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Recall: Best-first search

‣ Best-first search = graph-search with node expansion in order of 
cost heuristic h(n)

‣ Greedy best-first search = expand node with minimal h(n)
- not optimal but often efficient

‣ A* search = expand node with minimal f = g+h
- complete & optimal: admissible (tree-search) or consistent (graph-search) h

‣ SMA* (Simplified Memory-bounded A*)
- drop worst leaf node when memory is full, backs up f-value to its parent for 

later re-expansion

‣ RBFS (Recursive Best-First Search) ~ recursive DF search with...
- keep track of f-values of alternative paths, backtrack if f > alternative f
- upon backtracking, change f-value of node to best f-value of its children, to 

decide later whether to re-expand

Performance depends crucially on the quality of the heuristics!
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Heuristic functions

Example: 8-puzzle
‣ avgerage solution cost is about 22 steps (branching factor ~3)
‣ exhaustive search to depth 22: 322 ~ 3.1 x 1010 states
‣ a good heuristic function is needed to reduce the search process
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Heuristic functions
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True 
solution 
cost = 26

Two commonly used heuristics

‣ h1 = number of misplaced tiles ! h1(start)=8

‣ h2 = manhattan distance = sum of distances of tiles from their 
goal positions ! h2(start)=3+1+2+2+2+3+3+2=18
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Heuristic quality and dominance

Example: 1200 random 8-puzzle problems with solution lengths from 
2 to 24
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If h2(n)>=h1(n) for all n (and both admissible), then h2 is said to 
dominate h1 and is better for search!
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Effective branching factor b*
‣ N = #nodes generated by A* in total, d solution depth

‣ b* = branching factor that a uniform tree of depth d would have 
in order to contain N+1 nodes

‣ measure is fairly constant for sufficiently hard problems

‣ measurement of b* on small problems can provide a good guide 
to the heuristic’s overall usefulness (a good value is 1)

How good is a heuristic?

6

! 

N +1=1+ b*+(b*)2 + ...+ (b*)d
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Inventing admissible heuristics

from an exact solution of a relaxed version of the problem
‣ Example: relaxed 8-puzzle for h1: a tile can move anywhere
‣ never greater than the optimal solution cost of the real problem

- „ABSolver“ automatically found heuristic for the rubic cube

from the solution cost of a subproblem of the problem
‣ lower bound on the cost of the real problem

from a database of exact solutions for possible subproblem instances
‣ construct complete heuristic from the patterns in the DB
‣ can use disjoint databases for different subproblems, when 

solutions don‘t interfere (works only for some problems)
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Constraint satisfaction problems

Standard search problem:
‣ state is a "black box“ – any data structure that supports 

successor function, heuristic function, and goal test

Constraint satisfaction problem (CSP):
‣ structured state = variables Xi, values from domain Di

‣ goal test = set of constraints specifying allowable combinations of 
values for subsets of variables

‣ solution = complete assignment of values to (all) variables that 
passes the goal test (consistent or legal)

Enables useful standard algorithms (for all CSPs) with effective, generic 
heuristics, without domain expertise
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Example: map coloring

Variables:  WA, NT, Q, NSW, V, SA, T 
Domains: Di = {red,green,blue}
Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green)}
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„Dreifarbenproblem“
np-complete!
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Example: map coloring

Solutions are complete and consistent assignments
‣ Example: WA = red, NT = green, Q = red, NSW = green, 

V = red, SA = blue, T = green
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Constraint graph

Binary constraints: each constraint relates two variables
Constraint graph: nodes are variables, arcs are constraints
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Higher-order constraints

Variables: F T U W R O X1 X2 X3

Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints: Alldiff (F,T,U,W,R,O)

O + O = R + 10 ! X1

X1 + W + W = U + 10 ! X2

X2 + T + T = O + 10 ! X3

X3 = F, T ! 0, F ! 0
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Constraint 
hypergraph
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Variables in CSPs

Discrete variables
‣ finite domains: n variables, domain size d ! O(dn) assignments

- e.g. Boolean CSPs (3SAT): exponential time, NP-complete

‣ infinite domains: integers, strings, etc.
- e.g., job scheduling, variables: start/end days for each job
- need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

Continuous variables
‣ e.g., start/end times for Hubble Space Telescope observations
‣ must obey a variety of constraints

- linear constraints (forming a convex region) solvable in polynomial time by 
linear programming methods
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Solving CSPs

Standard search algorithm can be applied directly:
‣ States: defined by the values assigned so far
‣ Initial state: the empty assignment { }
‣ Successor function: assign value to variable without conflict

- fail, if no legal assignments possible

‣ Goal test: the current assignment is complete
‣ Path cost: constant step cost

Every solution with n variables (domain size d) appears at depth n 
‣ branching factor b = (n-i)d  at depth i, 
‣ ! tree with n!· dn leaves even though only dn assignments!!

- commutativity is ignored: same combinations are explored multiple times 
along different paths (in different order)
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Backtracking search

Variable assignments are commutative!
‣ [ WA = red then NT = green ] ~ [ NT = green then WA = red ]

Only need to consider assignments to a single variable at each node
‣ b = d and there are dn leaves

Backtracking search = depth-first search for CSPs with single-variable 
assignments
‣ basic uninformed algorithm for CSPs
‣ example: can solve „n-queens“ for up to n≈25
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Backtracking search
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function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var  ! SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
  if value is consistent with assignment according to CONSTRAINTS[csp] then
   add {var=value} to assignment 
   result  ! RECURSIVE-BACTRACKING(assignment, csp)
   if result " failure  then return result
   remove {var =value} from assignment
 return failure
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Each level explores different 
assignements to a single variable
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Improving backtracking

Standard search improved by incorporating domain-specific knowledge 
(heuristics)

CSPs can be improved by using general-purpose methods to address 
the questions:
‣ Which variable should be assigned next?
‣ In what order should its values be tried?
‣ What implications (i.e. restrictions) has an assignment for other 

possible variable assignments?
‣ Can we detect inevitable failure (inconsistent assignments) early?
‣ Can we avoid repeating a failing path?
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Minimum remaining values heuristic (MRV)

! var ! SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

Also known as most constrained variable heuristic
‣ Rule: choose variable with the fewest legal moves left
‣ Which variable shall we try first?
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Degree heuristic

Degree heuristic
‣ Rule: select variable that is involved in the largest number of 

constraints on other unassigned variables
‣ attempts to reduce future branching factors, very useful as a „tie 

breaker“
‣ In what order should its values be tried?
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Least constraining value heuristic

Least constraining value heuristic
‣ Rule: given a variable choose the least constraining value i.e. the 

one that leaves the maximum flexibility for subsequent variable 
assignments.
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Forward checking

Can we detect inevitable failure early (to reduce search space), and 
avoid it later?

Forward checking: 
‣ on assigning X, check every connected variable Y
‣ remove all values from domain of  Y inconsistent with X
‣ terminate search when any variable has no legal moves left
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Forward checking

Assign {WA=red}
Effects variables connected by constraints with WA
‣ NT can no longer be red

‣ SA can no longer be red
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Forward checking

Assign {Q=green}
Effects variables connected by constraints with Q
‣ NT can no longer be green

‣ NSW can no longer be green

‣ SA can no longer be green

MRV heuristic will automatically select NT and SA next, why?

Inconsistency 
not detected 
by FC!
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Forward checking

If V is assigned blue
Effects variables connected by constraints with V
‣ NSW can no longer be blue

‣ SA is empty

Now, FC has detected that the partial assignment is inconsistent with 
the constraints, and backtracking will occur
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Constraint propagation

Better approach: forward checking combined with heuristics
‣ more efficient and less error-prone than either approach alone
‣ forward checking does not provide (early enough) detection of all 

failures

+ constraint propagation 
‣ implications of a constraint on one variable must be repeatedly 

propagated onto other connected variables
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Arc consistency
Fast method for constraint propagation:

‣ constraints considered as directed arcs in constraint graph
‣ X#Y is (arc) consistent iff for every value x of X there is some 

allowed value y of Y

‣ if y changes, keep X#Y consistent by setting domain of X
‣ iterative procedure to continuously re-check all constraints on 

neighbouring variables in the constraint graph
‣ backtrack, if any variable‘s domain empty (arc inconsistent)

‣ Possible outcomes (when all arcs consitent)
- one domain is empty - no solution
- each domains has single value - unique solution
- some domains have more than on value - may or may not be a solution 

! search and run again
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Example:  After setting Q=green and forward checking (NT, SA, NSW) 
‣ having produced inconsistency between NT and SA

32

Arc consistency
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Arc consistency

NSW#SA is consistent iff 

- NSW=red and SA=blue
- NSW=blue and SA=??? 

! arc inconsistent
‣ Remove blue from 

domain of NSW

SA#NSW is consistent iff

- SA=blue and NSW=red
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Arc consistency

V!NSW is consistent iff
- V=blue and NSW=red
- V=green and NSW=red
- V=red and NSW=red ??? 

! arc inconsistent
‣ Remove red from domain 

of V
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Arc consistency

SA!NT is consistent iff
- SA=blue and NT=blue??? 

! arc inconsistent
‣ Remove blue from 

domain of SA
‣ empty domain
! backtrack

! arc consistency detects failure earlier than Forward Checking, can 
be run as a preprocessor or after each assignment
‣ must run repeatedly until no inconsistency remains
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AC-3: Arc consistency algorithm

function AC-3(csp) return the CSP, possibly with reduced domains

! inputs: csp, a binary csp with variables {X1, X2, …, Xn}!
! local variables: queue, a queue of arcs to check, initially all arcs in csp
! while queue is not empty do
  (Xi, Xj) ! REMOVE-FIRST(queue)

! ! if REMOVE-INCONSISTENT-VALUES(Xi, Xj)  then

! ! ! for each Xk in NEIGHBORS[Xi ] do

! ! ! add (Xi, Xj) to queue 

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) return true iff we remove a value

! removed !  false
! for each x in DOMAIN[Xi] do

! ! if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints between Xi and Xj

! ! then delete x from DOMAIN[Xi]; removed !  true
 return removed
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K-consistency

Arc consistency (AC-3)
‣ runs in O(n2d3): at most O(n2) arcs (=binary constraints), each arc 

inserted only d times, consistency check of an arc in O(d3)
‣ but does not detect all inconsistencies

- {WA=red, NSW=red} inconsistent but not found 

stronger forms of propagation can be defined using the notion 
of k-consistency
‣ a CSP is k-consistent if for any consistent assignment to 

any subset of k-1 variables, a consistent value can always 
be assigned to any k-th variable

‣ Examples:
- 1-consistency or node-consistency
- 2-consistency or arc-consistency
- 3-consistency or path-consistency
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Further improvements 

Checking special constraints
‣ e.g. Alldiff(…) constraint 
‣ e.g. Atmost(…) constraint (resource constraint)
‣ Bounds propagation useful in larger value domains

Intelligent backtracking
‣ standard form is chronological backtracking, i.e. try different value for most 

recent preceding variable
‣ more intelligent: backtrack to conflict set for variable X

- set of variables that caused the failure, or set of previously assigned variables 
that are connected to X by constraints

- „backjumping“: to most recent element of the conflict set
- forward checking can be used to determine conflict set
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Examples

www.aispace.org
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(Cambridge Univ. 
Press 2010)
fully available online!

gentsSociable

Local search

Previously: systematic exploration of search space
‣ often, path to goal is solution to the problem

Yet, for CSPs the path is irrelevant
‣ E.g 8-queens

Different algorithms can be used

‣ Local search 
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Local search and optimization

Local search = use only single current state (local knowledge) 
and move to neighboring states

advantages:
‣ use very little memory

‣ find often reasonable solutions in large or infinite state spaces

also useful for optimization problems
‣ find reasonable state according to some objective function
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Important local search techniques

Random walk: choose fully randomly from among neighbors
Hill-climbing aka. gradient descent/ascent aka. greedy local search
‣ stochastic: choose randomly from among uphill moves
‣ 1st choice: create successors randomly until better found
‣ random restart: reset variables randomly at regular intervals

Simulated Annealing
‣ allow random guesses (even when bad moves), with decreasing 

size & frequency
Local-Beam Search
‣ k parallel search threads that pass information about the local 

milieu among them
Genetic algorithms
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Local search for CSP

use complete-state representation
‣ initial state assigns a value to every variable

‣ allow states with unsatisfied constraints

‣ operators reassign variables

questions during CSP search: which variable to change how?
‣ randomly select any conflicted variable
‣ select a new value that results in a minimum number of conflicts 

with the other variables („min-conflicts heuristic“)
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Two-step solution for 8-queens problem (with reasonable intitial state)
‣ variable selection: at each stage a queen is chosen for 

reassignment in its column
‣ value selection: the algorithm moves the queen to the min-

conflict square, breaking ties randomly

Min-conflicts example number of conflicts
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Comparision of CSP algorithms
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Problem Back-
tracking

BT-MRV FC FC+ 
MRV

Min-
conflicts

USA 
coloring

>1.000K >1.000K 2K 60 64

n-Queens 
(2-50)

>40.000K 13.500K >40.000K 817K 4K

Zebra 
puzzle

3.859K 1K 35K 0.5K 2K

Bottom line: local search suprisingly good, can even be used online!
‣ n-queens.: roughly independent of problem size, solves million-queens in ~50 

steps (because solutions densely distributed)
‣ Hubble: schedules a week in ~10 min., instead of 3 weeks
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Examples

www.aispace.org
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