
gentsSociable

Spezielle Themen der
Künstlichen Intelligenz

11. Termin:

Markov Decision Problems (MDPs, POMDPs)

gentsSociable

Decision-making under uncertainy

2

Algorithm:
A non-deterministic action can have several outcomes Resulti(A)

Prior to executing A, the agent needs to...
1. determine the probabilities P(Resulti(A)|Do(A),E)
2. calculate the expected utility of A, given evidence E:
 EU(A|E)=∑i P(Resulti(A)|Do(A),E) U(Resulti(A))
 with U(S) utility function of state S
3. decide which action to take

Simple decisions for single actions only.

Principle of maximum expected utility (MEU)
An agent is rational iff it chooses the action that yields the highest
expected utility, averaged over all possible outcomes of the action

gentsSociable

Bayesian Decision Networks

Extend Bayesian Networks to handle actions and utilities
‣ also called influence diagrams

Decision networks

Add action nodes and utility nodes to belief networks
to enable rational decision making

U

Airport Site

Deaths

Noise

Cost

Litigation

Construction

Air Traffic

Algorithm:
For each value of action node

compute expected value of utility node given action, evidence
Return MEU action

Chapter 16 11

State variable/Chance nodes,
cond. distribution over
parents (chance nodes,
decision nodes)

Decision/Action nodes
different value for each
choice of action

Utility nodes
defines utility function,
parents = all var‘s that
affect the utility

gentsSociable

Evaluating Decision Networks

Use Bayes Net inference methods to compute expected utilities.

Algorithm:
Set the evidence variables for current state

For each possible value of a decision node:
1. set decision node to that value

2. calculate the posterior probability of the parent nodes
 of the utility node, using BN inference

3. calculate the resulting (expected) utility for action

Pick the action with the highest utility

Question: what do I need to know to make a solid decision?

gentsSociable

Value of information

5

Value of information

Idea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is k/2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information

minus expected value of best action without information
Survey may say “oil in A” or “no oil in A”, prob. 0.5 each (given!)

= [0.5 × value of “buy A” given “oil in A”
+ 0.5 × value of “buy B” given “no oil in A”]
– 0

= (0.5 × k/2) + (0.5 × k/2) − 0 = k/2

Chapter 16 24 gentsSociable

General formula

6

General formula

Current evidence E, current best action α
Possible action outcomes Si, potential new evidence Ej

EU (α|E) = max
a

Σi U (Si) P (Si|E, a)

Suppose we knew Ej = ejk, then we would choose αejk
s.t.

EU (αejk
|E,Ej = ejk) = max

a
Σi U (Si) P (Si|E, a,Ej = ejk)

Ej is a random variable whose value is currently unknown
⇒ must compute expected gain over all possible values:

V PIE(Ej) =
(

Σk P (Ej = ejk|E)EU (αejk|E,Ej = ejk)
)

− EU (α|E)

(VPI = value of perfect information)

Chapter 16 25

Value of current
best action

Value of new
best action
after evidence

Value of
discovering Ej
given current
info E

gentsSociable

Information-gathering agent

7

Agent chooses between sensing action (REQUEST, which will yield
evidence in next percept) or „real action“

Extension: consider all possible sensing action sequences and all
possible outcomes of those requests. Because values of requests
depend on previous requests, need to build conditional plans

gentsSociable

Now, making complex decisions

Sequential decision problems

‣ include utilities, uncertainty, and sensing
‣ utility depends on a sequence of actions
‣ generalizes search and planning problems to that of finding a

suitable action „policy“

Consider for example robot navigation...

8

gentsSociable

Simple Robot Navigation Problem

In each state, the possible actions are U, D, R, and L
Goal or terminal state marked +1

+1

gentsSociable

Simple Robot Navigation Problem

In each state, the possible actions are U, D, R, and L
Goal state marked +1

Environment fully observable and deterministic:
solution = sequence of actions (U, U, R, R, R)

+1

gentsSociable

Probabilistic Transition Model

Non-deterministic actions due to stochastic motion:

Desired movement achieved with prob. 0.8, rest of the time agent
moves left/right relative to the desired direction with prob. 0.1

The agent stays at same square if it bumps into a wall.

0.8

0.10.1

+1

gentsSociable

Probabilistic Transition Model

Non-deterministic actions due to stochastic motion:

sequences (U,U,R,R,R) reaches goal with prob 0.85 = 0.32768
or accidentally with prob 0.14x0.8 = 0.00008
! grand total prob of success = 0.32776

0.8

0.10.1

+1

gentsSociable

Probabilistic Transition Model

Transition model
T(s,a,s‘) = prob. of getting from s to s‘ by action a

Markovian: transition properties depend only on the current
state, not on previous history (how that state was reached)

0.8

0.10.1

+1

gentsSociable

Sequence of Actions

 Planned sequence of actions: (U, R)

2

3

1

4321

Position: [3,2]

gentsSociable

Sequence of Actions

 Planned sequence of actions: (U, R)
 U is executed

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

gentsSociable

Histories

 Planned sequence of actions: (U, R)
 U, R is executed

 There are 9 possible sequences of states – called histories –
and 6 possible final states for the agent

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

gentsSociable

Probability of Reaching the Goal

Only 2 possible routes:
P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3])
 x P([3,3] | U.[3,2])
+ P([4,3] | R.[4,2])
 x P([4,2] | U.[3,2])

2

3

1

4321

Note importance of Markov
property in this derivation!

P([3,3] | U.[3,2]) = 0.8
P([4,2] | U.[3,2]) = 0.1

P([4,3] | R.[3,3]) = 0.8
P([4,3] | R.[4,2]) = 0.1

P([4,3] | (U,R).[3,2]) = 0.65

gentsSociable

Utility Function

Agent receives reward R(s)
[4,3] or [4,2] are terminal states
[4,3] provides power supply, reward +1,
[4,2] is a sand area, reward -1
All other square have reward of -0.04

-1

+1

2

3

1

4321

gentsSociable

Utility of a History

Utility is determined by the agent‘s history in the world.

Defined by the utility of the terminal state (+1 or –1)
plus the sum of rewards of the squares visited (additive reward)

→ agent wants to leave the environment as quickly as possible

-1

+1

2

3

1

4321

gentsSociable

Utility of a history

-1

+1

Consider the action sequence (U,R) from [3,2]
A run produces one among 7 possible histories (sequences),
each with some probability Ph and an additive utility of
histories:

Uh = R(s0)+R(s1)+...+R(sn) = ! R(si)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

gentsSociable

Utility of an Action Sequence

-1

+1

Utility of a history: Uh = R(s0)+R(s1)+...+R(sn) = !i R(si)

Utility of an action sequence is the expected utility of its histories:

 U = !hUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

gentsSociable

Optimal Action Sequence

Consider the action sequence (U,R) from [3,2]
A run produces one among 7 possible histories.

The utility of the sequence is the expected utility of the
histories. The optimal sequence is the one with maximal utility.

But is the optimal action sequence what we want to compute?

Only if the sequence is to be executed blindly.

A solution must specify what to do for
 any state the agent may reach!

gentsSociable

Repeat:
1. s ! sensed state
2. If s is terminal state then exit
3. a ! choose action (given s)
4. Perform a

Reactive agent algorithm

Accessible or
observable state

gentsSociable

Policy (Reactive/Closed-Loop Strategy)

 A policy Π is a mapping from states to actions, i.e.
recommends an action given a state s

A complete policy is defined for any possible world state.

-1

+1

2

3

1

4321

gentsSociable

Repeat:
1. s ! sensed state
2. If s is terminal state then exit
3. a ! "(s)
4. Perform a

Reactive agent algorithm

R&N: „policy is a description of a simple reflex agent,
computed from information used for a utility-based agent“

gentsSociable

Optimal Policy

-1

+1

 The optimal policy Π* is the one that always yields a history (ending
at a terminal state) with maximal expected utility

An optimal policy balances risks and rewards, depending on the value
R(s) for non-terminal states

Key question: How to find an optimal policy?

2

3

1

4321

Note that [3,2] is a “dangerous”
state that the optimal policy

tries to avoid

gentsSociable

Markov Decision Problem

Specification for sequential decision problems in fully
observable environments:

1. Initial state s0

2. Transition model T(s,a,s‘) = P(s‘|a,s)
3. Reward function: R(s) or R(s,a,s‘), additive

Question: How to compute the optimal policy Π* ?

This problem is called a
Markov Decision Problem (MDP)

gentsSociable

Example

History h = (s0,s1,…,sn)

Utility of h: U(s0,s1,…,sn) = ! R(si)

Robot navigation example:

‣ R(sn) = +1 if sn = [4,3]

‣ R(sn) = -1 if sn = [4,2]
‣ R(si) = -0.04 if i = 0, …, n-1

Given R(s), how to find an optimal policy??

-1

+1

2

3

1

4321

gentsSociable

Calculating the optimal policy

Idea:
Calculate the utility of all states first and use this information to
select the optimal action when in a state

Utility of a state: U(si) = R(si) + maxa !s‘T(si, a, s‘) U(s‘)

= immediate reward for the current state plus the expected utility of next
state assuming the agent chooses the optimal action

R(s) = reward for being in s
U(s) = reward from s onwards -1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

(Bellman eq.)

gentsSociable

Calculating the optimal policy
With given utilities for each state, the agent can act using the
MEU principle to follow the optimal policy:

→ Optimal policy: "*(si) = argmaxa !s‘T(si,a,s‘)U(s‘)

- one-step look-ahead using U(s)

Two algorithms to compute the optimal policy:
1. Value interation
2. Policy iteration

gentsSociable

Value Iteration
For n states, there are n equations U(si) with n unknowns, but
with the non-linear max-operator → iterative approach:

‣ initialize the utilities, calc r.h.s., and update l.h.s. and all
other utilities, until equilibrium reached.

Algorithm:
Initialize the utility of each non-terminal state s

For t = 0, 1, 2, … do:
 Ut+1(s) ! R(s) + maxa !s‘ T(s,a,s‘) Ut(s‘)

Converges to the unique solution to Bellman eq., the correct
utilities for the optimal policy

(Bellman update)

gentsSociable

Value Iteration

Initialize the utility of each non-terminal state s to 0
For t = 0, 1, 2, … do:
 Ut+1(s) ! R(s) + maxa !s‘ T(s,a,s‘) Ut(s‘)

Ut([3,1])

t0 302010

0.611
0.5

0

Note the importance of terminal
states and connectivity of the
state-transition graph

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

Path to [4,3] found

gentsSociable

Policy Iteration
Idea:
1. policy evaluation: calculate utility of each state under "

2. policy improvement: set new "‘ using one-step look-ahead

Algorithm:
Pick a policy " at random

Repeat
‣ 1. Compute the utility of each state for "

 Ut+1(s) ! R(s) + !s‘T(s,"(s), s‘)Ut(s‘)
‣ 2. Compute a new policy "’ given these utilities

 "’(s) = arg maxa !s‘T(s,a,s‘) U(s‘)

‣ If "’ = " then return "

Simpler, linear
equations!

Fixpoint of Bellman eq.,
optimal policy

gentsSociable

Policy evaluation

Example at time t:

→ "t(1,1)=Up, "t(1,2)=Up, ...

→ Simplified Bellman eq.:
‣ Ut(1,1) = 0.8Ut(1,2) + 0.1Ut(2,1) + 0.1Ut(1,1)
‣ Ut(1,2) = 0.8Ut(1,3) + 0.1Ut(1,2)
‣

n linear equations with n unknowns, solvable in O(n3)

Most efficient for small state spaces. Modified policy iteration (with
simplified update) for large state spaces.

34

-1

+1

2

3

1

4321

0.8

0.10.1

gentsSociable

Infinite horizon - discouting

In many problems, e.g. robot navigation, histories are
potentially unbounded and the same state can be reached
many times.

Can use discounting to make infinite horizon problem
mathematically tractable: discount factor 0 ≤ γ ≤ 1

Utility of an infinite history: Uh = !i γ��R(si) (finite)

Utility of states: U(s) = R(s) + γ maxa !s‘T(s, a, s‘) U(s‘)

Iteration algorithms (update rules) work analog

gentsSociable

Partially Observable Markov Decision
Problem (POMDP)

MDPs assume fully observable environments and Markovian
transition models.

POMDPs account in addition for partially observable environments:
Which state is the agent in? Utility of s? Optimal action?

POMDPs are given by
1. Initial state s0

2. Transition model T(s,a,s‘) = P(s‘|a,s)
3. Reward function R(s) or R(s,a,s‘), additive
4. Observation model: O(s,o) = P(o|s)

sensing operation in state s, returns multiple observations o,
with a probability distribution

gentsSociable

POMDPs

Following MEU assuming “state utilities” computed as above is not
good enough, and actually is not rational

Belief state b(s) = prob. distribution over all possible states
‣ Example: in 4x3-world = point in 11-dim continuous space

The agent‘s policy is defined over its belief state: "*(b)
(actions only depend on beliefs, not the state the agent is in!)

POMDP decision cycle:
1. Given current belief state b, execute a=Π*(b)
2. Get new observations o
3. Update belief states:

 b‘(s‘) = α O(s‘,o) !s T(s,a,s‘)b(s) =: FORWARD(b,a,o)

37 gentsSociable

POMDPs

Solving an POMDP on physical states can be reduced to solving an
MDP on the corresponding belief states

‣ Define transition model over belief states (instead of world
states) τ(b,a,b‘) and a reward function for belief states
ρ(b)= !sb(s)R(s)

‣ → observable MDP on (continuous, high-dim) space of belief
states, whose optimal policy is also an optimal policy for the
original POMDP

‣ need algorithmic versions of value- or policy iteration for
continuous-state MDPs - possible but quickly intractable

38

gentsSociable

Summary - decision-making

Simple decisions: single actions
‣ Preferences, utilities & MEU principle
‣ Bayesian Decision Networks & Value of Information

Complex decisions: sequence of actions
‣ Policies in probabilistic domains
‣ Markov Decision Problems (MDPs)

- Value iteration
- Policy iteration

‣ Partially Observable MDPs (POMDPs)

39 gentsSociable

Overall summary

How to make systems behave smartly when things are
(more or less) unknown?

Exact approaches:
‣ Search & Constraint Satisfaction
‣ Game Playing
‣ Planning

Probabilistic approaches
‣ Degrees of belief & maximized expected utility
‣ Bayesian Networks: Modeling & inferencing
‣ Bayesian Decision Networks
‣ Markov Decision Problems

40

