Spezielle Themen der
Kunstlichen Intelligenz

2.Termin: Constraint Satisfaction

Dr. Stefan Kopp
Center of Excellence ,,Cognitive Interaction Technology*
AG Sociable Agents

CITZC Sociable figents

Heuristic functions

Example: 8-puzzle
» avgerage solution cost is about 22 steps (branching factor ~3)
» exhaustive search to depth 22:322 ~ 3.1 x 10'° states
» a good heuristic function is needed to reduce the search process

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State
3 Sociable Agents

Recall: Best-first search

» Best-first search = graph-search with node expansion in order of
cost heuristic h(n)
» Greedy best-first search = expand node with minimal h(n)
not optimal but often efficient
» A* search = expand node with minimal f = g+h
complete & optimal: admissible (tree-search) or consistent (graph-search) h
» SMA* (Simplified Memory-bounded A*)

drop worst leaf node when memory is full, backs up f-value to its parent for
later re-expansion

» RBFS (Recursive Best-First Search) ~ recursive DF search with...
keep track of f-values of alternative paths, backtrack if f > alternative f

upon backtracking, change f-value of node to best f-value of its children, to
decide later whether to re-expand

Performance depends crucially on the quality of the heuristics!

2 Soci Agents

Heuristic functions

Two commonly used heuristics
» hl = number of misplaced tiles = hl(start)=8

» h2 = manhattan distance = sum of distances of tiles from their
goal positions => h2(start)=3+1+2+2+2+3+3+2=18

7 2 4 1 2
5 6 3 4 5 True
solution
8 ||| 3] 1 6|/ 71| 8 cost = 26
Start State Goal State

4 Sociable Agents

Heuristic quality and dominance

Example: 1200 random 8-puzzle problems with solution lengths from
2to 24

[Scarch Cost Effective Branching Factor

4| 1Dps A(h) A'(ha) IDs | am) | At |
2 10 6 6 245 |
4 12 13 (5] 287 148 145
6 630 20 I8 273 134 1.30
8 6384 30 25 250 133 124
0| 47n127 9 39 279 138 122
12| 3644035 » 3 278 142 124
14 - 539 13 - 144 1.23
16 - 1301 211 = 145 125
18 - 3056 363 - 146 126
0| - 76 | 676 - 147 127
2| - 15094 1219 = 148 128
1] l - 9138 i 1641 - 1.48 1.26

— —

If h2(n)>=h1(n) for all n (and both admissible), then h2 is said to
dominate hl and is better for search!

5 Age

How good is a heuristic?

Effective branching factor b*
» N =#nodes generated by A* in total, d solution depth

» b* = branching factor that a uniform tree of depth d would have
in order to contain N+1| nodes

N +1=1+b*+(b*) + ..+ (b¥)*

» measure is fairly constant for sufficiently hard problems

» measurement of b* on small problems can provide a good guide
to the heuristic’s overall usefulness (a good value is 1)

6 Soci Agents

Inventing admissible heuristics

from an exact solution of a relaxed version of the problem
» Example: relaxed 8-puzzle for hl:a tile can move anywhere

» never greater than the optimal solution cost of the real problem
-, ABSolver* automatically found heuristic for the rubic cube

from the solution cost of a subproblem of the problem
» lower bound on the cost of the real problem

from a database of exact solutions for possible subproblem instances
» construct complete heuristic from the patterns in the DB

» can use disjoint databases for different subproblems, when
solutions don‘t interfere (works only for some problems)

Constraint satisfaction problems

Dr. Stefan Kopp
Center of Excellence ,,Cognitive Interaction Technology*
AG Sociable Agents

CIT=C

8 Sociable Agents

Constraint satisfaction problems

Standard search problem:

» state is a "black box" — any data structure that supports
successor function, heuristic function, and goal test

Constraint satisfaction problem (CSP):
» structured state = variables X, values from domain D;i

» goal test = set of constraints specifying allowable combinations of
values for subsets of variables

» solution = complete assignment of values to (all) variables that
passes the goal test (consistent or legal)

Enables useful standard algorithms (for all CSPs) with effective, generic
heuristics, without domain expertise

Example: map coloring

Northern
Territory

' New South Wales

Vior.

Tasmania

Solutions are complete and consistent assignments
» Example:WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green

11

,,Dreifarbenproblem

Example: map coloring np-complete!

Northern
Territory
Western

Queensland
Australia

South
Australia

New South Wales

Tasmania

Variables: WA, NT, Q, NSW,V, SA, T
Domains: Di = {red,green,blue}
Constraints: adjacent regions must have different colors

e.g, WA %= NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

Constraint graph

O—
@‘@'éo@

©

Binary constraints: each constraint relates two variables

Constraint graph: nodes are variables, arcs are constraints

Higher-order constraints

Do O

W
W
"

T+
ol4 4

Constraint
hypergraph

0O+0=R+10" X
x1+w+w=u+1o-x/
X2+T+T=0+10"

X3=FET#0,F#0

13 ﬂ €

Solving CSPs

Standard search algorithm can be applied directly:
» States: defined by the values assigned so far
» Initial state: the empty assignment { }
» Successor function: assign value to variable without conflict
fail, if no legal assignments possible
» Goal test: the current assignment is complete
» Path cost: constant step cost

Every solution with n variables (domain size d) appears at depth n
» branching factor b = (n-ij)d at depth i,

» => tree with n! - d" leaves even though only d"assignments!!

commutativity is ignored: same combinations are explored multiple times
along different paths (in different order)

15 Soc Ac

»

Variables in CSPs

Discrete variables
» finite domains: n variables, domain size d = O(d") assignments
e.g. Boolean CSPs (3SAT): exponential time, NP-complete
» infinite domains: integers, strings, etc.
e.g., job scheduling, variables: start/end days for each job
need a constraint language, e.g., Startjob; + 5 < StartJobs

Continuous variables
» e.g,start/end times for Hubble Space Telescope observations
» must obey a variety of constraints

linear constraints (forming a convex region) solvable in polynomial time by
linear programming methods

14 S0C ﬂ N1

Backtracking search

Variable assignments are commutative!
» [WA =red then NT = green] ~ [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
» b =dand there are d" leaves

Backtracking search = depth-first search for CSPs with single-variable
assignments

» basic uninformed algorithm for CSPs
» example: can solve ,,n-queens* for up to n=25

16

n

Backtracking search

CITZC 17

Sociable fgents

o o 45

CITEC 19

Sociable Agents

CITZC 18 Sociable fAgents
/\
CITZC 20 Sociable Agents

SD

—F —
o ¢ ¢
— T
e =

— T~

<°r

Each level explores different
assignements to a single variable

21

Improving backtracking

Standard search improved by incorporating domain-specific knowledge
(heuristics)

CSPs can be improved by using general-purpose methods to address
the questions:

» Which variable should be assigned next?

» In what order should its values be tried?

» What implications (i.e. restrictions) has an assignment for other
possible variable assignments?

» Can we detect inevitable failure (inconsistent assignments) early?
» Can we avoid repeating a failing path?

22

Minimum remaining values heuristic (MRV)

ESEA S S o

var <= SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

Also known as most constrained variable heuristic
» Rule: choose variable with the fewest legal moves left
» Which variable shall we try first?

23

Degree heuristic

~p Uy —CURy— RS

Degree heuristic

» Rule: select variable that is involved in the largest number of
constraints on other unassigned variables

» attempts to reduce future branching factors, very useful as a ,tie
breaker*

» In what order should its values be tried?

24

Least constraining value heuristic

‘\QJ_% Allows 1 value for SA
—d¢ _.‘i
‘_L’: »_LL\‘ _L!: < ‘p% Allows 0 values for SA

Least constraining value heuristic
» Rule: given a variable choose the least constraining value i.e. the
one that leaves the maximum flexibility for subsequent variable
assignments.

Forward checking @
e 1Y
O n®

\ ! S,
°
WA NT Q NSW v SA T

CE LT 1L 1L T I IC

Can we detect inevitable failure early (to reduce search space), and
avoid it later?

Forward checking:
» on assigning X, check every connected variable Y
» remove all values from domain of Y inconsistent with X
» terminate search when any variable has no legal moves left

26 Soci Agents

25 Sociable Agents
Forward checking O
@‘@'é@
\—Lt;—"FLp;\— ©
@
WA NT Q NSW ' SA T

Assign {WA=red}

Effects variables connected by constraints with WA
» NT can no longer be red
» SA can no longer be red

27 Sociable Agents

Forward checking ®
]

SSEA SSE S

CELICE L ICE L LI IC]

(| CEErEeErEeTE] e
[| 11 HEmem|] WS EE| Inconsistency

not detected
by FC!

Ty

©

Assign {Q=green}

Effects variables connected by constraints with Q
» NT can no longer be green
» NSW can no longer be green
» SA can no longer be green

MRV heuristic will automatically select NT and SA next, why?

28 Sociable Agents

Forward checking

WA

SSEA SSEA S~

[(w]] [0 mETE] w[erw]
1 [m_ [I]

IfV is assigned blue

Effects variables connected by constraints withV
» NSW can no longer be blue
» SAis empty

Now, FC has detected that the partial assignment is inconsistent with
the constraints, and backtracking will occur

29

.)
Arc consistency @'9
@‘@
Fast method for constraint propagation: O,

» constraints considered as directed arcs in constraint graph
» X—Yis (arc) consistent iff for every value x of X there is some
allowed value y of ¥

» if y changes, keep X—7Y consistent by setting domain of X

» iterative procedure to continuously re-check all constraints on
neighbouring variables in the constraint graph

» backtrack, if any variable‘s domain empty (arc inconsistent)

» Possible outcomes (when all arcs consitent)
- one domain is empty - no solution
- each domains has single value - unique solution

- some domains have more than on value - may or may not be a solution
=> search and run again

©)

Constraint propagation

D—5)
@
®

Better approach: forward checking combined with heuristics
» more efficient and less error-prone than either approach alone

» forward checking does not provide (early enough) detection of all
failures

Northern
Territory
Western

Australia

Australia
New South Wales

+ constraint propagation

» implications of a constraint on one variable must be repeatedly
propagated onto other connected variables

30

3)

Arc consistency ‘@

M

(%)
od]

SSEA SSA S
WA NT Q NSW v SA T
N[BT EESE[ET R E(E |

[(m] =] [EETE] m[Eow]

Example: After setting O=green and forward checking (NT, SA, NSW)
» having produced inconsistency between NT and SA

Arc consistency @

o

o
@

O]

SA—NSW is consistent iff
WA NT Q NSW v SA T
(] WwE EEIE] EEEN - SA=blue and NSW=red

\é/

“L):_"t—ﬁ:_"l—ﬁ: NSW—S8A is consistent iff

- NSW=red and SA=blue

WA NT NSW SA T - NSW=blue and SA=???
I:l-:I_E._lE-:I-:IE-:I => arc inconsistent

\}/

» Remove blue from
domain of NSW

33

Arc consistency

]

Ty

e)

I:I-:I-E.—ll:-:l-jl:-:l
\}/

©

SA—NT is consistent iff

_L’:__.‘L_lt_.‘l_lt - SA=blue and NT=blue???

=> arc inconsistent
WA NT Q NSW \' SA

T » Remove blue from
(] E[TE EXIE] XEESN] domain of S4
S A—

» empty domain
-> backtrack

=> arc consistency detects failure earlier than Forward Checking, can
be run as a preprocessor or after each assignment

» must run repeatedly until no inconsistency remains

35

Arc consistency

¥

g

e

WA NT NSW SA T

l:l-:l_E. lE-:I-:IE-:I

©)

P]?_"Hb_"l_‘h V—NSW is consistent iff

- V=blue and NSW=red

- V=green and NSW=red

- V=red and NSW=red ???
=> arc inconsistent

WA NT Q NSW v SA

(] W[DT E] E[EEE]

» Remove red from domain
of

AC-3:Arc consistency algorithm

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: csp, a binary csp with variables (X, X, ..., X}
local variables: gueue, a queue of arcs to check, initially all arcs in csp
while queue is not empty do
(X, X)) < REMOVE-FIRST (queue)
if REMOVE-INCONSISTENT-VALUES(X; X)) then
for each X; in NEIGHBORSLY;] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X)) return true iff we remove a value
removed < false
for each x in DOMAIN[X] do
if no value y in DOMAIN[X] allows (x,y) to satisfy the constraints between X; and X;

then delete x from DOMAIN[X]; removed < true
return removed

36

K-consistency

Arc consistency (AC-3)

» runs in O(n’d?): at most O(n?) arcs (=binary constraints), each arc
inserted only d times, consistency check of an arc in O(d?)

» but does not detect all inconsistencies
- {WA=red, NSW=red} inconsistent but not found

stronger forms of propagation can be defined using the notion
of k-consistency
» a CSP is k-consistent if for any consistent assignment to
any subset of k-1 variables, a consistent value can always
be assigned to any k-th variable
» Examples:
- l-consistency or node-consistency
- 2-consistency or arc-consistency
- 3-consistency or path-consistency

37 Sociable fAgents

Further improvements

Checking special constraints
» e.g Alldiff(...) constraint
» e.g.Atmost(...) constraint (resource constraint)
» Bounds propagation useful in larger value domains

Intelligent backtracking

» standard form is chronological backtracking, i.e. try different value for most
recent preceding variable

» more intelligent: backtrack to conflict set for variable X

- set of variables that caused the failure, or set of previously assigned variables
that are connected to X by constraints

- ,backjumping™: to most recent element of the conflict set
- forward checking can be used to determine conflict set

38 Sociable fAgents

Examples

weaispace.org AJ)space

Hier klicken Blick ins Buch!

ARTIFICIAL
INTELLIGENCE

FOUNDATIONS OF COMPUTATIONAL AGENTS

L (Cambridge Univ.
i o) Press 2010)
e fully available online!

39 Sociable Agents

Local search

Previously: systematic exploration of search space

» often, path to goal is solution to the problem

Yet, for CSPs the path is irrelevant
» E.g8-queens

Different algorithms can be used

» Local search

40 Sociable Agents

Local search and optimization

Local search = use only single current state (local knowledge)
and move to neighboring states

advantages:
» use very little memory
14

find often reasonable solutions in large or infinite state spaces

also useful for optimization problems
8

find reasonable state according to some objective function

/

41 Soci

Agents

Important local search techniques

Random walk: choose fully randomly from among neighbors
Hill-climbing aka. gradient descent/ascent aka. greedy local search
» stochastic: choose randomly from among uphill moves
» Ist choice: create successors randomly until better found

random restart: reset variables randomly at regular intervals
Simulated Annealing

»

size & frequency

» allow random guesses (even when bad moves), with decreasing
Local-Beam Search

milieu among them

» k parallel search threads that pass information about the local
Genetic algorithms

Local search for CSP

use complete-state representation
>

»
»

initial state assigns a value to every variable

allow states with unsatisfied constraints
operators reassign variables

questions during CSP search: which variable to change how?
>

randomly select any conflicted variable
» select a new value that results in a minimum number of conflicts
with the other variables (,,min-conflicts heuristic*)

43

Sociable Agents

42

Sociable fAgents

Min-conflicts example

number of conflicts

Two-step solution for 8-queens problem (with reasonable intitial state)

» variable selection: at each stage a queen is chosen for
reassignment in its column

» value selection: the algorithm moves the queen to the min-
conflict square, breaking ties randomly

44

Sociable Agents

Comparision of CSP algorithms

Problem |Back- BT-MRV |[FC FC+ Min-
tracking MRV conflicts

USA >1.000K [>1.000K |2K 60 64

coloring

n-Queens |[>40.000K |13.500K >40.000K |817K 4K

(2-50)

Zebra 3.859K 1K 35K 0.5K 2K

puzzle

Bottom line: local search suprisingly good, can even be used online!
» n-queens.: roughly independent of problem size, solves million-queens in ~50

steps (because solutions densely distributed)

» Hubble: schedules a week in ~10 min., instead of 3 weeks

45

Examples

www.aispace.org

46

AJ)space

Agents

