf{e} \rightarrow \mathbf{x}$ with $\operatorname{Pr}\left(x_{1}, \ldots, x_{n} \mid \mathbf{e}\right)=\max$?
- maximum a posteriori hypothesis (MAP): what is the most probable instantiation of a subset of var's given some evidence $\mathbf{e} \rightarrow \mathbf{x}$ with Pr $\left(x_{l}, \ldots, x_{m} \mid \mathbf{e}\right)=m a x$?

All these queries can be computed from a Bayesian network. But, how?

Modeling with Bayesian networks

Using Bayesian networks for real-world problems requires two steps:

- constructing an appropriate Bayesian network
- solve the problems by applying one of the possible queries

How to construct a Bayesian network?
I. define network variables and their values

- distinguish between query, evidence, and intermediary variables

2. define network structure

- for each var X, answer the question: what set of var's are direct causes of X ?

3. define network parameters (CPTs)

- difficulty and objectivity depend on problem

Inference algorithms

- variable elimination (see last lecture)
- jointtree algorithm
- recursive conditioning
- belief propagation
- Monte Carlo Markov Chain

Variable elimination

Variable elimination：
－given a distribution $\operatorname{Pr}(A, B, C, D, E)$ ，variable A with values a_{i} can be summed out by

$$
\operatorname{Pr}(B, C, D, E)=\sum_{a_{i}} \operatorname{Pr}\left(a_{i}, B, C, D, E\right)
$$

Definition：factor f over var＇s \mathbf{X} is a function that maps each instantiation \mathbf{x} of \mathbf{X} to a number $f(\mathbf{x}) \geq 0$
－can represent any marginal or conditional distribution
－Summing out a variable from a factor：$\left(\sum_{X} f\right)(\mathbf{y}):=\sum_{x} f(x, \mathbf{y})$ marginalizing X ，projecting on Y
－Multiplying factors：$\left(f_{1} f_{2}\right)(\mathbf{z}):=f_{1}(\mathbf{x}) f_{2}(\mathbf{y})$ with $\mathbf{x} \sim \mathbf{z}, \mathbf{y} \sim \mathbf{z}$

Variable elimination

Use for computing prior marginals：
－express joint distribution as factor multiplication， viewing CPTs as factors，e．g． $\operatorname{Pr}(a, b, c, d, e)$ ：

$$
\operatorname{Pr}(a, b, c, d, e)=\Theta_{E \mid C} \Theta_{D \mid B C} \Theta_{C \mid A} \Theta_{B \mid A} \Theta_{A}
$$

－compute marginal distribution by summing out variables from these factors，e．g． $\operatorname{Pr}(D, E)$ ：

$$
\operatorname{Pr}(D, E)=\sum_{A, B, C} \Theta_{E \mid C} \Theta_{D \mid B C} \Theta_{C \mid A} \Theta_{B \mid A} \Theta_{A}
$$

Can（and should）be simplified according to：

$$
\sum_{X} f_{1} f_{2}=f_{1} \sum_{X} f_{2} \text { if } \mathrm{X} \text { appears only in } f_{2}
$$

CIT三C $\quad 6$

Sociable Pigents

Variable elimination

Use for computing posterior marginals：
－need to computer the factor $\operatorname{Pr}(\mathbf{Q} \mid \mathbf{e})$
Better to compute joint marginal $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$ and normalize to get $\operatorname{Pr}(\mathbf{Q} \mid \mathbf{e})$
－also gives $\operatorname{Pr}(\mathbf{e})$ for free as $\operatorname{Pr}(\mathbf{e})=\sum_{q} \operatorname{Pr}(\mathbf{q}, \mathbf{e})$
Example：

Variable elimination

Use elimination for computing joint marginals：
－zero out all rows that are not compatible with evidence \mathbf{e}

Definition：reduction of factor $f(\mathbf{X})$ given evidence \mathbf{e} is another factor over \mathbf{X} denoted by f^{e} ，defined by

$$
f^{e}(\mathbf{x}):= \begin{cases}f(\mathbf{x}) & \text { if } \mathbf{x} \sim \mathbf{e} \\ 0 & \text { otherwise }\end{cases}
$$

－distributivity with factor multiplication：$\left(f_{1} f_{2}\right)^{\mathrm{e}}=f_{1}^{\mathrm{e}} f_{2}^{\mathrm{e}}$

Joint marginal $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$ can hence be computed as follows：
－Example： $\mathbf{Q = \{ D , E \}}$

$$
\operatorname{Pr}(\mathbf{Q}, \mathbf{e})=\sum_{A, B, C} \Theta_{E \mid C}^{e} \Theta_{D \mid B C}^{e} \Theta_{C \mid A}^{e} \Theta_{B \mid A}^{e} \Theta_{A}^{e}
$$

$$
9
$$

Variable elimination

Summary
－combines factor multiplication，reduction \＆projecting
－useful for computing prior and posterior marginals and probability of evidence（joint marginals）
－structure－based algorithm，performance depends on network structure（e．g．no．parents per node，loops，paths between nodes）

Usually combined with pruning for a given query $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$
－iteratively remove any leaf node not in \mathbf{Q} or \mathbf{E}
v remove edge $U \rightarrow X$ from any node U in E and $\Theta_{X \mid \mathbf{U}} \leftarrow \sum_{U} \Theta_{X \mid \mathbf{U}}^{u}$

Example：compute posterior marginal $\operatorname{Pr}(\mathbf{Q}=\{C\}, \mathbf{e}: A=$ true $)$ by eliminating first A ，then B

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{Q}, \mathbf{e})= & \sum_{B} \sum_{A} \Theta_{A}^{e} \Theta_{B \mid A}^{e} \Theta_{C \mid B}^{e} \\
& =\sum_{B} \Theta_{C \mid B}^{e} \Theta_{A}^{e} \Theta_{B \mid A}^{e}
\end{aligned}
$$

Therefore：
－ $\operatorname{Pr}(C=$ true,$A=$ true $)=.192$
－ $\operatorname{Pr}(C=$ false,$A=$ true $)=.408$
－ $\operatorname{Pr}(A=$ true $)=.6$
－ $\operatorname{Pr}(C=$ true $\mid A=$ true $)=.1921 .6=.32$

Factor elimination

Generalization of variable elimination to factor elimination，i．e． elimination of sets of variables（Lauritzen \＆Spiegelhalter 1988）
－elimination order \rightarrow elimination trees

Definition：An elimination tree (T, Θ) for a set of factors \mathbf{S} is a tree T ，in which each node Θ_{i} is assigned exactly one factor in \boldsymbol{S}
－factors are the CPTs in the Bayesian network
－different tree structures are possible：

Factor elimination

Factor elimination in elimination trees:

- eliminate a node (factor) if all its neighbors, except the one closer to the root, have been eliminated
- when a node i is about to be eliminated, it will have a single neighbor and i 's factor is projected and multiplied into factor of j
- viewed as passing a „message" from i to j

Using factor elimination for computing marginal over \mathbf{Q}

- pick one node r with $\mathbf{Q} \subseteq$ vars (r) as root node
- push messages toward the root
- when all messages are available in root, multiply with factor r and project to \mathbf{Q}

Jointtree algorithm

Definition:A jointtree (T, \mathbf{C}) for a DAG G is a tree T in which each node has a label C_{i} (called cluster), satisfying the properties:

- each cluster is a set of nodes from G
- each family* in G appears in some cluster
- if a node appears in two clusters $\mathbf{C}_{i}, \mathbf{C}_{j}$, it must appear in every cluster on the path connecting nodes i and j in the jointtree
the separator of edge $i-j$ is defined as $S_{i j}:=C_{i} \cap C_{j}$
*family $=a$ node along with its parents
Also known as junction trees, clique trees, Markov trees, hypertrees

An evidence indicator is a factor over variable X that captures the value of X in evidence \mathbf{e} : $\quad \lambda_{X}(x)=1$ if x consistent with $\mathbf{e}, 0$ otherwise
CITEC Sociable Mlgents

Recursive conditioning

Idea: simplify a problem by solving a number of cases and combining the results to a solution to the original problem (case analysis)

$$
\operatorname{Pr}(x)=\sum_{c} \operatorname{Pr}(x, c)
$$

Approach: reduce query on a network into a queries on simpler networks

- if var E given as evidence, the network can be pruned (see above)
- in general: any query $\operatorname{Pr}(\mathbf{q}, \mathbf{e})$ leads to decomposition into networks $N_{e}{ }^{r}$ and $N_{e}{ }^{\prime}$ such that

cutset $\{B, C\}$

Recursive conditioning

Recursive condition algorithm:

- decompose network in a divide-and-conquer fashion, following an appropriate cutset
- when at leaf node, look up the conditioned CPT
- propagate value back according to $\sum_{e} \operatorname{Pr}_{e}^{l}\left(q^{l}, e^{l}\right) P r_{e}^{r}\left(q^{r}, e^{r}\right)$

Question (again): what is an appropriate cutset (order)?
Answer: all are valid, some lead to less work

- need to minimize total number of
(A) $\longrightarrow(B) \longrightarrow(C) \longrightarrow(D)$ considered cases
- use decomposition trees: full binary trees, leaves are CPTs in the network
- useful to employ caching techniques (Darwiche, chapt. 8)

Belief propagation

Approximative inference algorithms

- originially for exact inference in polytree* networks, then generalized to approximative solution for arbitrary networks
- spectrum of approximations: trade-off quality with computational costs

Belief propagation algorithm for computing joint marginals $\operatorname{Pr}(X, \mathbf{e})$:

- identical to jointtree algorithm for jointtrees that coincide with the polytree network structure
- Example:
*polytree $=$ network with only one path between any two nodes

18

Sociable Pl'gents

Belief propagation

Computing joint marginals $\operatorname{Pr}(X, \mathbf{e})$:

- node i in jointtree has cluster $C_{i}=X \boldsymbol{U}$ (with \boldsymbol{U} parents of X)
- edge $i-j$ in jointtree corresp. to edge $X-Y$ in network has ,,separator" $S_{i j}=X$
- „messages" to eliminate factors:
- from U to X : causal support $\pi_{X}(U)$
- from Y to parent X : diagnostic support $\lambda_{Y}(X)$
- messages are sent by a node, when it has received messages from all other nodes
- start with those that do not depend on others

Example:

- Belief propagation toward node D, evidence $E=$ true

$$
\operatorname{Pr}(B C D, \mathbf{e})=\Theta_{D \mid B C} \pi_{D}(B) \pi_{D}(C) \lambda_{E}(D) \lambda_{F}(D)
$$

Sociable $\boldsymbol{\text { IIgents }}$

Belief propagation

problem: leads to „deadlocks" in some network, when each message is dependent on any other
solution: iterative belief propagation

- assume initial values to each message in the network
- propagate beliefs and re-iterate
- converge to a „fixed point" solution
may generally have mutiple fixed points on a given network
- may oscillate on some networks, loop forever

Stochastic sampling

Idea: simulate an event according to some probability of occurrence, estimate the prob. of this event from its frequency in these simulations

Simulating a Bayesian network:
A Bayesian network induces a distribution $\operatorname{Pr}(\boldsymbol{X})$

- visit each node in topological order
- generate value for each node according to $\operatorname{Pr}(x \mid \mathbf{u})$
- end with a sample $\left\{\mathbf{x}^{1}, \ldots, ., \mathbf{x}^{n}\right\}$ of n events
- estimate probability $\wedge \operatorname{Pr}(\mathbf{x})$ of value \mathbf{x} from its frequency in this sample
- show that ${ }^{\wedge} \operatorname{Pr}(\mathbf{x})$ converges against $\operatorname{Pr}(\mathbf{x})$ with increasing n

Example

Stochastic sampling

Sampling relies on taking probability as expectation about a function
－$\underset{\mu}{\text { expectation value of a function } f(\mathbf{X}): \quad E x(f):=\sum_{x} f(x) \cdot \operatorname{Pr}(x), ~(x)}$
variance of a function $f(\mathbf{X}): \quad \operatorname{Var}(f):=\sum_{x}(f(x)-E x(f))^{2} \cdot \operatorname{Pr}(x)$ σ^{2}

Direct sampling function：
－let $\hat{\alpha}(x):=1$ if α true at $\mathbf{x}, 0$ otherwise
－then：

$$
\begin{array}{r}
E x(\hat{\alpha})=\operatorname{Pr}(\alpha) \\
\operatorname{Var}(\hat{\alpha})=\operatorname{Pr}(\alpha) \operatorname{Pr}(\neg \alpha)=\operatorname{Pr}(\alpha)-\operatorname{Pr}(\alpha)^{2}
\end{array}
$$

That is，approximating Pr boils down to estimating the expectation

How？

CIT三C 29 Sociable Mlgents

Rejection sampling

Goal：Calculate conditional prob． $\operatorname{Pr}(a \mid b)$ with $\operatorname{Pr}($.$) induced by network$
Approach：
－calculate estimate for $\operatorname{Pr}(a \wedge b)$ and $\operatorname{Pr}(b): A v_{n}(\hat{\gamma}), A v_{n}(\hat{\beta})$ with $\gamma=\alpha \wedge \beta$
－take ratio as estimate for $\operatorname{Pr}(a \mid b): \quad A v_{n}(\hat{\gamma}) / A v_{n}(\hat{\beta})$
－$c_{1}=\#$ samples with $a \wedge b=$ true，$c_{2}=\#$ samples with $b=$ true $\rightarrow\left(c_{1} / n\right) /\left(c_{2} / n\right)=c_{1} / c_{2}$
－reject all samples in which b is false：rejection sampling

Example：estimate $P($ Rain \mid Sprinkler＝true）from 100 samples； 27 have Sprinkler＝true，of these 8 have Rain＝true，I9 have Rain＝false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NORMALIZE}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
True answer：＜0．3，0．7＞

Monte Carlo simulation

Principle：

－simulate random sample $\mathbf{x}^{1}, \ldots, \mathbf{X}^{n}$ from sampling distribution $\operatorname{Pr}(\mathbf{X})$
－evaluate function at each instantiation $f\left(\mathbf{x}^{\prime}\right), \ldots, f\left(\mathbf{x}^{n}\right)$
－compute arithemtic average of attained values：sample mean

$$
A v_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}^{i}\right)
$$

works because of law of large numbers：for function f with expectation μ and every $\epsilon>0: \lim _{n \rightarrow \inf } P\left(\left|A v_{n}(f)-\mu\right| \leq \epsilon\right)=1$

Monte Carlo simulation using $\hat{\alpha}(x)$ gives direct sampling：
－simulate sample $\mathbf{x}^{1}, \ldots, \mathbf{x}^{2}$ from Bayesian network
－compute values $\hat{\alpha}\left(x^{1}\right), \ldots, \hat{\alpha}\left(x^{n}\right)$
－estimate $\operatorname{Pr}(\alpha)$ using sample mean $A v_{n}(\hat{\alpha})$

Importance sampling

Idea：reduce variance due to rare events by sampling from an importance distribution Pr＇emphasizing instantiations consistent with rare event

Monte Carlo simulation using the importance sampling function：

$$
\tilde{\alpha}(x)=\operatorname{Pr}(x) / \operatorname{Pr}^{\prime}(x) \text { if } \alpha \text { true at instantiation } x, 0 \text { otherwise }
$$

Improves on direct sampling only when Pr＇emphasizes important events no less than Pr

Finding ideal distribution generally not feasible，but some other weaker conditions can be ensured easier and still improve on variance

Importance sampling

Likelihood weighting: given evidence \mathbf{e}, what is $\operatorname{Pr}(\mathbf{x} \mid \mathbf{e})$?

- generate only samples that are consistent with \mathbf{e}
- fix evidence variables, sample non-evidence var's and weight sample by likelihood it accords the evidence
- consistent estimate, but performance gets worse with growing evidence because few samples have ~all total weight
function Weighted-Sample($b n$, e) returns an event and a weight
$\mathrm{x} \leftarrow \mathrm{an}$ event with n elements; $w \leftarrow 1$
for $i=1$ to n do
if X_{i} has a value x_{i} in e
then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
else $x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
return x, w
$\mathrm{CIT} \equiv \mathrm{C}$
33
Sociable M'Igents

Example

$$
w=1.0
$$

$$
w=1.0
$$

$w=1.0 \times 0.1$

CIT三C
37
Sociable Mlgents
Lind

$w=1.0 \times 0.1$

Markov Chain Monte Carlo (MCMC)

Network is in a state = current assignment to variables next state: sample non-evidence variable X given its Markov blanket $=$ variables that, when known, make other variables irrelevant to X

- Markov blanket of Cloudy is Sprinkler and Rain
- Markov blanket of Rain is Sprinkler, Cloudy, WetGrass

> function MCMC- $\operatorname{AsK}(X, \mathrm{e}, b n, N)$ returns an estimate of $P(X \mid \mathrm{e})$
> local variables: $\mathbf{N}[X]$ a vector of counts over X, initially zero
> \mathbf{Z}, the nonevidence variables in $b n$
> x, the current state of the network, initially copied from e
initialize x with random values for the variables in Y
for $j=1$ to N do
for each Z_{i} in Z do
sample the value of Z_{i} in x from $\mathbf{P}\left(Z_{i} \mid m b\left(Z_{i}\right)\right.$ given the values of $M B\left(Z_{i}\right)$ in x
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x}
return Normalize(N[X])
CIT
41
Sociable Aligents

MCMC - Markov blanket sampling

Because of the transition probabilites, sampling runs into an "equilibrium" in which time spent in each state is proportional to its posterior probability

Transition probability (given the Markov blanket) is:
$P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid\right.$ parents $\left.\left(X_{i}\right)\right) \Pi_{Z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid\right.$ parents $\left.\left(Z_{j}\right)\right)$

- easily implemented in parallel systems

Main difficulties:

- difficult to tell if and when convergence has been achieved
- can be wasteful if Markov blanket large, prob doesn't change much

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

Count number of times Rain is true and false in the samples.
E.g.: visit 100 states: $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

$$
=\operatorname{NorMALIZE}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle
$$

CIT
42
Sociable "lgents

Bayes nets inference algorithms - summary

Exact algorithms

- Variable Elimination and Factor Elimination
- Jointtree algorithm
- Recursive conditioning

Approximative algorithms

- Belief propagation
- Stochastic sampling (Monte Carlo simulation)
- direct sampling
- importance sampling, likelihood weighting
- Monte Carlo Markov Chain

