
gentsSociable

Dr. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

Spezielle Themen der
Künstlichen Intelligenz

2. Termin: Constraint Satisfaction

gentsSociable

Recall: Best-first search

‣ Best-first search = graph-search with node expansion in order of
cost heuristic h(n)

‣ Greedy best-first search = expand node with minimal h(n)
- not optimal but often efficient

‣ A* search = expand node with minimal f = g+h
- complete & optimal: admissible (tree-search) or consistent (graph-search) h

‣ SMA* (Simplified Memory-bounded A*)
- drop worst leaf node when memory is full, backs up f-value to its parent for

later re-expansion

‣ RBFS (Recursive Best-First Search) ~ recursive DF search with...
- keep track of f-values of alternative paths, backtrack if f > alternative f
- upon backtracking, change f-value of node to best f-value of its children, to

decide later whether to re-expand

Performance depends crucially on the quality of the heuristics!

2

gentsSociable

Heuristic functions

Example: 8-puzzle
‣ avgerage solution cost is about 22 steps (branching factor ~3)
‣ exhaustive search to depth 22: 322 ~ 3.1 x 1010 states
‣ a good heuristic function is needed to reduce the search process

3 gentsSociable

Heuristic functions

4

True
solution
cost = 26

Two commonly used heuristics

‣ h1 = number of misplaced tiles ! h1(start)=8

‣ h2 = manhattan distance = sum of distances of tiles from their
goal positions ! h2(start)=3+1+2+2+2+3+3+2=18

gentsSociable

Heuristic quality and dominance

Example: 1200 random 8-puzzle problems with solution lengths from
2 to 24

5

If h2(n)>=h1(n) for all n (and both admissible), then h2 is said to
dominate h1 and is better for search!

gentsSociable

Effective branching factor b*
‣ N = #nodes generated by A* in total, d solution depth

‣ b* = branching factor that a uniform tree of depth d would have
in order to contain N+1 nodes

‣ measure is fairly constant for sufficiently hard problems

‣ measurement of b* on small problems can provide a good guide
to the heuristic’s overall usefulness (a good value is 1)

How good is a heuristic?

6

!

N +1=1+ b*+(b*)2 + ...+ (b*)d

gentsSociable

Inventing admissible heuristics

from an exact solution of a relaxed version of the problem
‣ Example: relaxed 8-puzzle for h1: a tile can move anywhere
‣ never greater than the optimal solution cost of the real problem

- „ABSolver“ automatically found heuristic for the rubic cube

from the solution cost of a subproblem of the problem
‣ lower bound on the cost of the real problem

from a database of exact solutions for possible subproblem instances
‣ construct complete heuristic from the patterns in the DB
‣ can use disjoint databases for different subproblems, when

solutions don‘t interfere (works only for some problems)

7 gentsSociable

Dr. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

Constraint satisfaction problems

8

gentsSociable

Constraint satisfaction problems

Standard search problem:
‣ state is a "black box“ – any data structure that supports

successor function, heuristic function, and goal test

Constraint satisfaction problem (CSP):
‣ structured state = variables Xi, values from domain Di

‣ goal test = set of constraints specifying allowable combinations of
values for subsets of variables

‣ solution = complete assignment of values to (all) variables that
passes the goal test (consistent or legal)

Enables useful standard algorithms (for all CSPs) with effective, generic
heuristics, without domain expertise

9 gentsSociable

Example: map coloring

Variables: WA, NT, Q, NSW, V, SA, T
Domains: Di = {red,green,blue}
Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

10

„Dreifarbenproblem“
np-complete!

gentsSociable

Example: map coloring

Solutions are complete and consistent assignments
‣ Example: WA = red, NT = green, Q = red, NSW = green,

V = red, SA = blue, T = green

11 gentsSociable

Constraint graph

Binary constraints: each constraint relates two variables
Constraint graph: nodes are variables, arcs are constraints

12

gentsSociable

Higher-order constraints

Variables: F T U W R O X1 X2 X3

Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints: Alldiff (F,T,U,W,R,O)

O + O = R + 10 ! X1

X1 + W + W = U + 10 ! X2

X2 + T + T = O + 10 ! X3

X3 = F, T ! 0, F ! 0

13

Constraint
hypergraph

gentsSociable

Variables in CSPs

Discrete variables
‣ finite domains: n variables, domain size d ! O(dn) assignments

- e.g. Boolean CSPs (3SAT): exponential time, NP-complete

‣ infinite domains: integers, strings, etc.
- e.g., job scheduling, variables: start/end days for each job
- need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

Continuous variables
‣ e.g., start/end times for Hubble Space Telescope observations
‣ must obey a variety of constraints

- linear constraints (forming a convex region) solvable in polynomial time by
linear programming methods

14

gentsSociable

Solving CSPs

Standard search algorithm can be applied directly:
‣ States: defined by the values assigned so far
‣ Initial state: the empty assignment { }
‣ Successor function: assign value to variable without conflict

- fail, if no legal assignments possible

‣ Goal test: the current assignment is complete
‣ Path cost: constant step cost

Every solution with n variables (domain size d) appears at depth n
‣ branching factor b = (n-i)d at depth i,
‣ ! tree with n!· dn leaves even though only dn assignments!!

- commutativity is ignored: same combinations are explored multiple times
along different paths (in different order)

15 gentsSociable

Backtracking search

Variable assignments are commutative!
‣ [WA = red then NT = green] ~ [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
‣ b = d and there are dn leaves

Backtracking search = depth-first search for CSPs with single-variable
assignments
‣ basic uninformed algorithm for CSPs
‣ example: can solve „n-queens“ for up to n≈25

16

gentsSociable

Backtracking search

17

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ! SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ! RECURSIVE-BACTRACKING(assignment, csp)
 if result " failure then return result
 remove {var =value} from assignment
 return failure

gentsSociable18

gentsSociable19 gentsSociable20

gentsSociable21

Each level explores different
assignements to a single variable

gentsSociable

Improving backtracking

Standard search improved by incorporating domain-specific knowledge
(heuristics)

CSPs can be improved by using general-purpose methods to address
the questions:
‣ Which variable should be assigned next?
‣ In what order should its values be tried?
‣ What implications (i.e. restrictions) has an assignment for other

possible variable assignments?
‣ Can we detect inevitable failure (inconsistent assignments) early?
‣ Can we avoid repeating a failing path?

22

gentsSociable23

Minimum remaining values heuristic (MRV)

! var ! SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

Also known as most constrained variable heuristic
‣ Rule: choose variable with the fewest legal moves left
‣ Which variable shall we try first?

gentsSociable24

Degree heuristic

Degree heuristic
‣ Rule: select variable that is involved in the largest number of

constraints on other unassigned variables
‣ attempts to reduce future branching factors, very useful as a „tie

breaker“
‣ In what order should its values be tried?

gentsSociable25

Least constraining value heuristic

Least constraining value heuristic
‣ Rule: given a variable choose the least constraining value i.e. the

one that leaves the maximum flexibility for subsequent variable
assignments.

gentsSociable26

Forward checking

Can we detect inevitable failure early (to reduce search space), and
avoid it later?

Forward checking:
‣ on assigning X, check every connected variable Y
‣ remove all values from domain of Y inconsistent with X
‣ terminate search when any variable has no legal moves left

gentsSociable27

Forward checking

Assign {WA=red}
Effects variables connected by constraints with WA
‣ NT can no longer be red

‣ SA can no longer be red

gentsSociable28

Forward checking

Assign {Q=green}
Effects variables connected by constraints with Q
‣ NT can no longer be green

‣ NSW can no longer be green

‣ SA can no longer be green

MRV heuristic will automatically select NT and SA next, why?

Inconsistency
not detected
by FC!

gentsSociable29

Forward checking

If V is assigned blue
Effects variables connected by constraints with V
‣ NSW can no longer be blue

‣ SA is empty

Now, FC has detected that the partial assignment is inconsistent with
the constraints, and backtracking will occur

gentsSociable30

Constraint propagation

Better approach: forward checking combined with heuristics
‣ more efficient and less error-prone than either approach alone
‣ forward checking does not provide (early enough) detection of all

failures

+ constraint propagation
‣ implications of a constraint on one variable must be repeatedly

propagated onto other connected variables

gentsSociable31

Arc consistency
Fast method for constraint propagation:

‣ constraints considered as directed arcs in constraint graph
‣ X#Y is (arc) consistent iff for every value x of X there is some

allowed value y of Y

‣ if y changes, keep X#Y consistent by setting domain of X
‣ iterative procedure to continuously re-check all constraints on

neighbouring variables in the constraint graph
‣ backtrack, if any variable‘s domain empty (arc inconsistent)

‣ Possible outcomes (when all arcs consitent)
- one domain is empty - no solution
- each domains has single value - unique solution
- some domains have more than on value - may or may not be a solution

! search and run again

gentsSociable

Example: After setting Q=green and forward checking (NT, SA, NSW)
‣ having produced inconsistency between NT and SA

32

Arc consistency

gentsSociable33

Arc consistency

NSW#SA is consistent iff

- NSW=red and SA=blue
- NSW=blue and SA=???

! arc inconsistent
‣ Remove blue from

domain of NSW

SA#NSW is consistent iff

- SA=blue and NSW=red

gentsSociable34

Arc consistency

V!NSW is consistent iff
- V=blue and NSW=red
- V=green and NSW=red
- V=red and NSW=red ???

! arc inconsistent
‣ Remove red from domain

of V

gentsSociable35

Arc consistency

SA!NT is consistent iff
- SA=blue and NT=blue???

! arc inconsistent
‣ Remove blue from

domain of SA
‣ empty domain
! backtrack

! arc consistency detects failure earlier than Forward Checking, can
be run as a preprocessor or after each assignment
‣ must run repeatedly until no inconsistency remains

gentsSociable36

AC-3: Arc consistency algorithm

function AC-3(csp) return the CSP, possibly with reduced domains

! inputs: csp, a binary csp with variables {X1, X2, …, Xn}!
! local variables: queue, a queue of arcs to check, initially all arcs in csp
! while queue is not empty do
 (Xi, Xj) ! REMOVE-FIRST(queue)

! ! if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

! ! ! for each Xk in NEIGHBORS[Xi] do

! ! ! add (Xi, Xj) to queue

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) return true iff we remove a value

! removed ! false
! for each x in DOMAIN[Xi] do

! ! if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints between Xi and Xj

! ! then delete x from DOMAIN[Xi]; removed ! true
 return removed

gentsSociable37

K-consistency

Arc consistency (AC-3)
‣ runs in O(n2d3): at most O(n2) arcs (=binary constraints), each arc

inserted only d times, consistency check of an arc in O(d3)
‣ but does not detect all inconsistencies

- {WA=red, NSW=red} inconsistent but not found

stronger forms of propagation can be defined using the notion
of k-consistency
‣ a CSP is k-consistent if for any consistent assignment to

any subset of k-1 variables, a consistent value can always
be assigned to any k-th variable

‣ Examples:
- 1-consistency or node-consistency
- 2-consistency or arc-consistency
- 3-consistency or path-consistency

gentsSociable38

Further improvements

Checking special constraints
‣ e.g. Alldiff(…) constraint
‣ e.g. Atmost(…) constraint (resource constraint)
‣ Bounds propagation useful in larger value domains

Intelligent backtracking
‣ standard form is chronological backtracking, i.e. try different value for most

recent preceding variable
‣ more intelligent: backtrack to conflict set for variable X

- set of variables that caused the failure, or set of previously assigned variables
that are connected to X by constraints

- „backjumping“: to most recent element of the conflict set
- forward checking can be used to determine conflict set

gentsSociable

Examples

www.aispace.org

39

(Cambridge Univ.
Press 2010)
fully available online!

gentsSociable

Local search

Previously: systematic exploration of search space
‣ often, path to goal is solution to the problem

Yet, for CSPs the path is irrelevant
‣ E.g 8-queens

Different algorithms can be used

‣ Local search

40

gentsSociable41

Local search and optimization

Local search = use only single current state (local knowledge)
and move to neighboring states

advantages:
‣ use very little memory

‣ find often reasonable solutions in large or infinite state spaces

also useful for optimization problems
‣ find reasonable state according to some objective function

gentsSociable

Important local search techniques

Random walk: choose fully randomly from among neighbors
Hill-climbing aka. gradient descent/ascent aka. greedy local search
‣ stochastic: choose randomly from among uphill moves
‣ 1st choice: create successors randomly until better found
‣ random restart: reset variables randomly at regular intervals

Simulated Annealing
‣ allow random guesses (even when bad moves), with decreasing

size & frequency
Local-Beam Search
‣ k parallel search threads that pass information about the local

milieu among them
Genetic algorithms

42

gentsSociable43

Local search for CSP

use complete-state representation
‣ initial state assigns a value to every variable

‣ allow states with unsatisfied constraints

‣ operators reassign variables

questions during CSP search: which variable to change how?
‣ randomly select any conflicted variable
‣ select a new value that results in a minimum number of conflicts

with the other variables („min-conflicts heuristic“)

gentsSociable44

Two-step solution for 8-queens problem (with reasonable intitial state)
‣ variable selection: at each stage a queen is chosen for

reassignment in its column
‣ value selection: the algorithm moves the queen to the min-

conflict square, breaking ties randomly

Min-conflicts example number of conflicts

gentsSociable

Comparision of CSP algorithms

45

Problem Back-
tracking

BT-MRV FC FC+
MRV

Min-
conflicts

USA
coloring

>1.000K >1.000K 2K 60 64

n-Queens
(2-50)

>40.000K 13.500K >40.000K 817K 4K

Zebra
puzzle

3.859K 1K 35K 0.5K 2K

Bottom line: local search suprisingly good, can even be used online!
‣ n-queens.: roughly independent of problem size, solves million-queens in ~50

steps (because solutions densely distributed)
‣ Hubble: schedules a week in ~10 min., instead of 3 weeks

gentsSociable

Examples

www.aispace.org

46

