

Decision-making

Let action A_t = leave for airport t minutes before flight

<u>*Question*</u>: Will A_t get me there on time?

Logical agent would be unable to act rationally:

- A₉₀ will get me there on time *if* there's no accident on the bridge *and* it doesn't rain *and* my tires remain intact *and*
 - plan success not inferrable (qualification problem)

Probability of facts relates them to own state of knowledge

- degree of belief, e.g., $Pr(A_{25} | no reported accidents) = 0.06$
- changes as new (soft or hard) evidence comes in

Sociable Agents

Particle filtering

widely used for tracking nonlinear systems, especially in vision, self-localization or mapping in mobile robots

- approximation error remains bounded over time, at least empirically
- in practice efficient, yet no theoretical guarantees (so far)

Decision-making

CITEC

Degree of belief cannot account for decision-making alone

- suppose the agent believes the following:
 - $Pr(A_{25} \text{ gets me there on time } | \dots) = 0.04$
 - $Pr(A_{90} \text{ gets me there on time } | \dots) = 0.70$
 - $Pr(A_{120} \text{ gets me there on time } | \dots) = 0.95$
 - $Pr(A_{1440} \text{ gets me there on time } | \dots) = 0.999$

Instead: rational decision-making must depend on both

- likelihood that goals can be achieved to a necessary degree
- relative importance of goals
 - modeled as preferences for possible outcomes (risks, costs, rewards, etc.),
 - represented using utility theory

decision theory = probability theory + utility theory

Sociable Agents

Ra	tional preferences	
lde Ra	ea: preferences of a rational agent must obey constructional preferences \Rightarrow behavior describable as maximization of expected	aints. ed utility
Co	nstraints:	
	Orderability	
	$(A \succ B) \lor (B \succ A) \lor (A \sim B)$	Agent cannot avoid deciding
	Transitivity	
	$(A \succ B) \land (B \succ C) \ \Rightarrow \ (A \succ C)$	
	Continuity	Indifferent between lottery A
	$A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$	vs. C, and getting B for sure
	Substitutability	Latterias with sense anable
	$A \sim B \Rightarrow [p, A; 1 - p, C] \sim [p, B; 1 - p, C]$	brizes combarable
	Monotonicity	prizes comparable
	$A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \stackrel{\sim}{\sim} [q, A]$	$A; \ 1-q, B])$
сітес	14	Sociable Agents

Ut	ility functions	
Uti	lity function maps from states to real number. But which nu	imbers?
Pre way	eferences of real agents are usually systematic, and there are ys of designing utility functions.	e systematic
Mo bei	notonic preferences: Agent prefers more money to less, all ng equal. Does that say anything about lotteries involving m	l other things oney?
	Get \$1.000.000 for sure of flip coin for 50% chance of gett	ting \$3.000.000?
	Expected monetary value (EMV) = 0.5 $0 + 0.5 3.000.000$ $EU(Accept) = 0.5 U(S_{k+0}) + 0.5 U(S_{k+3.000.000})$ (S _k =state of pr $EU(Decline) = U(S_{k+1.000.000})$ Rational decision depends on utilities assigned to outcome	0 = \$1.500.00 ossessing \$k) e states!
сіт≣с	17	Sociable figents

Recap' A decision will lead to new states with values (prizes) or lotteries (situations with uncertain prizes). Rational agents have constrained preferences over values Given preferences satisfying the constraints there exists a real-valued function U such that $U(A) > U(B) \iff A \gtrsim B$ $U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$ A utility function can be formulated in accord with agent's preferences. 19

Multi-attribute utility Often outcomes are characterized by two or more attributes. How can we handle utility functions of many variables $X_1 \dots X_n$? E.g., what is U(Deaths, Noise, Cost)? How can complex utility functions be assessed from preference behaviour? Idea 1: identify conditions under which decisions can be made without complete identification of $U(x_1, \ldots, x_n)$ (exploiting the **dominance** of x_i) Idea 2: identify various types of independence in preferences and derive consequent canonical forms for $U(x_1, \ldots, x_n)$ Sociable Agents CITEC 18

CITEC

Sociable Agents

integriere percept in D $j \leftarrow$ der Wert, der WPI(E_j) – Kosten(E_j) maxi	
if $WPI(E_j) > Kosten(E_j)$ then return REQUEST(E_j)	miert
else return die beste Aktion aus D	
Agent chooses between sensing action (REQUEST, w evidence in next percept) or "real action"	hich will yield
<i>Extension</i> : consider all possible sensing action sequen possible outcomes of those requests. Because values depend on previous requests, need to build conditio	ces and all s of requests nal plans