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Spezielle Themen der 
Künstlichen Intelligenz

11. Termin: 

Dynamic Bayesian Networks
Rational Decision-Making under Uncertainty
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Using Bayes Nets to model change
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Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

Xt = set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.

Et = set of observable evidence variables at time t
e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

This assumes discrete time; step size depends on problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb
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Markov chains / Markov processes
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: Xt depends on bounded subset of X0:t−1

First-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−1)
Second-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

X t !1
X tX t !2

X t +1
X t +2

X t !1
X tX t !2

X t +1
X t +2First!order

Second!order

Sensor Markov assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)

Stationary process: transition model P(Xt|Xt−1) and
sensor model P(Et|Xt) fixed for all t

Chapter 15, Sections 1–5 4

1856-1922

(changes follow 
fixed laws)

transition model

sensor model
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Markov processes

Need prior probability P(X0) over states at time 0

Then we have:   P(X0,X1,...,Xt,E1,...,Et)=P(X0) !i=1..t P(Xi!Xi-1)P(Ei!Xi)

Example:
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Example

tRain

tUmbrella

Raint !1

Umbrella t !1

Raint +1

Umbrella t +1

Rt !1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t

0.2f

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressuret

Example: robot motion.
Augment position and velocity with Batteryt
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Inference tasks
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Inference tasks

Filtering: P(Xt|e1:t)
belief state—input to the decision process of a rational agent

Prediction: P(Xt+k|e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xk|e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

Most likely explanation: arg maxx1:t P (x1:t|e1:t)
speech recognition, decoding with a noisy channel

Chapter 15, Sections 1–5 6

given observations, find sequence of states that is 
most likely to have generated them
(e.g. Viterbi algorithm)

(see Russell & Norvig, 
Sect. 15.2 for algorithms)
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Dynamic Bayesian networks
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Dynamic Bayesian networks

Xt, Et contain arbitrarily many variables in a replicated Bayes net
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Hidden Markov Model = DBN with a single discrete state variable

Need to give transition and 
senor model (stationary) 
only for first slice Sensor variables Zt, BMetert; 

state variables Xt, Xdott, Batteryt
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Exact inference in DBNs

DBNs are Bayesian networks, i.e., we can use our known algorithms

Exact inference: Unroll network to accommodate all observations and run 
exact inference algorithm (e.g. variable elimination)

Costs (factor size) almost always exponential in number of state variables
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Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm
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Problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination

Largest factor is O(dn+1), update cost O(dn+2)
(cf. HMM update cost O(d2n))
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Approximative inference in DBNs
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Particle filtering: ensure a population of samples (“particles”) that
tracks the high-likelihood regions of the state-space 

Algorihm:  create N samples from prior distribution P(X0), then cycle...

1.  Propagate by sampling next state xt+1, given xt and using P(Xt+1|xt)

2.  Weight samples by likelihood it assigns to new evidence P(et+1|xt+1)
3. Resample new N samples from the current population, probability
   that sample is replicated proportional to its „weight“ (no. samples)

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Rain t Rain t+1Rain t+1Rain t+1

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
105-dimensional state space

Chapter 15, Sections 1–5 36

¬ umbrella 
observed
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‣ consistent (proof see 
Sect. 15.5)

‣ approximation error 
remains bounded over 
time, at least empirically

‣ in practice efficient, yet 
no theoretical 
guarantees (so far)
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Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult
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Importance sampling with 
likelihood weighting

Particle filtering

widely used for tracking nonlinear systems, especially in vision, self-
localization or mapping in mobile robots

Particle filtering
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Decision-making

Let action At = leave for airport t minutes before flight

Question:  Will At get me there on time?

Logical agent would be unable to act rationally:
‣ A90 will get me there on time if there's no accident on the bridge and it 

doesn't rain and my tires remain intact and .....
- plan success not inferrable (qualification problem)

Probability of facts relates them to own state of knowledge
‣ degree of belief, e.g., Pr(A25 | no reported accidents) = 0.06

‣ changes as new (soft or hard) evidence comes in
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Degree of belief cannot account for decision-making alone
‣ suppose the agent believes the following:

- Pr(A25 gets me there on time | …) ! = 0.04 
- Pr(A90 gets me there on time | …) ! = 0.70 
- Pr(A120 gets me there on time | …) ! = 0.95 
- Pr(A1440 gets me there on time | …) ! = 0.999

Instead: rational decision-making must depend on both 
‣ likelihood that goals can be achieved to a necessary degree
‣ relative importance of goals

- modeled as preferences for possible outcomes (risks, costs, rewards, etc.),
- represented using utility theory

decision theory = probability theory + utility theory

12

Decision-making



gentsSociable

Basis of utility theory - preferences
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Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

Lottery L = [p,A; (1 − p), B]

L

p

1!p

A

B

Notation:
A " B A preferred to B
A ∼ B indifference between A and B
A "∼ B B not preferred to A

Chapter 16 3

L=[pi,Ci]  ↔ outcome Ci can occur with probability pi

Key question: how are preferences related when making decisions?
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Rational preferences
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Rational preferences

Idea: preferences of a rational agent must obey constraints.
Rational preferences ⇒

behavior describable as maximization of expected utility

Constraints:
Orderability

(A " B) ∨ (B " A) ∨ (A ∼ B)
Transitivity

(A " B) ∧ (B " C) ⇒ (A " C)
Continuity

A " B " C ⇒ ∃ p [p,A; 1 − p, C] ∼ B
Substitutability

A ∼ B ⇒ [p,A; 1 − p, C] ∼ [p, B; 1 − p, C]
Monotonicity

A " B ⇒ (p ≥ q ⇔ [p,A; 1 − p,B] "∼ [q,A; 1 − q,B])

Chapter 16 4

Agent cannot avoid deciding

Indifferent between lottery A 
vs. C, and getting B for sure

Lotteries with comparable 
prizes comparable
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Rational preferences contd.
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Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give
away all its money

If B ! C, then an agent who has C
would pay (say) 1 cent to get B

If A ! B, then an agent who has B
would pay (say) 1 cent to get A

If C ! A, then an agent who has A
would pay (say) 1 cent to get C

A

B C

1c 1c

1c

Chapter 16 5
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Utilities and preferences
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Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such that

U (A) ≥ U (B) ⇔ A #∼ B
U ([p1, S1; . . . ; pn, Sn]) = Σi piU (Si)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

Chapter 16 6

Preferences are a basic property of rational agents. The existence of a utility 
function follows then from two principles:

Utility principle

Max. Expected Utility principle

That is, a utility function can be formulated in accord with agent‘s preferences
Can act rationally without explicitely trying to maximize expected utility.
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Utility functions
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Utility function maps from states to real number. But which numbers?

Preferences of real agents are usually systematic, and there are systematic 
ways of designing utility functions.

Monotonic preferences:  Agent prefers more money to less, all other things 
being equal. Does that say anything about lotteries involving money?

Get $1.000.000 for sure of flip coin for 50% chance of getting $3.000.000?

Expected monetary value (EMV) = 0.5 $0 + 0.5 $3.000.000 = $1.500.00
EU(Accept) = 0.5 U(Sk+0) + 0.5 U(Sk+3.000.000)   (Sk=state of possessing $k)
EU(Decline) = U(Sk+1.000.000)
Rational decision depends on utilities assigned to outcome states!
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Multi-attribute utility
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Multiattribute utility

How can we handle utility functions of many variables X1 . . . Xn?
E.g., what is U (Deaths,Noise, Cost)?

How can complex utility functions be assessed from
preference behaviour?

Idea 1: identify conditions under which decisions can be made without com-
plete identification of U (x1, . . . , xn)

Idea 2: identify various types of independence in preferences
and derive consequent canonical forms for U (x1, . . . , xn)

Chapter 16 12

Often outcomes are characterized by two or more attributes.

(exploiting the dominance of xi)
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Recap‘
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A decision will lead to new states with values (prizes) or 
lotteries (situations with uncertain prizes). 

Rational agents have constrained preferences over values

A utility function can be formulated in accord with agent‘s 
preferences.

Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such that

U (A) ≥ U (B) ⇔ A #∼ B
U ([p1, S1; . . . ; pn, Sn]) = Σi piU (Si)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

Chapter 16 6
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Decision-making
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Note: a non-deterministic action can have several outcomes Resulti(A)

Prior to executing A, the agent needs to...
1.   determine the probabilities P(Resulti(A)|Do(A),E)
2.   calculate the expected utility of A, given evidence E:
      EU(A|E)=∑i P(Resulti(A)|Do(A),E) U(Resulti(A))
      with U(S) utility function of state S
3.   decide which action to take

Principle of maximum expected utility (MEU)
An agent is rational iff it chooses the action that yields the highest 
expected utility, averaged over all possible outcomes of the action

Let‘s focus on „one-shot decisions“ over single actions first
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s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

U(S0) = 100 x 0.2 + 50 x 0.7 + 70 x 0.1
          = 20 + 35 + 7
          = 62

One State/One Action Example
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s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U1(S0) = 62
• U2(S0) = 74
• U(S0) = max{U1(S0),U2(S0)} 
             = 74

One State/Two Actions Example
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s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U1(S0) = 62 – 5 = 57
• U2(S0) = 74 – 25 = 49
• U(S0) = max{U1(S0),U2(S0)} 
             = 57

-5 -25

Introducing Action Costs
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MEU Principle

The MEU is the basis of the field of decision theory. It provides a 
normative criterion for rational choice of action 

A rational agent must have complete model of  Actions, Utilities, States 
‣ even if you had a complete model, decision making becomes 

computationally intractable

In fact, a truly rational agent takes into account the utility/costs of 
reasoning as well -- bounded rationality (Simon, 1957)

Nevertheless, great progress has been made and we are able to solve 
much more complex decision-theoretic problems than ever before
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Bayesian Decision Networks

Extend Bayesian Networks to handle actions and utilities
‣ also called influence diagrams

Decision networks

Add action nodes and utility nodes to belief networks
to enable rational decision making

U

Airport Site

Deaths

Noise

Cost

Litigation

Construction

Air Traffic

Algorithm:
For each value of action node

compute expected value of utility node given action, evidence
Return MEU action

Chapter 16 11

State variable/Chance nodes,
cond. distribution over
parents (chance nodes,
decision nodes)

Decision/Action nodes
different value for each
choice of action

Utility nodes
defines utility function,
parents = all var‘s that
affect the utility
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Umbrella Network

weather

forecast

umbrella

happiness

take/don’t take

f            w         p(f|w)
sunny    rain      0.3
rainy      rain      0.7
sunny  no rain   0.8
rainy    no rain   0.2

P(rain) = 0.4

U(have,rain) = -25
U(have,~rain) = 0
U(~have, rain) = -100
U(~have, ~rain) = 100

have umbrella

P(have|take) = 1.0
P(~have|~take)=1.0
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Decision Making: Umbrella Network

weather

forecast

umbrella

happiness

take/don’t take

f            w         p(f|w)
sunny    rain      0.3
rainy      rain      0.7
sunny  no rain   0.8
rainy    no rain   0.2

P(rain) = 0.4

U(have,rain) = -25
U(have,~rain) = 0
U(~have, rain) = -100
U(~have, ~rain) = 100

have umbrella

P(have|take) = 1.0
P(~have|~take)=1.0

Should I take my umbrella?
What is the value of knowing the weather forecast?

Queries:
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Evaluating Decision Networks

Use Bayesian Network inference methods to compute expected 
utilities.

Algorithm:
Set the evidence variables for current state

For each possible value of a decision node: 
1. set decision node to that value

2. calculate the posterior probability of the parent nodes
    of the utility node, using BN inference

3. calculate the resulting (expected) utility for action

Return the action with the highest utility

Question often: what do I need to know to make a solid decision?
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Value of information
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Value of information

Idea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is k/2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information

minus expected value of best action without information
Survey may say “oil in A” or “no oil in A”, prob. 0.5 each (given!)

= [0.5 × value of “buy A” given “oil in A”
+ 0.5 × value of “buy B” given “no oil in A”]
– 0

= (0.5 × k/2) + (0.5 × k/2) − 0 = k/2

Chapter 16 24 gentsSociable

General formula
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General formula

Current evidence E, current best action α
Possible action outcomes Si, potential new evidence Ej

EU (α|E) = max
a

Σi U (Si) P (Si|E, a)

Suppose we knew Ej = ejk, then we would choose αejk
s.t.

EU (αejk
|E,Ej = ejk) = max

a
Σi U (Si) P (Si|E, a,Ej = ejk)

Ej is a random variable whose value is currently unknown
⇒ must compute expected gain over all possible values:

V PIE(Ej) =
(

Σk P (Ej = ejk|E)EU (αejk|E,Ej = ejk)
)

− EU (α|E)

(VPI = value of perfect information)

Chapter 16 25
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Information-gathering agent
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Agent chooses between sensing action (REQUEST, which will yield 
evidence in next percept) or „real action“

Extension: consider all possible sensing action sequences and all 
possible outcomes of those requests. Because values of requests 
depend on previous requests, need to build conditional plans


