

General formul	а	
Current evidence E ,	rent best action $lpha$ s S_i , potential new evidenc	e E_j
$EU(\alpha E) = \max_{a} \Sigma_i$	$U(S_i) P(S_i E, a)$	Value of current best action
Suppose we knew $E_j = e_j$	e_{jk} , then we would choose	$lpha_{e_{jk}}$ s.t.
$EU(\alpha_{e_{jk}} E,E_j=e_{jk})$	$= \max_{a} \sum_{i} U(S_i) P(S_i E)$	$(a, E_j = e_{jk})$ best action after evidence
E_j is a random variable \Rightarrow must compute exp	whose value is <i>currently</i> u ected gain over all possible	nknown e values:
$VPI_E(E_j) = \left(\sum_k P_j\right)$	$(E_j = e_{jk} E)EU(\alpha_{e_{jk}} E, E)$	$E_j = e_{jk} \Big) - EU(\alpha E)$
(VPI = value of perfect	information)	Value of discovering E _i given current info E
лтес	6	Sociable Agents

Simple Robot Navigation Problem Image: problem of the problem

Calculating the optimal policy

With given utilities for each state, the agent can act using the MEU principle to follow the optimal policy:

→ Optimal policy: $\Pi^*(s_i) = \operatorname{argmax}_a \sum_{s'} T(s_{i,a,s'}) U(s')$

- one-step look-ahead using U(s)

<u>Two algorithms</u> to compute the optimal policy:

- I. Value interation
- 2. Policy iteration

сітіс

Sociable Agents

Sociable Agents

Partially Observable Markov Decision Problem (POMDP)

MDPs assume fully observable environments and Markovian transition models.

POMDPs account in addition for partially observable environments: Which state is the agent in? Utility of s? Optimal action?

POMDPs are given by

I. Initial state s₀

- 2. Transition model $T(s,a,s') = \mathbf{P}(s'|a,s)$
- 3. Reward function R(s) or R(s,a,s'), additive
- 4. Observation model: O(s,o) = P(o|s) sensing operation in state s, returns multiple observations o, with a probability distribution

Sociable flgents

СІТЕС

Sociable Agents

POMDPs

Following MEU assuming "state utilities" computed as above is not good enough, and actually is not rational

Belief state b(s) = prob. distribution over all possible states

Example: in 4x3-world = point in 11-dim continuous space

The agent's policy is defined over its belief state: $\Pi^*(b)$ (actions *only* depend on beliefs, not the state the agent is in!)

POMDP decision cycle:

- I. Given current belief state b, execute $a=\Pi^*(b)$
- 2. Get new observations o
- 3. Update belief states:

 $b'(s') = \alpha O(s',o) \Sigma_s T(s,a,s')b(s) =: FORWARD(b,a,o)$

37

CITEC

CITEC

Sociable Agents

Summary - decision-making

Simple decisions: single actions

- Preferences, utilities & MEU principle
- Bayesian Decision Networks & Value of Information

Complex decisions: sequence of actions

- > Policies in probabilistic domains
- Markov Decision Problems (MDPs)
 - Value iteration
 - Policy iteration
- Partially Observable MDPs (POMDPs)

39

POMDPs

Solving an POMDP on physical states can be reduced to solving an MDP on the corresponding belief states

- Define transition model over belief states (instead of world states) τ(b,a,b') and a reward function for belief states ρ(b)= Σ_sb(s)R(s)
- → observable MDP on (continuous, high-dim) space of belief states, whose optimal policy is also an optimal policy for the original POMDP
- need algorithmic versions of value- or policy iteration for continuous-state MDPs - possible but quickly intractable

38

Overall summary

How to make systems behave smartly when things are (more or less) unknown?

Exact approaches:

- Search & Constraint Satisfaction
- Game Playing
- Planning

Probabilistic approaches

- > Degrees of belief & maximized expected utility
- Bayesian Networks: Modeling & inferencing
- Bayesian Decision Networks
- Markov Decision Problems

CITEC

CITEC

40

Sociable Agents

Sociable Agents