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Modeling with Bayesian networks

Using Bayesian networks for real-world problems requires two steps:
‣ constructing an appropriate Bayesian network
‣ solve the problems by applying one of the possible queries

How to construct a Bayesian network?
1. define network variables and their values

- distinguish between query, evidence, and intermediary variables

2. define network structure
- for each var X, answer the question: what set of var‘s are direct causes of X?

3. define network parameters (CPTs)
- difficulty and objectivity depend on problem
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Reasoning with Bayesian networks

Four general types of queries one can pose:
‣ probability of evidence: 

how likely is a variable instantiation e  ! Pr(e)=?

‣ prior and posterior marginals: how probable is an instantiation of a 
limited set of variables ! Pr(x1,...,xm)=? or Pr(x1,...,xm|e)=?

‣ most probable explanation (MPE): what is the most probable instantiation 
of all network var‘s given some evidence e ! x with Pr(x1,...,xn|e)=max?

‣ maximum a posteriori hypothesis (MAP): what is the most probable 
instantiation of a subset of var‘s given some evidence e ! x with Pr
(x1,...,xm|e)=max?

All these queries can be computed from a Bayesian network. 
But, how?
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Inference algorithms

‣ variable elimination (see last lecture)

‣ jointtree algorithm

‣ recursive conditioning

‣ belief propagation

‣ Monte Carlo Markov Chain

4
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Variable elimination

Variable elimination:
‣ given a distribution Pr(A,B,C,D,E), variable A with values ai can be summed 

out by

Definition: factor f over var‘s X is a function that maps each instantiation x 
of X to a number f(x)!0

‣ can represent any marginal or conditional distribution

‣ Summing out a variable from a factor:
- marginalizing X, projecting on Y

‣ Multiplying factors:
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Pr(B,C,D, E) =
�

ai

Pr(ai, B,C, D, E )

(
�

X

f)(y) :=
�

x

f(x,y)

(f1f2)(z) := f1(x)f2(y) with x ∼ z,y ∼ z
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Use for computing prior marginals:
‣ express joint distribution as factor multiplication,

viewing CPTs as factors, e.g.  Pr(a,b,c,d,e):

‣ compute marginal distribution by summing out 
variables from these factors, e.g. Pr(D,E):

Can (and should) be simplified according to: 
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Variable elimination

Pr(a, b, c, d, e) = ΘE|CΘD|BCΘC|AΘB|AΘA

Pr(D,E) =
�

A,B,C

ΘE|CΘD|BCΘC|AΘB|AΘA

�

X

f1f2 = f1

�

X

f2 if X appears only in f2
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Example:  compute prior marginal Pr(C) by 
eliminating first A, then B

‣  

Order of elimination irrelevant for result, 
but not for computational costs !!

Other possibility: first B then A

‣  

Best order: smallest width = number of 
var‘s in the largest factor constructed
‣ can be computed offline, but NP-hard

‣ heuristics
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Pr(C) =
�

B

ΘC|B
�

A

ΘAΘB|A

Pr(C) =
�

A

ΘA

�

B

ΘB|AΘC|B

largest factor 
with 2 variables
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Use for computing posterior marginals:

‣ need to computer the factor Pr(Q|e)

Better to compute joint marginal Pr(Q, e) and normalize to get Pr(Q|e)
‣ also gives Pr(e) for free as

Example:
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Variable elimination

Pr(e) =
�

q

Pr(q, e)

D E Pr(Q|e)

true true .448

true false .192

false true .112

false false .248

D E Pr(Q,e)

true true .21504

true false .09216

false true .05376

false false .11904

∑=.48  Pr(e)
=.11904 / .48
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Use elimination for computing joint marginals:
‣ zero out all rows that are not compatible with evidence e

Definition: reduction of factor f(X) given evidence e is another factor over X 
denoted by f e, defined by

‣ distributivity with factor multiplication: 

Joint marginal Pr(Q,e) can hence be computed as follows:

‣ Example: Q={D,E}
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fe(x) :=

�
f(x) if x ∼ e
0 otherwise

(f1f2)e = fe
1 fe

2

Pr(Q, e) =
�

A,B,C

Θe
E|CΘe

D|BCΘe
C|AΘe

B|AΘe
A

Variable elimination
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Example:  compute posterior marginal 
Pr(Q={C},e:A=true) by eliminating first 
A, then B

‣   

Therefore: 

‣ Pr(C=true,A=true)=.192
‣ Pr(C=false,A=true)=.408

‣ Pr(A=true)=.6

‣ Pr(C=true|A=true)=.192/.6=.32
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Pr(Q, e) =
�

B

�

A

Θe
AΘe

B|AΘe
C|B

=
�

B

Θe
C|BΘe

AΘe
B|A
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Variable elimination

Summary
‣ combines factor multiplication, reduction & projecting

‣ useful for computing prior and posterior marginals and probability of 
evidence (joint marginals)

‣ structure-based algorithm, performance depends on network 
structure (e.g. no. parents per node, loops, paths between nodes)

Usually combined with pruning for a given query Pr(Q,e)

‣ iteratively remove any leaf node not in Q or E

‣ remove edge               from any node U in E and
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ΘX|U ←
�

U

Θu
X|UU → X
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Factor elimination

Generalization of variable elimination to factor elimination, i.e. 
elimination of sets of variables (Lauritzen & Spiegelhalter 1988)

‣ elimination order ! elimination trees

Definition: An elimination tree          for a set of factors S is a tree    , in 
which each node     is assigned exactly one factor in S  
‣ factors are the CPTs in the Bayesian network
‣ different tree structures are possible:

12

(T, Θ) T
Θi
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Factor elimination in elimination trees:
‣ eliminate a node (factor) if all its neighbors, except the one closer to the 

root, have been eliminated

‣ when a node i is about to be eliminated, it will have a single neighbor j 
and i‘s factor is projected and multiplied into factor of j
- viewed as passing a „message“ from i to j

Using factor elimination for computing marginal over Q
‣ pick one node r with Q ⊆ vars(r) as root node

‣ push messages toward the root

‣ when all messages are available in root,
multiply with factor r and project to Q
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Factor elimination
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Jointtree algorithm

Definition: A jointtree           for a DAG     is a tree     in which each 
node has a label      (called cluster), satisfying the properties:
‣ each cluster is a set of nodes from 

‣ each family* in     appears in some cluster

‣ if a node appears in two clusters           , it must appear in every cluster 
on the path connecting nodes i and j in the jointtree

the separator of edge i-j is defined as 

*family = a node along with its parents

Also known as junction trees, clique trees, Markov trees, hypertrees

An evidence indicator is a factor over variable X that captures the 
value of X in evidence e:  
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(T,C)
Ci

TG

G

G

Ci,Cj

λX(x) = 1 if x consistent with e, 0 otherwise

Sij := Ci ∩ Cj
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Jointtree algorithm

Algorithm:
‣ construct jointtree for a given Bayesian network
‣ assign each CPT            to a cluster that contains 

X and U

‣ assign each evidence indicator
to a cluster that contains X

‣ select a root node that contains the query Q 

‣ start eliminating factors (using projecting and 
multiplying) inwards/outwards*

‣ finally project cluster in the root node onto Q

*different propagation strategies with different space and 
time complexities

‣ Shenoy-Shafer architecture (Shenoy & Shafer 1990)

‣ Hugin architecture (Jensen et al. 1990)
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ΘX|U

λX
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Recursive conditioning

Idea: simplify a problem by solving a number of cases and combining the 
results to a solution to the original problem (case analysis)

Approach: reduce query on a network into a queries on simpler networks
‣ if var E given as evidence, the network can be pruned (see above)

‣ in general: any query Pr(q,e) leads to decomposition into networks Ne
r and Ne

l 
such that
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Pr(x) =
�

c

Pr(x, c)

Pr(q) =
�

e

Pr(q, e)

=
�

e

Prl
e(q

l, el)Prr
e(q

r, er)

„cutset“ e

cutset {B,C}
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Recursive conditioning

Recursive condition algorithm:
‣ decompose network in a divide-and-conquer fashion, following an 

appropriate cutset

‣ when at leaf node, look up the conditioned CPT

‣ propagate value back according to 

Question (again): what is an appropriate cutset (order)?
Answer: all are valid, some lead to less work
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�

e

Prl
e(q

l, el)Prr
e(q

r, er)

‣ need to minimize total number of 
considered cases

‣ use decomposition trees: full binary trees, 
leaves are CPTs in the network

‣ useful to employ caching techniques 
(Darwiche, chapt. 8)
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Belief propagation

Approximative inference algorithms
‣ originially for exact inference in polytree* networks, then generalized to 

approximative solution for arbitrary networks

‣ spectrum of approximations: trade-off quality with computational costs

Belief propagation algorithm for computing joint marginals Pr(X,e):
‣ identical to jointtree algorithm for jointtrees that coincide with the 

polytree network structure

‣ Example:
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*polytree = network with only one 
path between any two nodes
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Computing joint marginals Pr(X,e):
‣ node i in jointtree has cluster Ci =XU (with U parents of X)

‣ edge i-j in jointtree corresp. to edge X-Y in network has „separator“ Sij=X

‣ „messages“ to eliminate factors:
- from U to X: causal support
- from Y to parent X: diagnostic support 

‣ messages are sent by a node, when it has received
messages from all other nodes
- start with those that do not depend on others

Example: 
‣ Belief propagation toward node D, evidence E=true
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Belief propagation

πX(U)
λY (X)

Pr(BCD, e) = ΘD|BCπD(B)πD(C)λE(D)λF (D)
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problem: leads to „deadlocks“ in some network, when each message is 
dependent on any other

solution: iterative belief propagation
‣ assume initial values to each message in the network
‣ propagate beliefs and re-iterate
‣ converge to a „fixed point“ solution

- may generally have mutiple fixed points on a given network
- may oscillate on some networks, loop forever

20

Belief propagation
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Idea: simulate an event according to some probability of occurrence, 
estimate the prob. of this event from its frequency in these simulations

Simulating a Bayesian network:
A Bayesian network induces a distribution Pr(X)
‣ visit each node in topological order

‣ generate value for each node according to Pr(x|u)

‣ end with a sample {x1,....,xn} of n events

‣ estimate probability ^Pr(x) of value x from its frequency in this sample

‣ show that ^Pr(x) converges against Pr(x) with increasing n
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Stochastic sampling
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Example
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returned event:
xi = <T,F,T,T>
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Sampling relies on taking probability as expectation about a function
‣ expectation value of a function f(X):

‣ variance of a function f(X):  

Direct sampling function: 
‣ let  
‣ then: 

That is, approximating Pr boils down to estimating the expectation
How?
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Stochastic sampling

Ex(f) :=
�

x

f(x) · Pr(x)

V ar(f) :=
�

x

(f(x)− Ex(f))2 · Pr(x)
σ2

α̂(x) := 1 if α true at x, 0 otherwise

Ex(α̂) = Pr(α)

V ar(α̂) = Pr(α)Pr(¬α) = Pr(α)− Pr(α)2

µ
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Monte Carlo simulation

Principle:
‣ simulate random sample x1, ..., xn from sampling distribution Pr(X)

‣ evaluate function at each instantiation f(x1), ..., f(xn)

‣ compute arithemtic average of attained values: sample mean

‣ works because of law of large numbers: for function f with expectation    
and every   >0: 

Monte Carlo simulation using         gives direct sampling:
‣ simulate sample x1,.., x2 from Bayesian network
‣ compute values

‣ estimate            using sample mean 
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Avn(f) :=
1
n

n�

i=1

f(xi)

µ
� lim

n→inf
P (|Avn(f)− µ| ≤ �) = 1

α̂(x1), ..., α̂(xn)
Avn(α̂)Pr(α)

α̂(x)
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Rejection sampling

Goal: Calculate conditional prob. Pr(a|b) with Pr(.) induced by network
Approach:

‣ calculate estimate for Pr(a∧b) and Pr(b):  

‣ take ratio as estimate for Pr(a|b): 
- c1=#samples with a∧b=true, c2=#samples with b=true ! (c1/n)/(c2/n)=c1/c2

‣ reject all samples in which b is false: rejection sampling

Example: estimate P(Rain|Sprinkler=true) from 100 samples; 27 have 
Sprinkler=true, of these 8 have Rain=true, 19 have Rain=false
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Avn(γ̂), Avn(β̂) with γ = α ∧ β

Avn(γ̂)/Avn(β̂)

Rejection sampling

P̂(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉

Similar to a basic real-world empirical estimation procedure

Chapter 14.4–5 23

True answer: <0.3,0.7>
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Importance sampling

Idea: reduce variance due to rare events by sampling from an importance 
distribution Pr‘ emphasizing instantiations consistent with rare event

Monte Carlo simulation using the importance sampling function:

Improves on direct sampling only when Pr‘ emphasizes important events 
no less than Pr

Finding ideal distribution generally not feasible, but some other weaker 
conditions can be ensured easier and still improve on variance

32

α̃(x) = Pr(x)/Pr�(x) if α true at instantiation x, 0 otherwise
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Importance sampling

Likelihood weighting: given evidence e, what is Pr(x|e)?
‣ generate only samples that are consistent with e

‣ fix evidence variables, sample non-evidence var‘s and weight sample by 
likelihood it accords the evidence

‣ consistent estimate, but performance gets worse with growing evidence 
because few samples have ~all total weight
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Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e, bn,N) returns an estimate of P (X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P (Xi = xi | parents(Xi))
else xi ← a random sample from P(Xi | parents(Xi))

return x, w

Chapter 14.4–5 25 gentsSociable

Example

34

Likelihood weighting example
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Query: P(Rain!Sprinkler=true, WetGrass=true) = ??
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example

Cloudy

RainSprinkler

 Wet

Grass

C

T

F

.80

.20

P(R|C)C

T

F

.10

.50

P(S|C)

S R

T T

T F

F T

F F

.90

.90

.99

P(W|S,R)

P(C)

.50

.01

w = 1.0× 0.1

Chapter 14.4–5 31 gentsSociable40

Likelihood weighting example
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= weight for event <t,t,t,t>
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Markov Chain Monte Carlo (MCMC)

Network is in a state = current assignment to variables

next state: sample non-evidence variable X given its Markov blanket 
= variables that, when known, make other variables irrelevant to X
‣ Markov blanket of Cloudy is Sprinkler and Rain

‣ Markov blanket of Rain is Sprinkler, Cloudy, WetGrass 
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Markov blanket sampling

Markov blanket of Cloudy is
Cloudy

RainSprinkler

 Wet

Grass

Sprinkler and Rain
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′

i|mb(Xi)) = P (x′
i|parents(Xi))ΠZj∈Children(Xi)P (zj|parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)

Chapter 14.4–5 37

Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X,e, bn,N) returns an estimate of P (X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j = 1 to N do

for each Zi in Z do
sample the value of Zi in x from P(Zi |mb(Zi))

given the values of MB(Zi) in x
N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time

Chapter 14.4–5 34

„transition prob.“ of 
moving into new state
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The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet

Grass

Cloudy

RainSprinkler

 Wet

Grass

Cloudy

RainSprinkler

 Wet

Grass

Cloudy

RainSprinkler

 Wet

Grass

Wander about for a while, average what you see

Chapter 14.4–5 35

Initial state 
(random)

MCMC example contd.

Estimate P(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂(Rain|Sprinkler = true,WetGrass = true)
= Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability

Chapter 14.4–5 36
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long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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E.g.: visit 100 states:

gentsSociable

MCMC - Markov blanket sampling

Because of the transition probabilites, sampling runs into an 
„equilibrium“ in which time spent in each state is proportional to its 
posterior probability

Transition probability (given the Markov blanket) is:

‣ easily implemented in parallel systems

Main difficulties:
‣ difficult to tell if and when convergence has been achieved

‣ can be wasteful if Markov blanket large, prob doesn‘t change much
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Markov blanket sampling

Markov blanket of Cloudy is
Cloudy

RainSprinkler

 Wet

Grass

Sprinkler and Rain
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′

i|mb(Xi)) = P (x′
i|parents(Xi))ΠZj∈Children(Xi)P (zj|parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)
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Bayes nets inference algorithms - summary

Exact algorithms
‣ Variable Elimination and Factor Elimination
‣ Jointtree algorithm
‣ Recursive conditioning

Approximative algorithms
‣ Belief propagation
‣ Stochastic sampling (Monte Carlo simulation)

- direct sampling
- importance sampling, likelihood weighting

‣ Monte Carlo Markov Chain
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